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Summary

Background:Many unicellular organisms age: as time passes,
they divide more slowly and ultimately die. In budding yeast,
asymmetric segregation of cellular damage results in aging
mother cells and rejuvenated daughters. We hypothesize
that the organisms in which this asymmetry is lacking, or can
be modulated, may not undergo aging.
Results: We performed a complete pedigree analysis of
microcolonies of the fission yeast Schizosaccharomyces
pombe growing from a single cell. When cells were grown
under favorable conditions, none of the lineages exhibited
aging, which is defined as a consecutive increase in division
time and increased death probability. Under favorable condi-
tions, few cells died, and their death was random and sudden
rather than following a gradual increase in division time. Cell
death correlated with the inheritance of Hsp104-associated
protein aggregates. After stress, the cells that inherited large
aggregates aged, showing a consecutive increase in division
time and an increased death probability. Their sisters, who in-
herited little or no aggregates, did not age.
Conclusions:We conclude that S. pombe does not age under
favorable growth conditions, but does so under stress. This
transition appears to be passive rather than active and results
from the formation of a single large aggregate, which segre-
gates asymmetrically at the subsequent cell division.We argue
that this damage-induced asymmetric segregation has
evolved to sacrifice some cells so that others may survive un-
scathed after severe environmental stresses.
Introduction

Aging and eventual death has fascinated humans since
ancient times, yet a central question remains unanswered:
do all living organisms age [1, 2]? Aging is defined as slower
reproduction and increased probability of death with time. In
unicellular organisms, replicative aging is defined by an
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increase in division time and increased probability of cell death
with an increasing number of divisions. It was hypothesized
that an asymmetry in the distribution of aging factors, which
are cell components which contribute to aging, at cell division
is required to define the identity of the agedmother cell and the
young daughter [3]. This hypothesis is in agreement with the
observed aging in asymmetrically dividing prokaryotes and
eukaryotes [4–6] and in symmetrically dividing prokaryotic
cells that segregate damage asymmetrically [7, 8]. These find-
ings were interpreted as evidence that aging is a conserved
feature of all living organisms [9]. Mechanistically, the asym-
metric segregation of damaged proteins, such as protein
aggregates or carbonylated proteins, at division was pro-
posed to underlie replicative aging [10–13]. The role of asym-
metric segregation raises the possibility that equal partition
of ‘‘aging factors’’ might prevent aging.
Does the symmetrically dividing fission yeast, Schizosac-

charomyces pombe, age? Evidence for aging includes the
observations that selected individual cells asymmetrically
inherit fission scars [13, 14] and damaged proteins [13], exhibit
an increase in volume and altered cell morphology [14], and die
after a limited number of divisions [13, 14]. Evidence against
includes the physical restriction in the accumulation of a large
number of fission scars due to the bipolar growth and symmet-
rical division character of S. pombe [15], the random segrega-
tion of damaged proteins between the two daughter cells [16],
and the absence of telomere shortening, a common marker of
cellular aging [17, 18].
To resolve this controversy, it is essential to look for the

defining criteria for replicative aging in unicellular organisms
[4, 7, 19]: an increase in the time between consecutive divi-
sions (division time) and an increased probability of cell death
with the number of times the cell has previously divided (repli-
cative age). The existence of an aging lineage can be further
supported by the identification of an aging factor that is in-
herited by the aging cell. Cell components that segregate
asymmetrically to aging cells in other organisms, such as the
old cell pole [7], protein aggregates [10], ribosomal DNA circles
[20], the recently replicated spindle-pole body (new SPB) [21]
or centrosome [22], the vacuole, which acidifies with age
[23], or even a larger cell volume [24], could be related to aging
in S. pombe.
By performing pedigree analysis of microcolonies growing

from single S. pombe cells, we analyzed division times, inher-
itance of cell components, and cell death across many line-
ages. Here we show that S. pombe is able to avoid aging under
favorable conditions, but ages in response to stressful envi-
ronments. Under stressful conditions, the asymmetric segre-
gation of protein aggregates correlates with and likely causes
slower division and eventual cell death.

Results

Asymmetric Segregation of Cell Components Does Not

Correlate with an Increase in Division Time in S. pombe
Consecutive inheritance of specific cell components over
many divisions may correlate with a consecutive increase in
division time and in the probability of cell death, which would
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define an aging lineage in S. pombe. To test this hypothesis,
we performed a complete pedigree analysis of individual
fission yeast cells in three distinct wild-type strains
(NCYC132, L972, and RumNRRL), randomly selected from
exponentially growing cultures. The rod-shaped cells of
S. pombe grew and divided by medial fission continuously
for up to eight generations, forming a monolayer microcolony
(Movie S1 available online).We generated a complete pedigree
tree for the founder cell of eachmicrocolony and all its descen-
dants (n = 20–52 microcolonies; Figure 1A), and we tested
whether the inheritance of cell components correlated with
an increase in division time.

The first cell component that we tested was the old cell pole,
a pre-existing structure that is inherited from the mother cell.
In different experiments on E. coli, continued inheritance of
the old pole has been correlated with an increase in division
time [7] or filament formation [8]. The division time of the cells
that consecutively inherited the old pole for up to six divisions
(Figures 1B and S1A) decreased, on average, by 0.1% per
division. However, fission yeast cells typically grow to a larger
extent at the old than at the new pole [25, 26], and the cell that
inherits the new pole typically inherits a larger part of the old
cell wall and the scar from the previous division [15]. Therefore,
we tested whether the new-pole cell inheritance [13, 14] was
correlated with an increase in division time. The division time
decreased, on average, by 0.5% per division (Figures 1B,
S1A, and S1B). We conclude that there was no correlation
between cell pole inheritance and an increase in division
time, in three wild-type strain isolates, which indicates that
this feature is conserved in the species.

We decided to repeat the analysis we performed for the cell
pole to study whether other cell components in S. pombe
would correlate with aging. The newly synthesized SPB, which
is segregated asymmetrically to the slowly dividingmother cell
in S. cerevisiae [21], can be distinguished from the old SPB in
S. pombe by the specific localization of Cdc7 to the new SPB
during anaphase [27, 28]. Using a strain where Cdc7 was
labeled with GFP (Figure S1C), we tested whether the different
SPBs correlated with an increase in division time. Neither the
cells consecutively inheriting the new SPB nor the ones inher-
iting the old SPB exhibited an increase in division time (Fig-
ure 1C and Movie S2). Another component that segregates
asymmetrically to aging E. coli [10] and S. cerevisiae [12, 29,
30] cells that exhibit an increase in division time are protein ag-
gregates. By following the inheritance of GFP-labeled Hsp104,
a molecular chaperone that associates with aggregates [12]
(Figure S1D and Movie S2), we observed no significant in-
crease in division time in cells inheriting a large or small num-
ber of aggregates, respectively (Figure 1D). As a consequence
of their morphologically symmetric division, S. pombe cells
might avoid an asymmetry in the segregation of a diffusible
aging factor beyond that associated with the binomial parti-
tioning of a finite number of aggregates.

Thus, we hypothesized that genetically modified S. pombe
cells that divide into a larger and smaller daughter cell might
age because the larger daughter cell may inherit a larger
amount of an aging factor, and dilute it less in the next division.
In this way, the smaller daughter would inherit a smaller
amount of an aging factor and dilute it more in the next divi-
sion, avoiding aging. We tested this by using a pom1Dmutant
[31], which divides off-center (Figures S1E and S1F) and where
larger and smaller cells grew on average 7 mm in length to a
constant division size over consecutive divisions (Figure S1F).
We did not observe a significant increase in division time,
when the larger or the smaller sibling was followed for consec-
utive divisions (asymmetry, measured by the ratio between the
length of the smaller and larger cells and their respective sis-
ters, was 30%–70%; Figure 1E and Movie S2). A summary of
these results is found in Table 1 (see Figure S1G for absolute
division times).
To test whether signs of aging appear after a larger number

of divisions, we used micromanipulation to follow cells
consecutively inheriting the old or the new pole (Figure S1H).
Starting with a spore, individual cells inheriting the old or the
new pole were kept on an agar plate while all other cells
were removed with a microneedle after each one to three cell
divisions (Figure S1H). During over 50 divisions for cells inher-
iting the old pole and 30 divisions for cells inheriting the new
poles, the cells divided continuously without a significant in-
crease in the division time (Figure 1F). For comparison,
E. coli cells that inherited the old cell pole grown in a microflui-
dic device did not show an increase in division time for more
than 200 divisions, but were more likely to die than younger
cells [8]. Other reports detected slower cell division after as
few as three to five divisions in E. coli [7] and 20 divisions in
S. cerevisiae and human fibroblasts [19, 32, 33]. Unlike these
experiments, we were unable to detect an increase in division
time related to the age of the cell poles in S. pombe.
We conclude that an increase in division time in S. pombe is

not associated with the consecutive inheritance of known
aging factors for other organisms and that the absence of
aging is independent from the morphological symmetry of
division, at least when the imposed asymmetry is up to 70%.
We are not asserting that the individual components, such as
cell poles, of S. pombe cells are immortal. We are confident
that if any indivisible component is followed for enough cell
divisions, the cell that harbors it will eventually die, but our
evidence suggests that the probability of this death will be
constant rather than increasing over time.

S. pombe Cell Division Time Does Not Increase over

Consecutive Divisions
It is possible that aging, if present, is correlated with the inher-
itance of a cell component other than the ones we tested.
Therefore it is necessary to test for an increase in cell division
time over consecutive divisions. We consider three general
scenarios for replicative aging (Figure 2A): (1) the increase in
division time occurs only in one sister cell (the aging cell), as
in S. cerevisiae and E. coli [7, 19]; (2) the increase in division
time occurs in both sister cells, such as in clonal aging of
human somatic cells [34]; or (3) there is no increase in division
time in sister cells, and aging does not occur. We used cells
from the NCYC132 strain to test whether cells that carry the
feature of slow division (identified by a longer division time
and/or slower growth than the average of the colony) would
transmit this feature to their daughters, which should exhibit
an increase in their division time. Mother cells with a division
time exceeding the mean by at least 1 SD gave rise to two
daughters, both of which divided faster than their mother.
The slowest dividing of the two daughters, which should repre-
sent the aging lineage, had a division time 12% shorter than
that of their mother (mothers, 155.9 6 7.0 min; slower daugh-
ters, 136.96 17.3 min; mean6 SD; n = 107; p = 10218; Figures
2B and 2C). We got similar results for two other wild-type
strains (L972 and RumNRRL; Figure S2, left panels). The
simplest explanation of these results is that S. pombe divides
at a roughly constant cell size [35, 36]: slower-dividing cells are
larger at division, which implies that their daughters will need
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Figure 1. Asymmetric Inheritance of Aging Factors in Pedigree Lineages Does Not Correlate with Aging

(A) Left: the pole identity in the founder cell is not known (white arcs at 00). After the first division (generation 1), the old (magenta arc) and new (green arc) pole

segregate asymmetrically (generation 2). Right: pedigree tree of 52 microcolonies (NCYC132) representing average division times (length of vertical lines) of

new pole (left branch, green) and old pole (right branch,magenta) cells. The bifurcations represent cell divisions. Horizontal lines (gray) mark the first division

in each generation (gen). The scale bar represents 5 mm.

(B) Cells that consecutively inherit the old pole (magenta) or the new pole (green) do not exhibit an increase in division time (strain NCYC132; n = 52 cell

lineages; Movie S1). For comparison, we show the division times for E. coli (estimated for old-pole cells from Figure 3A in [7]) and S. cerevisiae (estimated

from a linear fit for mother cells of age two to ten generations from Figure 2 in [19], normalized by the division time of the cells of the second generation).

(C–E) Cells that consecutively inherit the old spindle pole body (magenta) or the new spindle pole body (green, labeled with Cdc7-GFP, strain IH1106; n = 13

cell lineages; Movie S2) (C) or inherit a higher amount of protein aggregates (magenta) or a lower amount of protein aggregates (green, strain MC19; n = 30

cell lineages; Movie S2) (D) or are born smaller (orange) and larger (blue) in asymmetrically dividing cells (pom1D strain JB107; n = 32 cell lineages; Movie S2)

(E) do not show an increase in division time with an increasing division number. Data are mean 6 SEM; the number of cells is given in the graphs.

(F) Average division time of cells that consecutively inherit the old pole (thickmagenta line, n = 10 spores) or the new pole (thick green line, n = 32 spores, T =

23�C 6 2�C; thin lines represent the SEM) from micromanipulation experiments (inset). Death events related to the old/new pole inheritance were not

observed. For comparison, we show division times for S. cerevisiae (estimated for mothers cells from Figure 1 in [19], multiplied by 3.6 to match the scale).

See also Figure S1 and Movies S1 and S2.
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to grow for a shorter period of time before they can divide.
Since we did not detect the presence of aging in the most
slowly dividing cells, we decided to analyze the division times
of all mother and daughter cells in the population in the three
wild-type strains (Figure S2). We observed that there was no
correlation between the division time of the mother and each
of its two daughter cells (Figure S2, middle panels). The differ-
ence in division time of daughter cells, which is known to



Table 1. Summary of Pedigree Analysis for All of the Strains and

Conditions Tested

Strain and Condition

Followed

Feature

Change in Division

Time, per Division (%)

NCYC132 WT (30�C) Old pole 20.09 6 0.14 (4,533)

NCYC132 WT (30�C) New pole 20.54 6 0.16 (4,352)a

L972 WT (30�C) Old pole 20.06 6 0.29 (618)

L972 WT (30�C) New pole 0.06 6 0.29 (555)

RumNRRL WT (30�C) Old pole 20.56 6 0.40 (538)

RumNRRL WT (30�C) New pole 21.35 6 0.55 (461)

Cdc7-GFP WT (30�C) Old SPB 21.58 6 0.88 (243)

Cdc7-GFP WT (30�C) New SPB 22.50 6 0.93 (226)b

Hsp104-GFP WT (30�C) High aggregate

amount

0.18 6 1.90 (60)

Hsp104-GFP WT (30�C) Low aggregate

amount

20.57 6 2.06 (60)

pom1D (30�C), asymmetric

cell division

Old pole 21.42 6 0.74 (318)

pom1D (30�C), asymmetric

cell division

New pole 0.90 6 0.78 (319)

pom1D (30�C), asymmetric

cell division

Larger sibling 20.01 6 0.86 (463)

pom1D (30�C), asymmetric

cell division

Smaller sibling 1.01 6 1.61 (308)

Hsp104-GFP WT (40�C,
1 hr)

High aggregate

amount

19.7 6 10.8 (49)a

Hsp104-GFP WT (40�C,
1 hr)

Low aggregate

amount

21.62 6 3.29 (30)

Hsp104-GFP WT (30�C,
H2O2 1 mM)

High aggregate

amount

100 6 18.6 (72)a

Hsp104-GFP WT (30�C,
H2O2 1 mM)

Low aggregate

amount

21.29 6 2.64 (30)

Change in division time is shown in percent per division, with the number of

cells in parentheses. Division times were normalized by the average for the

corresponding generation of each colony. WT, wild-type.
ap < 0.005.
b0.005 < p < 0.05.
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increase during aging of asymmetrically dividing cells as the
mother cell divides slower [7], was not correlated with the divi-
sion time of the mother (Figure S2, right panels).

A similar analysis was also performed for slowly growing
cells. When we analyzedmother cells with a growth rate below
the mean, we found that the daughter cells were, on average,
growing at a higher rate than their mothers (mothers, 46.4 6
2.69 nm/min; slower daughters, 49.8 6 3.84 nm/min; mean 6
SD; n = 34; p = 1024). Finally, we expect that the progeny of
the daughter that has the longer cell division time will show
an increase in their cell division times over several consecutive
divisions. We followed the slower-dividing sister cell over six
consecutive divisions and observed that the mean division
time did not increase (>50 individual lineages; Figure 2D). We
conclude that the feature of slow division, a conserved feature
of aging, was not transmitted frommothers to daughters, con-
trary to what occurs in early divisions in E. coli [7] and
S. cerevisiae [37], further supporting the absence of aging de-
picted in scenario 3, where aging factors segregate binomially
at division (Figure 2A).

Cell Death Is Not Preceded by Aging

Aging in other organisms is more pronounced in the last few
divisions prior to cell death [37]. Indeed, cells of S. cerevisiae
and Candida albicans die on average after 20 divisions [5, 6],
and in S. cerevisiae cell death is preceded by a 2-fold increase
in division time over a period of one to two divisions [19]. If
S. pombe exhibits aging, we expect a similar increase in
division time before death.We screened 10,000S. pombe cells
and detected 36 individual cell death events (Figure 3A). The
total number of death events registered was low compared
to the number of total cell divisions observed (0.1%–0.3% in
NCYC132, L972, RumNRRL wild-type strains, n > 5,000 cell di-
visions). The death frequency in S. pombe (0.3%) was higher
than the aging-related death frequency in S. cerevisiae and
C. albicans (0.0001% z 1 death event/220 cell divisions
[5, 6]). If in S. pombe death was only a consequence of aging,
the expected lifespan of an individual cell would be around
eight divisions (0.3%z 1 death event/28 cell divisions). There-
fore, aging would have been detected in a fraction of our
microcolony experiments (Figure 1A) and in the long-term
experiments (Figure 1F).
We identified the ancestors of the dead cells and measured

their division times for six divisions preceding death. The divi-
sion time did not increase before death (Figure 3B and Movie
S2). In S. cerevisiae and E. coli, the difference in the division
time of aging cells and their siblings increases with the number
of divisions before cell death [7, 19]. We found no increase in
the difference in division time between S. pombe siblings in
the cell lineage preceding death (Figure S3A). The morphology
of the dying cells and their divisional symmetry before death
were unaffected, and their siblings continued to divide (Fig-
ure 3A and Movie S1). Cell death typically occurred in one of
the siblings within w3 min after their separation, suggesting
that death is due to a catastrophic failure in some process
rather than the gradual decline of aging.
It is possible that unstressed S. pombe cells undergo a

slower type of aging that, running in the background, results
in a less frequent death. In this situation, aging may occur
due to the asymmetric segregation of an unidentified aging
factor. However, this would represent a much less significant
percentage of the cell death in the population and would
most likely negligibly contribute to the population fitness.

The Inheritance of Protein Aggregates Correlates with

Death
We next tested whether there was a correlation between the
inheritance of cell components with cell death (Figure 3C).
Cells that inherited a higher amount of aggregated proteins,
measured by the total intensity of aggregate-associated
Hsp104-GFP (arbitrary units [a.u.]) in the puncta, exhibited a
higher probability of death than cells that inherited a lower
amount (Figures 3C and 3D). We observed that at the moment
of death both the amount and the number of aggregates corre-
latewith cell death (Figures 4A and 4B andMovie S3). To deter-
mine whether inheriting aggregate amount or number at birth
above a thresholdd (d = 5 a.u. for amount or d= 2 for aggregate
number; Figure 4C) is linked with death, we observed that cells
inheriting a high aggregate amount died with a high frequency,
while cells bornwith a number of aggregates aboved exhibited
only a small increase in death frequency. Therefore, the
amount rather than the number of aggregates inherited by a
cell at birth is associated with survival in the next cell cycle.
Thus, aggregates are able to accumulate in symmetrically
dividing S. pombe cells and correlate with cell death. In sup-
port of this observation, protein aggregates grew 10-fold
faster (Figures S3B and S3C) or overlapped with the division
plane (Figure S3D) before death. The probability of cell death
after an overlap event was higher for a larger overlap region
between the aggregate and the cell division plane (Figures
S3E and S3F), suggesting that the aggregates may disrupt
cytokinesis or the integrity of the daughter cell wall [39].
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See also Figure S2.
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We performed a variety of tests to demonstrate that the
puncta labeled with Hsp104-GFP represent endogenous
aggregates. First, we compared the following properties in
strains where a fluorescent protein label was either present
or absent in Hsp104: (1) the molecular weight of aggregates
and the distribution of Hsp104 in different molecular weight
fractions (Figures S4A–S4C), (2) the Hsp104 in vitro and
Hsp104-GFP in vivo disaggregase activity (Figures S4D–
S4F), and (3) the cell death and thermotolerance response
(Figures S4G and S4H). We also compared the Hsp104 puncta
number and cell-cycle properties using different fluorescent
labels (Figures S5A–S5C). We found that the tested properties
were similar in the presence and in the absence of the GFP
label in Hsp104 (see also the Supplemental Experimental Pro-
cedures). We conclude that Hsp104 labeled with GFP is a reli-
able in vivo marker for protein aggregation.

In summary, the analysis of the final cell divisions when
aging in other organisms is most pronounced [40] showed
that there was no increase in division time or growth arrest
before death and that death occurs catastrophically, most
likely as a consequence of the accumulation of protein aggre-
gates. Thus, our results show that aging does not occur in
S. pombe, at least under favorable growth conditions.

Cells that Inherit Protein Aggregates Undergo Aging after

Stress
Under favorable conditions, which produce low levels of pro-
tein aggregates, random segregation of aggregates in sym-
metrically dividing cells distributes the aggregates across
the population. In this way, aggregates are prevented from
accumulating faster than they are diluted, which is likely to
be the ultimate cause of aging. In contrast, environmental
stress may produce enough aggregated proteins to kill both
daughter cells. Under these conditions, strongly asymmetric
segregation of the aggregates would ensure that the cell
born with fewer aggregates survives and its sister ages and
dies. To test this hypothesis, we subjected exponentially
growing cells to two independent types of stress: heat (40�C)
or oxidizing agents (1 mM H2O2) for 1 hr. Cells were allowed
to recover from stress in rich media at 30�C and were then
monitored for five divisions. During growth arrest after stress,
there was an increase in the total amount of aggregates (Fig-
ures S5D and S5E), and when cells resumed division, a single
large aggregate was formed and inherited by one of the sister
cells, while its sister was born clean (Figure 5A).
We investigated whether aging was linked to this newly

established asymmetry in aggregate segregation by moni-
toring the division time and the probability of death in cells
that consecutively inherited the large aggregate and their sis-
ters (Figure 5A and Movie S4). We identified a consecutive in-
crease in division time for cells that inherit large aggregates,
but not for cells that inherited a small amount of aggregates
(Figure 5B and Table1). Moreover, there was a higher probabil-
ity, relative to unstressed control cells, of cell death associated
with the inheritance of large protein aggregates, but not for
cells that were born clean of aggregates (Figure 5C). We
observed that after four divisions, there was a higher probabil-
ity to segregate damage to the cell that inherited the old cell
pole at division (Figures S5F and S5G), which may be a conse-
quence of the nuclear movement during anaphase, displacing
large aggregates toward the old cell pole. The formation of an
aging lineage, defined by the inheritance of a large protein
aggregate, was verified for both types of stress, indicating
that aging is independent of the origin of stress. This is similar
to the scenario where aging factors are retained by one cell,
the cell that inherits the old cell pole at division (Figure 2A).
We next compared how the two types of stress trigger aging.

In the case of heat stress, the increase in division time
occurred only in the cell cycle immediately before death,
whereas for oxidative stress, this increase occurred
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Figure 3. Cell Death Is Not Preceded by an In-

crease in Division Time and Correlates with the

Inheritance of Protein Aggregates

(A) A cell (yellow) divided (100 min) and one of the

daughter cells died (magenta at 105 min). Cell

death was recognized by a distinct cell mor-

phology [38] (shrinkage of cell volumeandsurface

irregularities), as well as by the absence of

growth. The morphology, growth, and division of

the cell before death (yellow), aswell as of the sur-

viving sister cell (green), were normal (Movie S1).

(B) Normalized division time as a function of the

number of divisions before death decreased on

average by 0.7% 6 0.6% per division; p = 0.2,

n = 36 cells (34 dead cells with surviving sisters

and two dead sister cells; 174 cell divisions in

total). For comparison, division time for

S. cerevisiae is shown (taken from Figure 2 and

the text in [19]).

(C) Time lapse of the last division before cell

death after inheritance of a putative aging factor

(OP, old cell pole; NP, new cell pole; OS, old

SPB; NS, new SPB; MAgg, more aggregates;

LAgg, less aggregates; L, larger cell; S, smaller

cell). The percentage of cell deaths associated

with the inheritance of a factor is shown on the

right; strains are shown on the left; BF, bright

field. White lines encircle cells.

(D) The probability of death in the next cell cycle

after inheritance of a putative aging factor is

shown (n > 5,000 cell divisions, the number of

cells is given in the graph). Data are means 6

SEM; scale bars represent 5 mm.

See also Figure S3.
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consecutively over three divisions before death (Figure 5B).
This differencemight be explained by the rate of aggregate for-
mation: after heat stress the majority of the total aggregate
amount was generated prior to the first division, whereas after
oxidative stress there was a gradual accumulation of aggre-
gated proteins over three divisions after stress (Figure 5A).
The percentage of cell death after stress was similar for heat
and oxidative stresses: after heat stress most cells died sud-
denly after division, whereas after oxidative stress there was
a long arrest in cell growth before death (Figure 5A). Therefore,
for different stresses, the increase in division time and the
phenotype of cell death manifest differently, suggesting that
the aging phenotype reflects the amount and type of damage.
We conclude that after stress, aggregate segregation causes
aging in the lineage that retains the large aggregate, enabling
the generation of clean daughters, as depicted in the scheme
of Figure 5D.

Discussion

A Transition from Nonaging to Aging that Requires
Asymmetric Segregation of Damage

A major limitation in studying aging in morphologically sym-
metrically dividing unicellular organisms is the identification
of a biochemical marker whose inheritance correlates with
aging. In S. pombe, we identified protein aggregates as a
marker for aging under stress conditions. After stress, cells
that retained large aggregates exhibited features of aging: a
consecutive increase in division time
and probability of death. However, un-
der favorable growth conditions in
S. pombe, protein aggregates segregate randomly at division
and cells do not undergo aging. The comparison of our results
with previous studies of aging in S. pombe can be found in Ta-
ble S1. Upon inheritance of a large aggregate amount, the
inability to assemble a protective stress response during
favorable growth conditions is likely to culminate in aggregate
growth and toxicity that lead to death. The differences in
growth conditions might also explain the observed discrep-
ancy between the aging phenotype of E. coli cells that grow
in solid agarose pads [7] or liquid media [8].
A number of different explanations could account for the

slower cell cycles of the cells that retain large aggregates after
stress. The rapid formation of protein aggregates after heat
stress to an amount above the death threshold is initially toler-
ated, most likely due to the protective stress response [41];
however, as cells divide this ability may be lost [42] due to a
decreased expression or buffering ability of molecular chaper-
ones. As essential proteins are titrated and sequestered by
aggregates [43], cell-cycle checkpoint activation may result
in the observed cell-cycle delays followed by cell death [44].
Alternatively, the composition of the protein aggregates after
stress might differ from the nonstressed situation, and essen-
tial proteins might be specifically sequestered or enriched in
the stress-related aggregates [45], leading to the aging pheno-
type observed.
How is aging reset in cells born with small aggregate

amounts? The sisters of cells containing large aggregates,
which are born with an aggregate amount below the death
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threshold, divide without exhibiting an asymmetry in damage
segregation or an increase in division time or probability of
death. This occurs both under favorable and stress conditions
and suggests that the inheritance of aggregates per se, and
not the stress treatment, makes cells age and die. Therefore,
cells can avoid aging by lowering ormaintaining the total levels
of damage below the death threshold. Aging in S. pombe
seems to be modulated by fluctuations in the total levels of
damage: accumulation of damage under unfavorable growth
conditions triggers aging, and aggregate clearance due to
asymmetric segregation keeps the cleared cells from aging
and allows survival after substantial damage. Mechanisms
that prevent and repair damage are also likely to play an impor-
tant role in the survival of cells that do not exhibit aging.

Aging and Random Segregation—A Different Way to

Handle Damage?

Our data suggest the existence of a nonaging unicellular eu-
karyotic organism, the fission yeast S. pombe. In other organ-
isms, aging is thought to be beneficial because damage is
segregated only to some cells in the population, while others
are born damage free [46]. Nonaging organisms may use a
different life strategy that does not depend on the segregation
of damagedmaterial to a few cells in the population, but rather
on the maintenance of the fitness of each cell. The mainte-
nance of individual fitness can be achieved actively by a
directed segregation mechanism, in which both cells inherit
nearly identical numbers of aging factors. Alternatively,
random segregation of damage at division may effectively
distribute low levels of spontaneous damage, without the
need of dedicated cellular machinery, while allowing a higher
variability of damage levels in individuals. If the gap between
the mean number of new aging factors produced per genera-
tion and the number required to trigger aging is large enough,
repeated rounds of random segregation followed by dilution
will produce only a tiny fraction of cells that age and die. In
evolutionary terms, sacrificing a few individuals that randomly
inherit high damage amounts may have a lower cost than an
active damage segregation mechanism, at least in certain
symmetrically dividing cells. Organisms that exhibit aging,
such as S. cerevisiae, C. elegans, and D. melanogaster, can
respond to stress either by accelerating the rate of aging and
death, or by exhibiting a lifespan extension due to hormesis
in response to mild stress [47]. Lifespan extension also occurs
in mutants that have increased capacity to handle stress-
related damage and in species that acquired more efficient
stress resistance mechanisms [48, 49]. In organisms in which
aging is not present, stress may trigger aging either due to
an increase in the damage production rate or by changing
the way damage is segregated.

Conclusions
The current paradigm in aging research argues that all organ-
isms age. We have challenged this view by failing to detect
aging in S. pombe cells grown in favorable conditions. We
have shown that S. pombe undergoes a transition between
nonaging and aging, due to asymmetric segregation of a
high amount of damage. Further studies will elucidate the
mechanisms underlying the transition to aging and its depen-
dence on environmental components.
Human somatic cells show aging, dividing for a limited num-

ber of times in vitro [34], whereas cancer cells, germ cells, and
self-renewing stem cells are thought to exhibit replicative
immortality. While S. cerevisiae is a widely used model for
cell aging [46, 50], S. pombe may be a model system for
immortal cells, such as the germline. In addition,S. pombe rep-
resents an attractive tool for studying aging as a gain of func-
tion: manipulation of growth conditions rapidly generates high
numbers of fluorescently labeled aging cells, amenable to sort-
ing and genetic and biochemical manipulation. Comparative
studies of aging and nonaging life strategies across single-
cell species will help to clarify what determines the replicative
potential and aging of cells in higher eukaryotic organisms [51].
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Figure 5. After Stress, Cells that Inherit Large Protein Aggregates Show Aging

(A) Images of cells that inherit large aggregates (Hsp104-GFP, green) after heat (40�C, 1 hr; left) and oxidative (1 mM H2O2; right) stress. Schemes depict

aggregate formation and cell death (magenta), which occurred two to five cell divisions after stress. Scale bars represent 5 mm. Time is given in minutes.

(B) Normalized division time before death increased for cells inheriting large aggregates (solid lines, Hsp104-GFP intensity I > 5 a.u.), but not for cells clean of

aggregates (dashed lines, Hsp104-GFP intensity I < 5 a.u.).

(C) Cells inheriting a larger amount of aggregates had a higher probability of death than cells inheriting a smaller amount, indicating that after stress protein

aggregates behave as an aging factor. Data are means 6 SEM. The number of cells is shown in the graphs.

(D) Scheme representing the transition between nonaging and aging in S. pombe. Under favorable growth conditions, aging factors (protein aggregates,

depicted as trash bins) distribute equally between both siblings and aging is not present. After stress, a high amount of aging factors is asymmetrically

segregated to one cell, giving rise to a clean sibling. The cell that inherits a large amount of aging factors undergoes aging and death.

See also Figure S5 and Movie S4.
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