Potentiating Hsp104 activity via phosphomimetic mutations in the middle domain

Amber Tariq1*, JiaBei Lin1*, Megan M. Noll1*, Mariana P. Torrente1,2, Korrie L. Mack1,3, Oscar Hernandez Murillo1, Meredith E. Jackrel1,4, and James Shorter1,3#.

1Department of Biochemistry and Biophysics, 3Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.

2Present address: Chemistry Department of Brooklyn College and Ph.D. Programs in Chemistry, Biochemistry, and Biology, Graduate Center of the City University of New York, New York, NY 10016.

4Present address: Department of Chemistry, Washington University, St. Louis, MO 63130.

*Co-first author.

#Correspondence: jshorter@pennmedicine.upenn.edu
Abstract

Hsp104 is a hexameric AAA+ ATPase and protein disaggregate found in yeast, which can be potentiated via mutations in its middle domain (MD) to counter toxic phase separation by TDP-43, FUS, and α-synuclein connected to devastating neurodegenerative disorders. Subtle missense mutations in the Hsp104 MD can enhance activity, indicating that post-translational modification of specific MD residues might also potentiate Hsp104. Indeed, several serine and threonine residues throughout Hsp104 can be phosphorylated in vivo. Here, we introduce phosphomimetic aspartate or glutamate residues at these positions and assess Hsp104 activity. Remarkably, phosphomimetic T499D/E and S535D/E mutations in the MD enable Hsp104 to counter TDP-43, FUS, and α-synuclein aggregation and toxicity in yeast, whereas T499A/V/I and S535A do not. Moreover, Hsp104T499E and Hsp104S535E exhibit enhanced ATPase activity and Hsp70-independent disaggregate activity in vitro. We suggest that phosphorylation of T499 or S535 may elicit enhanced Hsp104 disaggregate activity in a reversible and regulated manner.

Keywords: Disaggregate, Hsp104, neurodegeneration, ALS, PD, TDP-43
Introduction

In PD, the small, presynaptic, lipid-binding protein α-synuclein (α-syn) forms toxic oligomers and amyloids, which accumulate in cytoplasmic deposits termed Lewy bodies in degenerating dopaminergic neurons (Abeliovich and Gitler 2016, Auluck, et al. 2010, Snead and Eliezer 2014, Winner, et al. 2011). Although the precise function of α-syn is uncertain, it likely plays important roles in synaptic vesicle trafficking (Abeliovich and Gitler 2016, Gitler and Shorter 2007, Snead and Eliezer 2014). These functions are likely perturbed via sequestration in toxic oligomers and Lewy Bodies. Thus, protein disaggregases that safely disassemble α-syn oligomers and amyloid, and, recover functional α-syn could have curative properties in PD and other synucleinopathies (Dehay, et al. 2015, Shorter 2008, Snead and Eliezer 2014).

In search of therapeutic agents, we have endeavored to tailor Hsp104, a hexameric AAA+ protein disaggregate found in yeast, to safely disassemble toxic oligomers, aggregates, and amyloids connected

The majority of potentiating mutations isolated to date reside in the MD of Hsp104 (Jackrel, et al. 2014a, Jackrel, et al. 2015). The MD is an important autoregulatory domain of Hsp104, which encircles the disaggregate and enables interdomain communication between NBD1 and NBD2 and collaboration with Hsp70 (Cashikar, et al. 2002, DeSantis and Shorter 2012a, DeSantis, et al. 2014, Gates, et al. 2017, Heuck, et al. 2016, Lee, et al. 2013, Yokom, et al. 2016). Potentiating mutations have been found in all four helices of the MD (Jackrel, et al. 2015). Some of these mutations may alter inter-protomer contacts between MD helix L1 and MD helix L3 or contacts between the MD and NBD1 (Gates, et al. 2017, Heuck, et al. 2016). Remarkably, very minor changes in primary sequence can result in enormous changes in disaggregate activity. Indeed, a single missense mutation can potentiate Hsp104 and may be as subtle as removal of a single methyl group (e.g. A503G), removal of a single methylene bridge (e.g. E469D), or addition of a single methylene bridge (e.g. V426L) (Jackrel, et al. 2014a, Jackrel and Shorter 2015, Jackrel, et al. 2015). The subtle nature of some potentiating mutations suggests that post-translational modifications of Hsp104 at specific positions in the MD or NBD1 might also potentiate activity. Indeed,
several serine and threonine residues throughout Hsp104 can be phosphorylated in vivo, including T87 and S155 in the NTD, S206 and S306 in NBD1, T499 and S535 in the MD, and S577, S578, and S768 in NBD2 (Figure 1A) (Albuquerque, et al. 2008, Holt, et al. 2009, Swaney, et al. 2013). How these phosphorylation events affect Hsp104 activity is unknown. Here, we introduce phosphomimetic aspartate or glutamate residues at these positions and assess Hsp104 activity. Remarkably, phosphomimetic T499D/E and S535D/E mutations in the MD enable Hsp104 to effectively counter TDP-43, FUS, and α-syn aggregation and toxicity in yeast. By contrast, phosphomimetic mutations at phosphorylated positions elsewhere in Hsp104 do not potentiate Hsp104. Importantly, Hsp104(T499E) and Hsp104(S535E) exhibit enhanced ATPase and protein-disaggregase activity. We suggest that phosphorylation of T499 or S535 may enable enhanced Hsp104 disaggregate activity in a reversible and regulated manner.

Materials and Methods

Yeast Strains, Plasmids, and Media

Yeast were WT W303a (MATa, can1-100, his3-11, 15, leu2-3, 112, trp1-1, ura3-1, ade2-1) or the isogenic strain W303aΔhsp104 (Jackrel, et al. 2014a). Media was supplemented with 2% glucose, raffinose, or galactose as specified. The yeast strains W303aΔhsp104 303GAL-α-syn, FUS, and TDP-43 have been previously described (Jackrel, et al. 2014a, Jackrel and Shorter 2014a, Jackrel, et al. 2014b). QuikChange site-directed mutagenesis (Agilent) was used to create mutations in the pRS416GAL-Hsp104 plasmid and all mutations were confirmed by DNA sequencing.

Yeast Transformation and Spotting Assays

Yeast transformations were performed using standard polyethylene glycol and lithium acetate procedures (Gietz and Schiestl 2007). For the spotting assays, yeast were grown to saturation in raffinose supplemented dropout media overnight at 30°C. The saturated overnight cultures were serially diluted five-fold and a 96-bolt replicator tool (frogger) was used to spot the strains in duplicate onto both glucose and galactose dropout plates. These plates were grown at 30°C and imaged after 72h to assess suppression of disease-protein toxicity.
Western Blotting

Transformed phosphomimetic mutants and controls were grown overnight in raffinose media. The overnight cultures were diluted to an OD of 0.3 ($A_{600nm}=0.3$) and grown in galactose-supplemented media at 30°C. α-Syn samples were induced for 8h, while FUS and TDP-43 samples were induced for 5h. Samples were then normalized to an OD of 0.6. The pelleted cells were resuspended in 0.1 M NaOH for 5 min and then pelleted again and resuspended in 1x SDS sample buffer. The samples were then boiled and separated by SDS-PAGE (4-20% gradient, Bio-Rad), and then transferred to a PVDF membrane (Millipore). The following primary antibodies were used: anti-GFP monoclonal (Roche Applied Science), anti-FUS polyclonal (Bethyl Laboratories), anti-TDP-43 polyclonal (Proteintech), anti-Hsp104 polyclonal (Enzo Life Sciences), and anti-PGK monoclonal (Invitrogen). Blots were imaged using a LI-COR Odyssey FC Imaging system.

Toxicity Assay

Phosphomimetic mutants along with applicable controls were transformed into W303aΔhsp104 yeast. The strains were grown overnight in raffinose dropout media at 30°C with shaking. The saturated cultures were spotted in duplicate onto two sets of SD-Ura and SGal-Ura plates. One set of plates was placed at 37°C and the other at 30°C. Both sets of plates were analyzed for toxicity after 72h.

Fluorescence Microscopy

Microscopy samples were grown and induced as they were for immunoblotting. For TDP-43 samples, cells were harvested, fixed in 1mL 70% ethanol, and immediately pelleted. The cells were then washed 3 times with cold PBS and resuspended in 15 uL of Vectashield mounting medium with 4',6-diamidino-2-phenylindole (DAPI) (Vector Laboratories). α-Syn and FUS samples were imaged live. All cells were imaged at 100x magnification using a Leica-DM-IRBE microscope. Analysis of cells was performed in ImageJ. Approximately 200-250 cells were quantified for each sample in three independent trials.
Generative REgularized ModeLs of proteINs (GREMLIN) Coevolution Analysis

GREMLIN coevolution analysis was performed using OPENSEQ.org web server supported by David Baker’s lab (http://gremlin.bakerlab.org/) (Ovchinnikov, et al. 2014). The S. cerevisiae Hsp104 primary sequence was used for the analysis. Jackhammer method was used to generate the diversity multiple sequence alignment (MSA). An E-value of 10^{-10} and interactions of four were chosen to control the MSA generation. Filter MSA parameters were set to remove sequences that did not cover at least 75% of query. After coverage filter, positions in the alignment that have 75% of gaps were removed.

Protein Purification and Biochemistry Assays

Protein purification was performed as described previously (Jackrel, et al. 2014a). ATPase activity and luciferase disaggregation and reactivation assays were performed as described (Jackrel, et al. 2014a).

Results

Hsp104T499D and Hsp104S535D suppress α-syn toxicity, aggregation, and promote its plasma membrane localization

A number of serine and threonine residues in Hsp104 can be phosphorylated in vivo, including T87 and S155 in the NTD, S206 and S306 in NBD1, T499 and S535 in the MD, and S577, S578, and S768 in NBD2 (Figure 1A) (Albuquerque, et al. 2008, Holt, et al. 2009, Swaney, et al. 2013). To assess whether serine or threonine phosphorylation at these positions might enhance Hsp104 activity, we introduced single phosphomimetic aspartate or glutamate substitutions at these positions in Hsp104. We then determined whether these phosphomimetic Hsp104 variants could antagonize α-syn toxicity in yeast. Upon expression from the inducible galactose promoter, α-syn accumulates in cytoplasmic aggregates and is toxic to yeast thereby recapitulating the phenotype of degenerating dopaminergic neurons in PD patients (Outeiro and Lindquist 2003). This yeast model of α-syn aggregation and toxicity has been tremendously valuable in identifying novel genetic and small-molecule suppressors of α-syn toxicity, which have translated to worm, fly, mouse, and patient-derived neuronal models of PD (Caraveo, et al. 2014, Caraveo, et al. 2017, Chung, et al. 2013, Cooper, et al. 2006, Gitler, et al. 2008, Gitler, et al. 2009, Jackrel, et al. 2014a, Khurana, et al. 2017, Su, et al. 2010, Tardiff, et al. 2013, Tardiff and Lindquist 2013).
α-Syn overexpression is toxic to yeast (Figure 1B) and is an established cause of PD (Singleton, et al. 2003). This α-syn toxicity cannot be buffered by wild-type Hsp104 (Figure 1B). Likewise, the phosphomimetic aspartate variants Hsp104T87D, Hsp104S155D, Hsp104S206D, Hsp104S306D, Hsp104S577D, Hsp104S578D, and Hsp104S768D were unable to rescue α-syn toxicity despite being robustly expressed (Figure 1B, C). By contrast, Hsp104T499D and Hsp104S535D strongly suppressed α-syn toxicity to a level similar to the canonical potentiated Hsp104 variant, Hsp104A503V (Figure 1B). This rescue was achieved without any reduction in α-syn expression (Figure 1C). Very similar results were obtained with phosphomimetic glutamate variants. Thus, only Hsp104T499E and Hsp104S535E rescued α-syn toxicity (data not shown). Altogether, we find phosphomimetic mutations at T499 or S535 in the MD potentiate Hsp104 activity, whereas single phosphomimetic mutations at T87 or S155 in the NTD, or S206 or S306 in NBD1, or S577, S578, or S768 in NBD2 do not.

Several positions in the MD can be mutated to diverse amino acids and confer potentiated Hsp104 activity (Jackrel, et al. 2014a). For example, A503 in helix L3 of the MD can be mutated to any amino acid, except proline, and enable Hsp104 to strongly suppress α-syn, FUS, and TDP-43 toxicity (Jackrel, et al. 2014a). To confirm that enhanced Hsp104 activity was due to the phosphomimetic mutation at T499 or S535 rather than a general effect of any mutation, we generated the T499A and S535A variants. Unlike Hsp104T499D or Hsp104S535D, neither Hsp104T499A nor Hsp104S535A rescued α-syn toxicity despite robust expression (Figure 1D, E). Thus, unlike A503, not any mutation at T499 or S535 potentiates Hsp104 activity. Indeed, we also assessed T499I, a mutation that when combined with G217S causes Hsp104 to be toxic (Schirmer, et al. 2004). Hsp104T499I exhibits mildly reduced ATPase activity in vitro, but confers thermotolerance in vivo (Schirmer, et al. 2004). Like Hsp104T499A, Hsp104T499I was unable to rescue α-syn toxicity (data not shown). Moreover, we have previously shown that Hsp104T499V does not rescue α-syn toxicity (Jackrel, et al. 2014a). Thus, only select missense mutations at the T499 position confer potentiated activity.

α-Syn accumulates in cytoplasmic aggregated structures in yeast that are not affected by expression of Hsp104 (Figure 1F, G). Indeed, ~70% of cells present with cytoplasmic α-syn foci in the vector control or in the presence of Hsp104 (Figure 1F). By contrast, the potentiated variant, Hsp104A503V, antagonizes
formation of cytoplasmic α-syn foci and enables α-syn to localize to the plasma membrane in ~90% of cells (Figure 1F, G). The MD phosphomimetic variants, Hsp104T499D and Hsp104S535D, also suppressed the formation of cytoplasmic α-syn aggregates and enabled α-syn localization to the plasma membrane in ~80% and ~50% of cells respectively (Figure 1F, G). Thus, Hsp104T499D and Hsp104S535D are not as effective as Hsp104A503V in suppressing cytoplasmic α-syn aggregation. Regardless, the level of protection against cytoplasmic α-syn aggregation conferred by Hsp104T499D and Hsp104S535D is sufficient to potently mitigate α-syn toxicity (Figure 1B, D).

Hsp104T499D and Hsp104S535D suppress TDP-43 toxicity, aggregation, and promote its nuclear localization

TDP-43 toxicity was not rescued by Hsp104 or by any of the aspartate or glutamate phosphomimetic variants in the NTD, NBD1, or NBD2 (Figure 2A). In contrast, the MD phosphomimetic variants, Hsp104T499D and Hsp104S535D, mitigated TDP-43 toxicity (Figure 2A). Hsp104T499E and Hsp104S535E also rescued TDP-43 toxicity (data not shown). Rescue of TDP-43 toxicity by Hsp104T499D and Hsp104S535D was similar to that achieved by Hsp104A503V and was not due to gross reductions in TDP-43 expression levels (Figure 2A, B). By contrast, Hsp104T499A, Hsp104T499I, Hsp104T499V, and Hsp104S535A did not rescue TDP-43 toxicity (Figure 2C, D; data not shown) (Jackrel, et al. 2014a). Thus, phosphomimetic mutations at T499
or S535 enhanced Hsp104 activity against TDP-43, whereas alanine, valine, or isoleucine substitutions at T499 or alanine substitution at S535 did not.

We determined that Hsp104\(^{T499D}\) and Hsp104\(^{S535D}\) also suppressed TDP-43 aggregation and mislocalization (Figure 2E, F). In yeast expressing Hsp104 or the vector control, TDP-43 was found in the nucleus in \(~35\%\) of cells, whereas \(~65\%\) had cytoplasmic TDP-43 aggregates (Figure 2E, F). Conversely, in yeast cells expressing Hsp104\(^{T499D}\) or Hsp104\(^{S535D}\) TDP-43 was found in the nucleus in \(~65\%\) of cells, whereas \(~35\%\) had cytoplasmic TDP-43 aggregates (Figure 2E, F). Collectively, these findings establish that Hsp104\(^{T499D}\) and Hsp104\(^{S535D}\) are potent suppressors of TDP-43 aggregation and toxicity. Importantly, Hsp104\(^{T499D}\) and Hsp104\(^{S535D}\) also restore TDP-43 localization to the nucleus.

Hsp104\(^{T499D}\) and Hsp104\(^{S535D}\) suppress FUS toxicity and aggregation

As with \(\alpha\)-syn and TDP-43, FUS toxicity was not buffered by wild-type Hsp104 or by any of the aspartate or glutamate phosphomimetic variants in the NTD, NBD1, or NBD2 (Figure 3A). However, Hsp104\(^{T499D}\) and Hsp104\(^{S535D}\) strongly mitigated FUS toxicity and were just as effective as Hsp104\(^{A503V}\) (Figure 3A). These potentiated variants also mildly reduced FUS protein levels and this effect was most pronounced for Hsp104\(^{A503V}\) (Figure 3B). Hsp104\(^{T499E}\) and Hsp104\(^{S535E}\) also strongly rescued FUS toxicity (data not shown). By contrast, Hsp104\(^{T499A}\), Hsp104\(^{T499I}\), Hsp104\(^{T499V}\), and Hsp104\(^{S535A}\) did not rescue FUS toxicity (Figure 3C, D; data not shown) (Jackrel, et al. 2014a). Thus, rescue of FUS toxicity was enabled by
phosphomimetic mutations at T499 or S535, whereas other substitutions at T499 or S535 explored here were ineffective.

Hsp104T499D and Hsp104S535D also reduced cytoplasmic FUS aggregation in yeast (Figure 3E, F). Indeed, over 80% of cells harbor cytoplasmic FUS aggregates in the vector and Hsp104 controls, whereas ~55% and ~40% of cells had no cytoplasmic FUS aggregates in cells expressing Hsp104T499D and Hsp104S535D respectively (Figure 3F). The reduction of cytoplasmic FUS aggregation by Hsp104T499D and Hsp104S535D was not as pronounced as that observed with Hsp104A503V where ~75% of cells had no cytoplasmic FUS aggregates (Figure 3F). Nonetheless, Hsp104T499D and Hsp104S535D mitigated FUS toxicity just as effectively as Hsp104A503V. Taken together, these observations indicate that Hsp104T499D and Hsp104S535D potently suppress FUS aggregation and toxicity.

\textbf{Hsp104T499D}/\textsuperscript{E but not Hsp104S535D}/E reduces yeast growth at 37°C

Potentiated Hsp104 variants with mutations in the MD such as Hsp104A503V can confer a temperature-sensitive growth defect whereby yeast grow normally at 30°C but exhibit attenuated growth at 37°C (Figure 4) (Jackrel, et al. 2014a, Jackrel and Shorter 2014a, Jackrel and Shorter 2014b). This toxicity at 37°C likely reflects off-target effects such as promiscuous binding and unfolding of essential proteins (Jackrel, et al. 2014a, Jackrel and Shorter 2014a, Jackrel and Shorter 2014b, Schirmer, et al. 2004). Thus, we assessed whether Hsp104T499D, Hsp104T499E, Hsp104S535D, or Hsp104S535E might also confer this phenotype. None of the variants were toxic at 30°C (Figure 4). By contrast, expression of Hsp104T499D or Hsp104T499E was toxic at 37°C, indicating that these variants have off-target effects (Figure 4). Hsp104T499D and Hsp104T499E toxicity at 37°C was similar to Hsp104A503V (Figure 4). Despite these off-target effects in the absence of disease protein, Hsp104T499D and Hsp104T499E potently rescue α-syn, TDP-43, and FUS toxicity. By contrast, Hsp104S535D and Hsp104S535E were not toxic to yeast at 37°C and resembled wild-type Hsp104 (Figure 4). Thus, Hsp104S535D and Hsp104S535E exhibit potentiated activity but minimal off-target toxicity, which are attractive features for therapeutic protein disaggregases to be advanced to preclinical studies.
Location of T499 and S535 in Hsp104 hexamers

Next, we mapped the potentiating phosphomimetic mutations onto the structure of Hsp104 hexamers bound to ADP (Gates, et al. 2017). T499 is a poorly conserved residue and is typically a leucine or a large aromatic residue in other homologues (Figure 5A). T499 is found at the start of helix L3 in the MD and is anticipated to be readily accessible to kinases and phosphatases (Figure 5B) (Gates, et al. 2017, Yokom, et al. 2016). Generative REgularized Model of proteINs (GREMLIN) analysis of Hsp104 suggests that T499 interacts and coevolves with A503 in helix L3 (Figure 5C) (Ovchinnikov, et al. 2014). Indeed, the structure of Hsp104 hexamers in the presence of ADP suggests that T499 interacts with A503 in the same protomer via a backbone hydrogen bond (Figure 5C) (Gates, et al. 2017). Mutation of A503 to any amino acid except proline potentiates Hsp104 (Jackrel, et al. 2014a), which may be due to disruption of the interaction with position T499. Likewise, mutation of T499 to aspartate or glutamate, but not alanine, valine, or isoleucine likely also perturbs the interaction with A503 leading to potentiated activity. T499 may also make an intramolecular contact with E494 in helix L2 of the MD in protomer 4 (Gates, et al. 2017). Interestingly, T499 also contacts MD residues V426 and K429 in the neighboring protomer (Figure 5C). Mutations at V426 can also potentiate Hsp104 activity (Jackrel, et al. 2014a, Jackrel, et al. 2015). Thus, remodeling this network of interactions within the MD and between MDs in adjacent protomers likely yields potentiated activity.

Like T499, S535 is a poorly conserved residue and is typically proline or arginine in other homologues (Figure 5A). S535 resides in the linker between helix L4 in the MD and the C-terminal remainder of NBD1 and is likely accessible to kinases and phosphatases (Figure 5B) (Gates, et al. 2017, Yokom, et al. 2016). Intriguingly, S535 makes intraprotomer contacts with E469 in helix L2 of the MD (Figure 5D) (Gates, et al. 2017). S535D and E469D potentiate Hsp104 activity perhaps due to alteration of this intraprotomer MD contact (Jackrel, et al. 2015).

Hsp104$T499E$ and Hsp104$S535E$ exhibit enhanced ATPase and protein-disaggregase activity

Next, we purified Hsp104$T499E$ and Hsp104$S535E$ and assessed how their biochemical activity compared to Hsp104. First, we established that these phosphomimetic MD variants display elevated ATPase activity (Figure 6A). Hsp104$T499E$ exhibited ATPase activity ~4-fold higher than Hsp104, whereas Hsp104$S535E$ was
~2-fold higher (Figure 6A). Second, we tested the protein disaggregation and reactivation activity of Hsp104^{T499E} and Hsp104^{S535E} variants using denatured luciferase aggregates as a model substrate (Glover and Lindquist 1998). While Hsp104 requires Hsp70 and Hsp40 for luciferase reactivation (Glover and Lindquist 1998), Hsp104^{T499E} and Hsp104^{S535E} do not (Figure 6B). In the absence of Hsp70 and Hsp40, Hsp104^{S535E} was slightly less active than Hsp104 with Hsp70 and Hsp40, whereas Hsp104^{T499E} was ~6-fold more active (Figure 6B). The addition of Hsp70 and Hsp40 to Hsp104^{S535E} variants increased luciferase reactivation by ~6-fold, whereas Hsp104^{T499E} was stimulated only slightly further (Figure 6B). Hsp104^{T499E} is almost fully active without Hsp70 and Hsp40 (Figure 6B). In contrast, Hsp104^{S535E} was greatly stimulated by Hsp70 and Hsp40 (Figure 6B). These observations indicate differences in the mechanism of potentiation by T499E and S535E, which likely reflects the rearrangement of different structural contacts (Figure 5C, D). Nonetheless, the potentiating T499E and S535E mutations increase disaggregase activity in the absence or presence of Hsp70 and Hsp40.

Discussion

The subtle nature of some potentiating mutations in Hsp104 led us to hypothesize that post-translational modifications of Hsp104 at specific positions in the MD might also potentiate activity. Indeed, several serine and threonine residues throughout Hsp104 can be phosphorylated in vivo (Albuquerque, et al. 2008, Holt, et al. 2009, Swaney, et al. 2013). Here, we have introduced phosphomimetic aspartate or glutamate residues at these positions and assessed Hsp104 activity. Phosphomimetic mutations at T87 and S155 in the NTD, S206 and S306 in NBD1, or S577, S578, and S768 in NBD2 did not enhance Hsp104 activity. Remarkably, phosphomimetic mutations at two positions in the MD, T499 and S535, enabled Hsp104 to rescue TDP-43, FUS, and α-syn aggregation and toxicity in yeast. Moreover, Hsp104^{T499E} and Hsp104^{S535E} exhibit enhanced ATPase activity and protein-disaggregase activity in vitro. We suggest that phosphorylation of T499 or S535 may enable enhanced Hsp104 disaggregate activity in a reversible and regulated manner. Thus, enhanced disaggregate activity could be unleashed and restrained at specific locations or in response to specific environmental cues in vivo. Understanding this regulation could also inform strategies to engineer transient bursts of enhanced disaggregate activity in therapeutic settings.
How do the T499D/E and S535D/E mutations potentiate Hsp104? Mutation to a negatively charged residue is important as alanine, valine, or isoleucine at T499 do not enhance activity. Likewise, alanine at S535 does not potentiate Hsp104. Thus, T499 and S535 are not like A503, where any amino acid aside from alanine or proline elicits elevated disaggregase activity. Interestingly, T499 lies in helix L3 of the MD and has coevolved and interacts with A503. Mutation of T499 to aspartate or glutamate likely alters interactions with A503 in the same protomer, but also with E494 in helix L2 of the same protomer (in protomer 4) and V426 in helix L1 of the MD in the adjacent protomer (Gates, et al. 2017). Remodeling these interactions by T499D/E yields a potentiated Hsp104 variant with highly elevated disaggregase activity even in the absence of Hsp70. However, Hsp104T499D/E also exhibits off-target toxicity, which is disadvantageous for further development as a therapeutic disaggregase. By contrast, Hsp104S535D/E is not toxic. Hsp104S535E disaggregase activity is not as elevated as Hsp104T499E in the absence or presence of Hsp70, but is substantially higher than Hsp104. S535D/E likely disrupts an intraprotomer interaction with E469 in helix L2 of the MD. Hsp104E469D is also an enhanced Hsp104 variant, which like Hsp104S535D/E exhibits reduced off-target toxicity (Jackrel, et al. 2015). Thus, Hsp104S535D/E and Hsp104E469D are interesting variants to advance in preclinical studies as they potently rescue proteotoxicity with minimal side effects.

Under what conditions are T499 and S535 phosphorylated in vivo? One study found that Hsp104 may be phosphorylated at T499 and S535 under conditions of DNA damage stress (Albuquerque, et al. 2008). These observations raise the possibility that Hsp104 might get phosphorylated at T499 or S535 as part of a stress response to elicit enhanced disaggregase activity, which is cytoprotective. Once the stress has passed, dephosphorylation of T499 or S535 would restore Hsp104 activity to basal levels. In this way, yeast may utilize phosphorylation of T499 or S535 to unleash enhanced Hsp104 disaggregase activity exactly when or where it is needed in a reversible and regulated manner.

Curiously, T499 and S535 are not very well conserved residues. Indeed, of the 4,950 Hsp104 species variants assessed in our GREMLIN analysis, ~1.7% had T at position 499. Indeed, L, Y, or F were most commonly found at position 499 (Figure 5A). Likewise, only ~13% of Hsp104 species variants had S at position 535 (Figure 5A). At this position, P or R were the most commonly found residues. Thus, this potential method of Hsp104 regulation via phosphorylation of T499 or S535 may be idiosyncratic to a
restricted number of species. However, position 499 is frequently tyrosine in \textasciitilde 16\% of species, and thus could be regulated in a similar manner via tyrosine phosphorylation. Further studies are needed to reveal under what exact conditions Hsp104 is phosphorylated at T499 or S535 in yeast. The identity of Hsp104 kinases and phosphatases also needs to be delineated. Indeed, it will be of great interest to reconstitute the regulation of potentiated Hsp104 disaggregase activity in vitro via the addition of defined kinases and phosphatases. Other post-translational modifications may also unleash enhanced Hsp104 activity in a regulated manner. For example, the MD of Hsp104 can be modified via ubiquitylation, succinylation, and acetylation, which might also profoundly activate Hsp104 (Henriksen, et al. 2012, Swaney, et al. 2013, Weinert, et al. 2013).

Understanding exactly how potentiated Hsp104 activity may be elicited and silenced by post-translational modifications might also help inform therapeutic strategies based on introduction of exogenous Hsp104 into degenerating neurons (Cushman-Nick, et al. 2013, Lo Bianco, et al. 2008, Perrin, et al. 2007, Vacher, et al. 2005, Vashist, et al. 2010). For example, it would likely be beneficial to reduce expression or activity of a therapeutic disaggregase after it has remediated the deleterious misfolding driving neurodegeneration. In this way, any toxic side effects of the disaggregase that might occur after misfolding is corrected could be avoided (Jackrel and Shorter 2017, Mack and Shorter 2016, Shorter 2016, Shorter 2017, Yasuda, et al. 2017). A potential method to achieve this goal of tunable activity would be to synchronize the activity of the disaggregase based on the level of stress-signaling output of degenerating neurons. For example, Cdk5, a predominantly neural kinase exhibits hyperactive activity in degenerating neurons in various disorders (Cheung and Ip 2012, Su and Tsai 2011). Engineering Hsp104 with a Cdk5 consensus site at T499 or S535 could enable enhanced disaggregase activity elicited by phosphorylation by Cdk5, which would then decline upon restoration of proteostasis, mitigation of degeneration, and return of Cdk5 activity to normal levels. Variations on this theme that involve kinases other than Cdk5 or other reversible post-translational modifications can also be readily envisioned. In this way, enhanced disaggregase activity could be tuned via post-translational modification to suit the exact needs of the neuron.

We close with an important caveat. The phosphomimetic mutations in Hsp104 studied here may not accurately mimic phosphorylation of T499 or S535. In many cases, phosphomimetic mutations
accurately phenocopy serine and threonine phosphorylation events and have been extremely informative (Buck, et al. 1999, Dephoure, et al. 2013, Lowe, et al. 1998, McKay and Morrison 2007, Truman, et al. 2012, Vitari, et al. 2005). Indeed, phosphorylation sites often evolve from ancestral aspartate or glutamate residues (Pearlman, et al. 2011). However, in some cases phosphomimetic mutations have not accurately represented the effects of phosphoserine or phosphothreonine (Dephoure, et al. 2013, Dirac-Svejstrup, et al. 2000, Hart and Vogt 2011, Paleologou, et al. 2010, Skinner, et al. 2017). Indeed, the size of the ionic shell and the negative charge of the phosphate group is different than aspartate or glutamate (Hunter 2012). Thus, phosphoserine or phosphothreonine create a distinctive chemical microenvironment that is imperfectly mimicked by aspartate or glutamate (Hunter 2012). Consequently, it will be important to determine the activity of Hsp104 with phosphothreonine at position 499 or phosphoserine at position 535. Advances in technology to selectively incorporate non-natural amino acids, such as phosphoserine and phosphothreonine, into proteins are now available, which will enable general methods to biosynthesize defined phosphorylated versions of Hsp104 and indeed any specific phosphoprotein (Rogerson, et al. 2015, Zhang, et al. 2017).

Acknowledgments

We dedicate this paper to the memory of our mentor, advocate, hero, and friend Susan Lindquist. We thank Zach March for comments on the manuscript. M.P.T. was supported by PENN-PORT Postdoctoral Fellowship K12GM081259 and K22NS09131401 NIH, K.L.M. was supported by an NSF graduate research fellowship (DGE-1321851), M.E.J. was supported by an AHA post-doctoral fellowship and a Target ALS Springboard Award, J.S. was supported by NIH grants (DP2OD002177, R01GM099836), a Muscular Dystrophy Association Research Award (MDA277268), the Life Extension Foundation, a Linda Montague Pechinik Research Award, the Packard Center for ALS Research at Johns Hopkins University, and Target ALS.
References

DeSantis ME, Shorter J. Hsp104 drives "protein-only" positive selection of Sup35 prion strains encoding strong [PSI(+)]. *Chem Biol* 2012b;19: 1400-10.

Elden AC, Kim HJ, Hart MP et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010;466: 1069-75.

McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. *Oncogene* 2007;26: 3113-21.

Shorter J, Lindquist S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol Cell 2006;23: 425-38.

Sweeney EA, Jackrel ME, Go MS et al. The Hsp104 N-terminal domain enables disaggregase plasticity and potentiation. Mol Cell 2015;57: 836-49.

Figure 1. Hsp104T499D and Hsp104S535D suppress α-syn toxicity, aggregation, and mislocalization. (A) A map of the different domains of Hsp104 shows the location of serine and threonine residues that can be phosphorylated in vivo. The T499D and S535D potentiating mutations (denoted in red) are found in the MD (green, residues 411-538). The NTD is in pink, NBD1 is in dark blue, NBD2 is in light blue, and the C-terminal domain is in brown. (B) Hsp104T499D and Hsp104S535D suppress α-syn toxicity. Phosphomimetic Hsp104 variants in the pRS416GAL-Hsp104 plasmid were transformed into W303aΔhsp104 yeast strains integrated with two copies of pAG303GAL-α-syn. The mutant strains were serially diluted five-fold and spotted in duplicate onto galactose (inducing) and glucose (non-inducing) media. Two negative controls (vector, wild type) and a positive control (Hsp104A503V) were spotted alongside the mutant strains. (C)
Hsp104T499D and Hsp104S535D do not reduce \(\alpha\)-syn expression. Western blots were conducted for all strains in (B) with 3-Phosphoglycerate kinase (PGK) as a loading control. The strains were induced for 8h in galactose and lysed prior to western blotting. (D) Hsp104T499A and Hsp104S535A do not suppress \(\alpha\)-syn toxicity. Spotting assay performed as in (B). (E) Hsp104T499A and Hsp104S535A do not reduce \(\alpha\)-syn expression. Western blots were conducted as in (C). (F) Hsp104T499D and Hsp104S535D suppress \(\alpha\)-syn aggregation. The potentiated variants, Hsp104T499D and Hsp104S535D, were transformed into \(\alpha\)-syn-YFP yeast. The resulting strains were induced for 8h in galactose and prepared for fluorescence microscopy. Vector, wild-type Hsp104, and the positive control Hsp104A503V were prepared alongside the mutant strains. (G) Quantification of \(~200\)-\(250\) cells was performed. The cells were categorized as exhibiting either cytoplasmic aggregates or membrane localization. The graphical representation shows the means \(\pm\) SEM (n=3) for the percentage of cells in each category.
Figure 2. Hsp104T499D and Hsp104S535D antagonize TDP-43 aggregation, toxicity, and restore TDP-43 to the nucleus. (A) Hsp104T499D and Hsp104S535D antagonize TDP-43 toxicity. Phosphomimetic variants in the pRS416GAL-Hsp104 plasmid were transformed into W303aΔhsp104 yeast strains integrated with pAG303GAL-TDP-43. The mutant strains were serially diluted five-fold and spotted in duplicate onto galactose (inducing) and glucose (non-inducing) media. Two negative controls (vector, wildtype) and a positive control (Hsp104A503V) were spotted alongside the mutant strains. (B) Hsp104T499D and Hsp104S535D do not grossly reduce TDP-43 expression. Western blots were conducted for all strains in (A) with 3-Phosphoglycerate kinase (PGK) as a loading control. The strains were induced for 5h in galactose and lysed prior to western blotting. (C) Hsp104T499A and Hsp104S535A do not suppress TDP-43 toxicity. Spotting assay performed as in (A). (D) Hsp104T499A and Hsp104S535A do not reduce TDP-43 expression.
Western blots were conducted as in (B). (E) Hsp104^{T499D} and Hsp104^{S535D} suppress cytoplasmic TDP-43 aggregation and promote nuclear TDP-43 localization in yeast. Fluorescence microscopy of cells coexpressing fluorescently tagged TDP-43 and the Hsp104 variants was performed. Strains were induced for 5h in galactose, fixed, and stained with DAPI (blue) to visualize nuclei. (F) TDP-43 localization was quantified by counting the number of cells containing colocalized nuclear staining. 200-250 cells per treatment were counted for each trial, and the values represent means ± SEM (n=3).
Figure 3. Hsp104^{T499D} and Hsp104^{S535D} antagonize FUS toxicity and aggregation. (A) Hsp104^{T499D} and Hsp104^{S535D} antagonize FUS toxicity. Phosphomimetic variants in the pRS416GAL-Hsp104 plasmid were transformed into W303aΔhsp104 yeast strains integrated with pAG303GAL-FUS. The mutant strains were serially diluted five-fold and spotted in duplicate onto galactose (inducing) and glucose (non-inducing) media. Two negative controls (vector, wildtype) and a positive control (Hsp104^{A503V}) were spotted alongside the mutant strains. (B) Hsp104^{T499D} and Hsp104^{S535D} do not grossly reduce FUS expression. Western blots were conducted for all strains in (A) with 3-Phosphoglycerate kinase (PGK) as a loading control. The strains were induced for 5h in galactose and lysed prior to western blotting. (C) Hsp104^{T499A} and Hsp104^{S535A} do not suppress FUS toxicity. Spotting assay performed as in (A). (D)
Hsp104^{T499A} and Hsp104^{S535A} do not reduce FUS expression. Western blots were conducted as in (B). (E) Hsp104^{T499D} and Hsp104^{S535D} suppress FUS aggregation in yeast. The potentiated mutations T499D and S535D were transformed into FUS GFP-tagged yeast. The resulting strains were induced for 5h in galactose and prepared for fluorescence microscopy. Vector, wildtype, and the positive control Hsp104^{A503V} were prepared alongside the mutant strains. (F) Quantification of approximately 200-250 cells was performed. The cells were categorized as containing multiple foci, a single focus, or no foci. The graphical representation shows the means ± SEM (n=3) for the percentage of cells in each category.
Figure 4. *Hsp104*^{T499D/E} but not *Hsp104*^{S535D/E} reduces yeast growth at 37°C. Hsp104 variants were expressed in the 416GAL vector in Δ*hsp104* yeast in the absence of any disease protein. The strains were serially diluted five-fold and spotted in duplicate onto glucose (non-inducing) media at 30°C or galactose (inducing) media at 30°C or 37°C.
Figure 5. Location of potentiating phosphomimetic MD mutations in Hsp104. (A) Clustal Omega alignment of a portion (residues 494-540) of the MD/NBD1 from *Saccharomyces cerevisiae* Hsp104 with *S. cerevisiae* Hsp78, *Schizosaccharomyces pombe* Hsp104, *Chlamydomonas reinhardtii* Hsp104, *Arabidopsis thaliana* Hsp101, *Monosiga brevicollis* Hsp104, *Thermus thermophilus* ClpB, and *Escherichia coli* ClpB. T499 and S535 are indicated with arrowheads and highlighted in yellow. Consensus symbols: * denotes fully conserved residue, : denotes conservation of residues with strong similarity, . indicates conservation of residues with weak similarity. (B) Homology model of the MD (green) and a portion of the small domain of NBD1 (dark blue) of Hsp104, where T499 and S535 side chains are shown as sticks. T499 is found in helix L3 and S535 is in the linker between helix L4 and the C-terminal portion of the small domain of NBD1 (dark blue). (C) View of protomers 3 (green) and 4 (grey) of Hsp104 bound to ADP (Gates, et al. 2017) showing the positions of T499 and A503 in helix L3 of the MD of protoype 3 and V426 and K229 in helix L1 of prototype 4. The GREMLIN score for the interaction between T499 and
A503 is indicated. (D) View of protomer 3 of Hsp104 bound to ADP (Gates, et al. 2017) showing the positions of S535 in the linker between helix L4 of the MD and NDB1 and E469 in helix L2 of the MD of the same protomer.
Figure 6. Hsp104^{T499E} and Hsp104^{S535E} exhibit enhanced ATPase and protein-disaggregase activity. (A) Hsp104^{T499E} and Hsp104^{S535E} exhibit elevated ATPase activity. Values represent means ± SD (n=2). (B) Hsp104^{T499E} and Hsp104^{S535E} exhibit elevated disaggregase activity. Luciferase aggregates were incubated with Hsp104 variant (0.167µM) plus ATP (5mM) in the presence (blue bars) or absence (red bars) of Hsc70 (0.167µM) and Hdj2 (0.167µM) for 90min at 25°C. Values represent means ± SEM (n=4).