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SUMMARY
The molecular diversity of glia in the human hippocampus and their temporal dynamics over the lifespan
remain largely unknown. Here, we performed single-nucleus RNA sequencing to generate a transcriptome
atlas of the human hippocampus across the postnatal lifespan. Detailed analyses of astrocytes, oligodendro-
cyte lineages, and microglia identified subpopulations with distinct molecular signatures and revealed their
association with specific physiological functions, age-dependent changes in abundance, and disease rele-
vance. We further characterized spatiotemporal heterogeneity of GFAP-enriched astrocyte subpopulations
in the hippocampal formation using immunohistology. Leveraging glial subpopulation classifications as a
reference map, we revealed the diversity of glia differentiated from human pluripotent stem cells and identi-
fied dysregulated genes and pathological processes in specific glial subpopulations in Alzheimer’s disease
(AD). Together, our study significantly extends our understanding of human glial diversity, population dy-
namics across the postnatal lifespan, and dysregulation in AD and provides a reference atlas for stem-
cell-based glial differentiation.
INTRODUCTION

Glial cells, including neuroectoderm-derived astrocytes and oli-

godendrocytes, and hematopoietic lineage-derived microglia,

comprise at least half of the cells in the adult human brain, and
1594 Cell Stem Cell 29, 1594–1610, November 3, 2022 ª 2022 Elsev
they play important roles in the nervous system and brain disor-

ders (Barres, 2008). Compared with rodents, much less is known

about glial diversity in humans and key questions regarding their

molecular properties, functions, disease relevance, and dynamic

changes across the lifespan remain unclear. In the human brain,
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astrogenesis and oligodendrogenesis peak during childhood,

whereas oligodendrocyte maturation and myelination persists

throughout life (Zhu et al., 2018), and properties of microglia

are shaped dynamically by the local environment (Bennett and

Bennett, 2020). Therefore, comprehensive analysis throughout

the postnatal lifespan is required to obtain a holistic view of mo-

lecular features and diversity of glial cells in the human brain.

The hippocampus supports many higher-level functions, such

asmemory, mood regulation, and spatial navigation (Small et al.,

2011), which requires glial modulation (Bergles et al., 2000; Lee

et al., 2021; Paolicelli et al., 2011). The molecular characteriza-

tion of hippocampal glia remains elusive in rodents, and much

less is known in humans (Eroglu and Barres, 2010). The hippo-

campus has also long been implicated in many neuropsychiatric

disorders in a spatiotemporally dependentmanner, including ep-

ilepsy (EPI) and autism spectrum disorder (ASD) during child-

hood and adolescence, schizophrenia (SCZ) during young adult-

hood, Alzheimer’s disease (AD) during aging, and major

depressive disorder (MDD) across ages (Small et al., 2011).

Emerging studies have linked disease vulnerability to neuronal

dysregulation, but much less is known about specific glial (sub)

populations (Eroglu and Barres, 2010).

Recent large-scale transcriptomic profiling of human post-

mortem brain specimens by single-nucleus RNA sequencing

(snRNA-seq) has revealed remarkable molecular diversity, often

using the cortex as a model system. However, most human

snRNA-seq studies focused on prenatal development, neuronal

diversity in adults, and dysregulation in brain disorders (Zeng,

2022). Of the few studies profiling the human hippocampus,

most focused on prenatal neural development (Zhong et al.,

2020), neuronal diversity (Ayhan et al., 2021; Davila-Velderrain

et al., 2021; Franjic et al., 2022; Habib et al., 2017; Tran et al.,

2021; Zhou et al., 2022), and vascular properties (Sun et al.,

2022; Yang et al., 2022) in adults, whereas glia are largely un-

der-analyzed. Notably, almost all these studies examined only

one age cohort. A lack of systematic characterization of glial di-

versity comparing their molecular properties and cellular abun-

dance across ages poses a major gap in knowledge linking brain

cell types to functions and disease traits.

Human pluripotent stem cell (hPSC)-derived 2D neural cul-

tures and 3D brain organoids allow modeling of human brain

development and disorders (Qian et al., 2019). Many recent pro-

tocols aim to model later developmental stages or etiologies and

pathophysiology of adult-onset neuropsychiatric disorders

(Zhang et al., 2021). In contrast to neurons, glial subpopulations

are less clearly defined due to a lack of a standardized reference

map. Such knowledge gaps in this rapidly evolving field preclude

the assessment of how hPSC-based glial differentiation corre-

sponds to in vivo glial subtypes and periods of brain develop-

ment, maturation, and aging.

AD is a progressive neurodegenerative disorder with poorly

understood etiology due to its complex pathophysiology (Schel-

tens et al., 2021). Although bulk-level genomic measurements

are likely affected by the averaging of gene expression among

cell types, snRNA-seq analyses deconvolute cell-type-specific

pathology in the human AD cortex, including excitatory neuron

vulnerability, weakened vascular cells and immune responses,

aberrant oligodendrocyte cell lineage and myelination machin-

ery, dysregulation of GFAP+ astrocytes, and microglial disease
susceptibility (Saura et al., 2022). However, transcriptomic dys-

regulation of glial subpopulations in the hippocampus, a major

site of pathology (Zakzanis et al., 2003), is unknown.

Here, we performed snRNA-seq analyses of the post-mortem

human hippocampi from infant, child, adolescent, adult, and ag-

ing stages to reveal the complete transcriptional landscapes of

glial diversity (Figure 1A; Table S1). We identified molecular sig-

natures, quantified cellular abundance of glial subpopulations

across the postnatal lifespan, and validated several key findings

in independent sets of human hippocampal specimens across

ages (Table S1) using immunohistology and in situ analyses.

Furthermore, we provide two examples of how our comprehen-

sive temporal transcriptomic atlas of glial subpopulations can be

utilized as a reference map to enhance future studies, first for as-

sessing hPSC glial differentiation in multiple published studies

and second for identifying hippocampal glial dysregulation in AD.

RESULTS

snRNA-seq profiling of human hippocampus across
postnatal lifespan
To survey the complete transcriptional landscapes of the post-

natal human hippocampus across ages, we generated profiles

of 224,464 nuclei, detecting 1,083 geneswith 1,893UMIs per nu-

cleus on average, of post-mortem neurotypical hippocampus

from 32 subjects across infant (0–1 years, 47,139 nuclei), child

(2–6 years, 40,721 nuclei), adolescent (13–18 years, 37,361

nuclei), adult (27–71 years, 56,857 nuclei), and aging (85–95

years, 42,386 nuclei) stages (Figure 1A; Table S1). We integrated

all datasets (Hao et al., 2021) and identified ten major cell clus-

ters based on established markers, including glutamatergic neu-

rons, oligodendrocytes, astrocytes, oligodendrocyte progenitor

cells (OPCs), GABAergic neurons, and microglia, as well as

less abundant (<1%) cell populations, including endothelial cells,

ependymal cells, choroid plexus cells, and Cajal-Retzius cells

(Figures 1B, 1C, and S1A–S1D; Table S2A). The overall glia-to-

neuron ratio in the hippocampus, 51:47 (Figure S1C), agrees

with a 1:1 ratio measured by isotropic nucleus fractionator

counting across human brain regions (von Bartheld et al., 2016).

To provide a high-level comparison of cell-type transcriptomic

divergence across brain regions and ages, we matched several

published snRNA-seq datasets of various human brain areas,

which only focused on one or two age stages (J€akel et al.,

2019; Lake et al., 2018; Schirmer et al., 2019; Velmeshev et al.,

2019), to the corresponding stage(s) of our hippocampal dataset.

Analysis using a random forest classifier (Shekhar et al., 2016),

trained with our age-matched hippocampal dataset, shows

high similarity among all glial cell types across brain regions,

whereas the similarity among neurons is much lower (Figure 1D).

Thus, our systematic analysis of human hippocampal glia across

ages may suggest common glial features across human brain

regions.

Astrocyte transcriptomic diversity in postnatal human
hippocampus
Astrocytes can be further classified based on their gene expres-

sion, location, morphology, function, and disease contribution

(Haim and Rowitch, 2017). To gain insight into their molecular di-

versity in the human hippocampus and relative abundance
Cell Stem Cell 29, 1594–1610, November 3, 2022 1595
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Figure 1. snRNA-seq profiling of the postnatal human hippocampus across ages

(A) A schematic of experimental design. HIPP, hippocampus; QC, quality control; Adoles., adolescent.

(B and C) Uniform manifold approximation and projection (UMAP) of integrated data of cross-age analysis, colored by cell type (B). Cell clusters identified by

known marker genes, depicted in violin plots in (C). OPC, oligodendrocyte precursor cells.

(D) Heatmap showing transcriptomic correspondence of major cell types between published datasets of various brain regions and ours using a random forest

classifier (Shekhar et al., 2016). PFC, prefrontal cortex; ACC, anterior cingulate cortex.

See also Figure S1 and Tables S1 and S2.
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across ages, we took the astrocyte cluster (27,525 cells) (Fig-

ure 2A) for further partitioning and identified nine subpopulations

(AST0-8) by their differential expression of gene signatures and

transcription factors (Figures 2B, 2C, and S2A; Table S2B).

Gene ontology (GO) analysis of enriched genes in each subpop-

ulation suggests different identities and physiological functions

(Figure 2D; Table S3A). For example, AST0 is most prominently
1596 Cell Stem Cell 29, 1594–1610, November 3, 2022
associated with angiogenesis. AST1 and AST6, enriched for

GFAP, are linked to injury responses, regeneration, autophagy,

and amyloid fibril formation, likely representing reactive astro-

cytes (Liddelow and Barres, 2017). AST1, but not AST6, exhibits

TGFb-signaling-related genes, whereas AST6 and AST7 are

involved in phagocytosis. SOX2- and EGFR-enriched AST2 is

associated with gliogenesis, representing a putative progenitor



%
 o

f s
ub

po
pu

lat
ion

s a
m

on
g 

all
 a

str
oc

yte
s

AST6 AST7 AST8

AST3 AST4 AST5

AST0 AST1 AST2

0

50

0

50

0

50

Ages (years)

A B

UMAP_1

U
M

AP
_2

Astrocytes
(AST)

C

D

AQP4

S100B

SLC1A2
CABLES1

GFAP
SOX2
EGFR

NR4A2
PDE1C
FGF12

-2 2

AST0
AST1

AST2
AST3

AST4
AST5

AST6
AST7

AST8

z-score

AST0
AST1

AST2

AST3

AST4

AST5

AST6

AST7

AST8

MAP1B
MEF2C

0 Max
Expression

E

H

40.1% 42.3%
17.6%

I

UMAP_1

U
M

AP
_2

(Qian)
150 days

/ /

(Szebenyi)
150 days

Prediction
score

AST3
AST5

AST0
AST2

un
-

cla
ss

ifie
d 

(Qian)

(Szebenyi)
0

60

0

60

AST1
AST4

AST8
AST7

AST6

1.7% 1.6%

59.5%

8.2%
29.0%

AST3
AST5
AST0 AST2AST1 AST4

AST8AST7AST6

0 1

/ /
/ / /

%
 o

f q
ue

ry
 a

str
oc

yte
s

m
ap

pe
d 

to
 re

fe
re

nc
e

(p
re

dic
tio

n 
sc

or
e 

> 
0.

5)

30

30

0%

0%

0%

0%

0%

0%

0%

0%0% 0% 0%

0%

regulation of sprouting angiogenesis

regulation of synapse organization

phagocytosis

regulation of anoikis

synaptic vesicle recycling

positive regulation of transmembrane transport

negative regulation of astrocyte differentiation
regulation of gliogenesis
amyloid fibril formation

axon regeneration
response to axon injury
regulation of response to wounding
SMAD protein signal transduction

AST0
AST1

AST2
AST3

AST4
AST5

AST6
AST7

AST8 Gene Ratio (%)
2.5 5 10 minn.s.

p(FDR)
0.05

sry07sry53sry61ry1.0

SO
X2

S1
00

B
D

AP
I

7 yrs

*
*

**
* *

**

*
***

*

*
*
*

*
**

*

** *

40

60

80

%
 S

O
X2

+ S
10

0B
+ c

el
ls

am
on

g 
S1

00
B+

 c
el

ls
 

Inf
an

t
Chil

d

Ado
les

.
Adu

lt
Adu

lt

(25
-45

)

(55
-75

)
0

20

**

*
**

*
**

*

GF

(legend on next page)

ll
Resource

Cell Stem Cell 29, 1594–1610, November 3, 2022 1597



ll
Resource
cell population (Zhang et al., 2016). AST3 is related to pro-

grammed cell death. Most subpopulations, including AST0,

AST2, and AST4-8, are associated with synaptic regulation (Fig-

ure 2D; Table S3A).

The abundance of most subpopulations among astrocytes re-

mains constant across ages, indicating cluster stability, whereas

the GFAP-enriched AST1 and SOX2-enriched AST2 populations

display a trend toward increasing or decreasing with age,

respectively (Figures 2E, S2B, and S2C). Validation with immu-

nohistology using S100B as an empirical, generic astrocyte

marker (Figure 2B; Table S2A) showed that the percentage

of SOX2+ cells among all S100B+ cells decreases during early

postnatal periods to a sustained level throughout adulthood

(Figures 2F and 2G). Furthermore, the temporal pattern of

SOX2+S100B+ glial progenitors is similar among hippocampal

subregions.

The proportion of GFAP-enriched AST1 and AST6 subpopula-

tions among all astrocytes shows a trend toward increasing with

age (Figure S2D). We systematically examined their spatiotem-

poral expression pattern using immunohistology. GFAP is highly

expressed in astrocytes in the outer layer of the entorhinal cortex

throughout life, in contrast to a much lower enrichment in the in-

ner layer and a complete absence in the molecular layer of the

dentate gyrus (Figure 3). Interestingly, the proportion of GFAP+

cells among all S100B+ cells increases with age in the CA1,

CA3, hilus/CA4, granule cell layer of the dentate gyrus, and the

inner layer of the entorhinal cortex (Figure 3). In addition, individ-

ual cells show a gradual increase of GFAP levels with age in the

snRNA-seq dataset (Figure S2E), consistent with bulk tissue-

level studies (Nichols et al., 1993).

The temporal molecular landscapes for human astrocytes

offer a transcriptomic reference map to benchmark glia differen-

tiated from hPSCs to specific human developmental periods for

modeling brain development or disorders. We picked two pub-

lished scRNA-seq datasets of long-term sliced brain organoid

cultures, where the ‘‘astroglia’’ clusters have a large number of

cells that could be selected for re-annotation (Qian et al., 2020;

Szebényi et al., 2021). We quantitatively compared transcrip-

tomic similarity of every query astroglia cell in organoids with

each of the nine in vivo astrocyte subpopulations in our reference

map by assigning prediction scores (Hao et al., 2021) (Figure 2H).

Each query astroglia was projected to our reference UMAP with

prediction scores for each subpopulation and was annotated
Figure 2. Transcriptomic diversity of human hippocampal astrocytes a

(A and B) UMAP of integrated data highlighting astrocytes (A), which were sub-cl

expression (B).

(C and D) Characteristics of astrocyte subpopulations. Heatmap (C) and bubble

(GO) terms, respectively. p(FDR), p value controlled for false-discovery rate.

(E) Dot plots showing the proportion of each subpopulation among all astrocytes a

(lines) with 95% confidence interval (gray shades).

(F and G) Sample confocal images (F) and quantification (G) of SOX2+ cells am

arrowheads indicate SOX2+S100B+ and SOX2�S100B+ cells, respectively. Insets

cells that were SOX2+ and SOX2�, respectively. Scale bars, 10 mm (F). Dots rep

median ± quantiles with whiskers for max and min (n = 4 subjects per stage) (G).

(H and I) UMAP projection of astroglia in two query datasets of hPSC-derived lon

in vivo astrocyte reference map (H). Colors represent the assigned subpopulation

(I) show the proportions of query cells mapped to our in vivo glial reference. C

categorized as ‘‘unclassified.’’

See also Figure S2 and Tables S2 and S3.
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based on the highest score if higher than 0.5 (Figures 2H and

2I). As a result, more than 70% (Qian et al., 2020) and 80% (Sze-

bényi et al., 2021) of query cells were similar to at least one sub-

population, indicating the capacity for long-term organoid cul-

tures to model postnatal human astrocytes in vivo (Figure 2I).

Among the mapped cells, 61.2% (Qian et al., 2020) and 82.4%

(Szebényi et al., 2021) matched GFAP+ astrocytes (AST1 and

AST6), which is consistent with their respective immunohistology

validation (Figure 2I). This may suggest a stress response in cul-

ture systems, given that human GFAP+ astrocytes exhibit reac-

tive astrocyte signatures. One system (Qian et al., 2020) ap-

peared to exhibit higher diversity than the other (Szebényi

et al., 2021), where 8.2% show congruence to SOX2+ progeni-

tors (AST2) and 1.6%aremapped to AST8, suggesting the emer-

gence of synaptic modulation in long-term cultures (Figure 2I). In

both cultures, no astrocytes were matched to AST0 or AST3-7,

suggesting significantly reduced heterogeneity in brain organo-

ids compared with the in vivo human brain (Figure 2I).

Together, these results reveal the molecular characteristics

and cellular heterogeneity of astrocyte subpopulations in the hu-

man hippocampus and the spatiotemporal distribution of the

GFAP-enriched astrocytes throughout the postnatal lifespan.

Our reference map identifies astrocyte heterogeneity, although

incomplete, in long-term cultured hPSC-derived brain organo-

ids, including subpopulations present in adult and aging

humans.

Oligodendrocyte lineage transcriptomic diversity in
postnatal human hippocampus
Oligodendrocytes arising from OPCs ensheath axons and pro-

vide metabolic support to neurons (Nave and Werner, 2014),

whereas their dysfunction leads to pathogenesis in aging and

neurological disorders (Franklin and Ffrench-Constant, 2017),

such as AD and multiple sclerosis (MS). Heterogeneity of the hu-

man oligodendrocyte lineage complicates disease prognosis

and therapy development (J€akel et al., 2019). To examine their

diversity and abundance in the human hippocampus across

ages, we selected the OPC and oligodendrocyte populations

(61,867 cells) for further partitioning (Figure 4A). We identified

two OPC subpopulations (OPC1 and OPC2), an immature oligo-

dendrocyte subpopulation (immatureOL), and three mature

oligodendrocyte subpopulations (Oligo1, Oligo2, and Oligo3)

(Figure 4B). OPC1, OPC2, and immatureOL share many
cross the postnatal lifespan

ustered and visualized in UMAP colored by subpopulation and generic marker

plot (D) showing representative enriched gene expression and gene ontology

cross ages. Dots for individual specimens are fitted with linear regression fitting

ong all S100B+ cells in the human hippocampus across ages. Asterisks and

boxed in orange and cyan colors show enlarged view of representative S100B+

resent value of quantification for individual subjects and box values represent

g-term brain organoid cultures (Qian et al., 2020; Szebényi et al., 2021) to our

s and intensity represents the prediction score for each query cell. Bar plots in

ells with prediction scores lower than 0.5 to any in vivo subpopulation were
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progenitor genes (e.g., NG2/CSPG4, PCDH15, and SOX6)

related to cell growth and synapse organization (Figures 4C,

4D, and S3A; Tables S2C and S3B). In addition, an immune

response regulator, class II major histocompatibility complex

(MHC-II)-associated gene, CD74, was highly enriched in

OPC1, suggesting the non-progenitor roles of OPCs under phys-

iological conditions (Figure 4C). Cytokine-conditioned OPCs

have been shown to express MHC-I and MHC-II and play immu-

nomodulatory roles under pathological conditions, such as MS,

which further supports the functional roles of OPCs beyond

serving as precursors for new oligodendrocytes (Falcão et al.,

2018; Kirby et al., 2019). OPC2 is uniquely associated with Wnt

signaling (Figure 4D), which may underlie Wnt-dependent cross-

talk with endothelial tip cells in regulating white matter angiogen-

esis (Chavali et al., 2020). ImmatureOL, Oligo1, Oligo2, and

Oligo3 are strongly associated with myelination processes

(Figures 4B–4D and S3A; Tables S2C and S3B). Interestingly,

BCAS1-enriched immatureOL shows enrichment of both myeli-

nation- and cell differentiation-related genes (Figures 4C and

4D). In addition, the Oligo1 population that is related to oligoden-

drocyte differentiation (Figures 4C and 4D) shares gene signa-

tures (e.g., OPALIN) with the ‘‘intermediate oligodendrocytes’’

in human white matter that are susceptible to MS (J€akel et al.,

2019). In contrast, genes enriched in Oligo2 andOligo3 are asso-

ciated with cell junction assembly, similar to the ‘‘end-state oli-

godendrocytes’’ in the human white matter (J€akel et al., 2019).

We further assessed the abundance of each subpopulation

among all oligodendrocyte lineages across ages and found

that progenitors (OPC1 andOPC2) and immatureOL, all enriched

for SOX6, showed trends of declining with age, suggesting

decreasing oligodendrogenesis (Figure 4E). We validated the

trend of decreasing SOX6-enriched cells among OLIG2+ oligo-

dendrocyte lineage cells across ages using immunohistology

and found that it was similar among hippocampal subregions

(Figures 4F and 4G; Table S1). In contrast, proportions of all

mature oligodendrocytes trend toward a gradual increase with

age (Figures 4E, S3B, and S3C).

We leveraged the six in vivo subpopulations by benchmarking

query hPSC-derived oligodendrocyte spheroids generated us-

ing different protocols (Chamling et al., 2021; Marton et al.,

2019) to our glial reference map (Figure 4H). More than 80% of

the query cells in both datasetsmatched at least one of the in vivo

subpopulationswith a prediction score of 0.5 or above (Figure 4I).

Quantification among the classified cells shows that the two cul-

ture protocols were both able to yield mature oligodendrocytes

despite very different cell compositions in terms of the matura-

tion level. The proportions of progenitors or immature oligoden-

drocytes to the more mature ones are around 3:1 (Marton et al.,
Figure 3. Spatiotemporal patterns of GFAP+ astrocytes in the human h

(A and B) Sample confocal images (A) and quantification (B) of GFAP expression p

lines in representative images of the dentate gyrus indicate the upper and lower b

cortex, dashed lines separate the outer and inner layers, and insets boxed in orang

of S100B and GFAP in the outer and inner layers, respectively (A). Scale bars, 1

represent the value of quantification for different sections (B). Box plots represe

group; * p < 0.01, ** p < 0.001, *** p < 0.0001; Pairwise ANOVA with post-hoc Tu

(C) Schematic illustrations showing the human hippocampal formation colored by

among S100B+ cells in young and adult stages (middle two panels). Heatmap sh

across ages (right panel).

See also Figure S2.
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2019) and 1:3 (Chamling et al., 2021), respectively (Figure 4I).

Interestingly, only OPC1, but not OPC2, was observed in both

cultures, suggesting the current protocols yield a subpopulation

of OPCs with specific requirements for cell signaling (e.g.,

absence of Wnt signaling) or potentially niche cell types (e.g.,

absence of endothelial cells). Mature oligodendrocytes were

transcriptomically similar to Oligo1 or Oligo3, but not Oligo2,

suggesting the capacity for myelination in organoid systems

but also room for improvement.

Together, these results reveal the molecular heterogeneity of

human oligodendrocyte lineage subpopulations and changes

in abundance in the hippocampus across the lifespan and sub-

stantial, but incomplete, diversity of oligodendrocyte lineage

subpopulations in the current hPSC-derived brain organoid

models.

Microglial transcriptomic diversity in postnatal human
hippocampus
Microglia, brain resident macrophages, survey the local environ-

ment for phagocytosis and neuronal remodeling (Prinz et al.,

2019). To characterize their molecular diversity and cellular

abundance across ages, we selected the microglial cluster for

further partitioning upon precluding specimens with less than

200 microglia (4,197 cells) and identified five subpopulations,

each displaying distinct marker gene and transcription factor

enrichment (Figures 5A–5C and S4A; Table S2D). For example,

MG0 preferentially expresses CD83, EGR3, and CCL2 and

is related to immune surveillance (Figures 5C and 5D;

Tables S2D and S3C), which was recognized in the cortex as a

human-specific homeostatic subtype with a slightly activated

state (Masuda et al., 2019; Olah et al., 2020). SPP1- and

TREM2-enriched MG1 is related to autophagy and neuroinflam-

matory response, previously reported to be disease-associated

and to play a role in de-/re-myelination in a mouse MS model

(Keren-Shaul et al., 2017; Masuda et al., 2019). Both MG3 and

MG4 are associated with axon and synaptic modulation,

whereas MG3, but not MG4, is associated with myelination

and glial differentiation (Figure 5D; Table S3C).

We next compared the abundance of microglial subpopula-

tions across ages (Figure 5E). Interestingly, CD83-, EGR3-, and

CCL2-enriched MG0 appears to be adult-specific (Figures 5C,

5E, S4B, and S4C). Immunohistology confirmed the absence

of CD83 in IBA1+ microglia in the infant and child specimens

despite its sparse expression in the adult ones (Figures 5F and

5G). The discrepancy in cellular abundance between snRNA-

seq quantifications and immunostaining results is likely attribut-

able to the reported post-transcriptional regulation of CD83 (Eh-

lers et al., 2013). In addition, in situ hybridization analyses of
ippocampal formation across the postnatal lifespan

atterns among S100B+ cells in hippocampal subregions across ages. Dashed

orders of the granule cell layer (A). For representative images of the entorhinal

e and cyan colors show an enlarged view of representative expression patterns

00 mm for low-magnification images and 10 mm for insets (A). Individual dots

nt mean ± quantiles with whiskers for max and min (n = 3 specimens per age

key HSD tests) (B).

anatomical subregion (left panel) and summary of the proportion of GFAP+ cells

owing the percentage of GFAP+ cells among S100B+ cells in each subregion
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EGR3 and CCL2 confirmed their expression in IBA1+microglia in

the adult, but not child, human hippocampus (Figure S4D). MG1

shows a trend toward decreasing with age, whereas MG2, MG3,

and MG4 remain largely constant (Figure 5E).

We utilized our five in vivo subpopulation classifications as a

reference to map three query datasets of hPSC-derived micro-

glia, including commercially available cultured cells in vitro (iCell

Microglia) (Popova et al., 2021) and ‘‘iMG’’ cultures in vitro and

upon xenograft into mice (Svoboda et al., 2019) (Figure 5H).

The vast majority of query microglia in vitro could be mapped

to in vivo subpopulations with a prediction score over 0.5, sug-

gesting that they maintained core microglial signatures under

various culture protocols (Figures 5H and 5I). Almost all querymi-

croglia were transcriptomically similar to MG1, an immune- and

inflammation-related subpopulation with elevated stress

response, with very few matched to MG2 (<1%), and none to

MG3 and MG4, indicating a lack of heterogeneity in culture (Fig-

ure 5I). Interestingly, despite a low proportion in culture, MG0, an

immune-related, largely adult-specific subpopulation, appeared

upon mouse xenograft at the expense of MG1 (Svoboda et al.,

2019) (Figure 5I), indicating a strong environmental influence

on cell identities.

Together, these results reveal the molecular and functional

heterogeneity of humanmicroglia and further identify amicroglial

subpopulation present largely only in the post-adolescent hu-

man hippocampus. Our analysis also suggests a lack of subpop-

ulation heterogeneity for hPSC-derived microglia in culture and

their dynamic properties upon xenograft into animals.

Cell-type- and subpopulation-specific expression
patterns of brain disorder risk genes
Glia play a crucial role in disease mitigation, whereas glial

dysfunction contributes to brain disorders (Barres, 2008). We

next examined risk gene enrichment of ASD, AD, SCZ, EPI, bipo-

lar disorder, anxiety disorder, and MDD curated from genome-

wide association studies (GWAS) in major hippocampal cell

types, by calculating an enrichment score using MAGMA (de

Leeuw et al., 2015) (Figure S5A) and aggregated expression (Fig-

ure S5B; Table S4) for each across ages. Neurons in general ex-

pressed more disease-associated risk genes than glia. Among

all glia, risk genes were more enriched in astrocytes and OPCs

than in mature oligodendrocytes and microglia.

We next measured each glial subpopulation for their relative

risk gene enrichment and expression patterns (Figures S5C

and S5D; Table S4). AST5, AST6, AST8, OPC1, OPC2, immatur-

eOL, MG3, and MG4 expressed more disease-associated risk

genes in their respective glial type, most of which do not have es-

tablished disease associations, except for AST6 with neuroin-
Figure 4. Transcriptomic diversity of human hippocampal oligodendro

(A and B) UMAP of integrated data highlighting oligodendrocyte lineage cells (A), w

generic marker expression (B).

(C–E) Characteristics of oligodendrocyte lineage subpopulations and their abunda

2E. Reg., regulation.

(F and G) Sample confocal images (F) and quantification (G) of SOX6+ cells amon

ages. Asterisks and arrowheads indicate SOX6+ and SOX6� cells among OLIG2+

of representative OLIG2+ cells that were SOX6+ and SOX6-, respectively. Scale b

(H and I) Assessing hPSC-derived oligodendrocyte lineage cells in two query data

(H). UMAPs (H) and bar plots (I) similar as in Figures 2H and 2I.

See also Figure S3 and Tables S2 and S3.
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flammation (Liddelow and Barres, 2017). Notably, almost all

these subpopulations have been linked to neuronal synaptic

regulation in our functional GO analyses (Figures 2D, 4D, and

5D; Tables S3A–S3C).

Overall, our cell atlas of the neurotypical hippocampus en-

ables us to uncover neuropsychiatric disease risk gene enrich-

ment in neurons and selective glial subpopulations that are

specialized in neuronal and synaptic modulation.

Transcriptomic dysregulation in glial subpopulations in
Alzheimer’s disease
As another example to implement our atlas of glial subpopula-

tions, we directly examined molecular pathology in post-mortem

ADbrains.We performed snRNA-seq analysis of the hippocampi

of 8 AD patients (Braak stages III to VI) and 8 matched controls

integrated with the 7 control specimens from the aging group

above (Figures 6A and S6A). We detected 1,037 genes with

1,878 UMIs per nucleus on average. We re-identified all glial

types and subpopulations in both AD and controls, whereas their

abundance was not significantly altered (Figures S6B and S6C).

Next, we analyzed differentially expressed genes (DEGs) be-

tween AD and controls for each major cell type (Figure 6B;

Table S5A). Neurons, especially excitatory neurons, show a

higher number of DEGs than other cell types (Figure 6B), which

is similar to the findings from the AD cortex (Mathys et al.,

2019) and likely due to the dominant proportion of neurons re-

sulting in a greater statistical power to detect their DEGs. Among

all glia, astrocytes and oligodendrocytes have more DEGs than

microglia or OPCs (Figure 6B). Although over 70% DEGs affect

only one major cell type, there was a small group of genes

affected in multiple (R4) cell types, which are associated with

cell adhesion, synaptic organization, endocytosis, and

apoptosis (Figures S6D and S6E). We cross-compared genes

disrupted by AD in our hippocampal dataset and several pub-

lished snRNA-seq studies of the prefrontal cortex (PFC) and en-

torhinal cortex (Grubman et al., 2019; Lau et al., 2020; Mathys

et al., 2019; Sadick et al., 2022; Zhou et al., 2020), where various

gene comparison methods and thresholds were applied

(Table S6A). Few DEGs are shared across studies of different

brain regions, suggesting region-specific transcriptomic dysre-

gulation in glial cells in AD (Figure 6C; Tables S6A–S6D),

although results from different previous PFC studies are variable

(Figure S6F), indicating a need for additional confirmation.

We then assessed how AD alters gene expression in glial sub-

populations. We found that only selected subpopulations exhibit

DEGs in AD (Figure 6D). Only AST1 and AST3 among astrocytes

show substantial DEGs in AD, which are the two subpopulations

associated with disease response processes (Figures 2D and
cyte lineage cells across the postnatal lifespan

hichwere sub-clustered and visualized in UMAP colored by subpopulation and

nce across ages. Heatmap (C) and dot plots (D and E) similar as in Figures 2C–

g all OLIG2+ oligodendrocyte lineage cells in the human hippocampus across

cells, respectively. Insets boxed in orange and cyan colors show enlarged view

ars, 10 mm (F). Box plot similar as in Figure 2G (n = 4 subjects per stage) (G).

sets (Chamling et al., 2021; Marton et al., 2019) with our in vivo reference map
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6D). TheGFAP-enriched AST1, which likely corresponds to reac-

tive astrocytes known to be dysregulated in the AD cortex (Saura

et al., 2022), is associated with autophagy and injury responses,

whereas AST3 is related to programmed cell death (Figure 2D).

Cell adhesion is downregulated in both AST1 and AST3 in AD,

whereas VEGFR signaling and transcription regulation are upre-

gulated in AST1 and AST3, respectively (Figure 6E). Oligoden-

drocyte lineages have been implicated in neurodegenerative dis-

eases (Franklin and Ffrench-Constant, 2017). We found OPC1,

Oligo1, Oligo2, and Oligo3 exhibit DEGs in AD (Figure 6D).

OPALIN-enriched Oligo1 (J€akel et al., 2019) has the most

DEGs. Interestingly, although dysregulated genes vary across

brain regions (Figures 6C and S6F), many pathological pro-

cesses are shared between the AD hippocampus and cortex

(Mathys et al., 2019), including upregulation in response to

unfolded protein (AST1), cell death (Oligo1), tau-protein kinase

activities, response to heat (Oligo1 andOligo2), and ion transport

(OPC1) (Figures 6E and 6F), indicating a common cross-region

molecular pathology in AD. Many AD-perturbed subpopulations,

including AST3, OPC1, Oligo1, and Oligo2, show synapse-

related downregulation (transmission, ion transport, organiza-

tion, and myelination), whereas Oligo2 exhibits an increased

expression of aging-relevant genes (Figures 6E and 6F). Finally,

gene dysregulation in AD microglia occurred mostly in MG4

(Figures 6D and 6E), a subpopulation enriched for disease risk

genes (Figures S5C and S5D) and related to cell adhesion and

signaling transduction, suggesting a potential impairment in their

surveillance function.

Overall, our analysis highlights the advantage of investigating

AD pathology at single-cell resolution aided with new knowledge

on glial diversity to identify differential gene dysregulation of spe-

cific glial subpopulations that may have higher disease vulnera-

bility (Figures 6D–6F; Table S5B).

DISCUSSION

We present a comprehensive single-nucleus transcriptome atlas

of a specific human brain region across the postnatal lifespan

from infant, child, adolescent, adult, to aging stages. Using

224,464 high-quality nuclei from 32 post-mortem specimens of

neurotypical human hippocampus, detailed analyses revealed

glial subpopulations, molecular characteristics, enrichment of

pathways related to cell functions, disease relevance, and age-

dependent changes in their abundance. Using this resource,

we assessed subpopulation composition of various glial types

arising from hPSC differentiation in 2D and 3D in vitro culture

systems and upon xenograft into mice. We further revealed the

impact of AD on specific glial subpopulations by analyzing
Figure 5. Transcriptomic diversity of human hippocampal microglia ac

(A and B) UMAP of integrated data highlighting microglia (A), which were sub-clu

expression (B).

(C–E) Characteristics of microglial subpopulations and their abundance across a

(F and G) Sample confocal images (F) and quantification (G) of CD83+ cells amo

arrowheads indicate CD83+ and CD83� cells among IBA1+ cells, respectively. I

IBA1+ cells that were CD83+ and CD83�, respectively. Scale bars, 10 mm (F). Bo

(H and I) Assessing hPSC-derived microglia in three query datasets (Popova et al.

bar plots (I) similar as in Figures 2H and 2I.

See also Figure S4 and Tables S2 and S3.
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82,279 nuclei from post-mortem hippocampi of AD patients

and matched controls. Together, our study provides a rich

resource of a single-nucleus transcriptome atlas of glial diversity

in the human hippocampus across the postnatal lifespan and in

AD, as well as a glial referencemap for annotating and assessing

human stem cell glial differentiation and various brain pathol-

ogies. These data are freely available at the GEO database and

can be explored using the UCSC Cell browser (https://hippo-

lifespan.cells.ucsc.edu).

Molecular diversity and dynamics of glial
subpopulations in human hippocampus across
postnatal lifespan
A recent flurry of discoveries on human brain cell diversity has

emerged from snRNA-seq studies, although nearly all provide

snapshots of one age stage (Rajewsky et al., 2020), posing chal-

lenges to analyze cell dynamics across the lifespan. Such anal-

ysis is particularly critical for glia, many of which undergo pro-

longed maturation postnatally and actively respond to

environmental cues or postnatal brain disorders. Here, we pre-

sent a unique resource of the molecular landscapes of glia in

the human hippocampus across the postnatal lifespan, with sub-

population characteristics and age-dependent alterations (Fig-

ure 1A). Interestingly, almost all glial subpopulations, except

for MG0, are already present shortly after birth, but only a few

exhibit age-dependent trends in their cellular abundance. We

compared, at the global transcriptome level, several published

datasets of the human cortex and other brain regions to our

age-matched hippocampal dataset and found that regardless

of age, glia displaymuch less inter-regional divergence than neu-

rons (Figure 1D), suggesting that our findingsmay represent gen-

eral principles beyond the hippocampal region.

Glia modulate synaptic formation and transmission, as well as

vasculature, inflammatory or injury response, phagocytosis, im-

mune surveillance, andmany other critical functions. Brain disor-

ders, such as AD and MS, can alter their properties, leading to

injury responses or reactivity in astrocytes, myelination defects,

or expression of disease-related signatures in microglia. Their

diverse roles suggest heterogeneity regarding cell subtype iden-

tities or molecular states. However, molecular identities of glia

associated with various functions are largely unclear. Our sys-

tematic analyses across ages allow us to unbiasedly charac-

terize human glial diversity based on their enriched genes, tran-

scription factors, and predicted functional characteristics. We

identified several glial subpopulations in the human hippocam-

pus that have been implicated in brain development or various

disorders in other brain regions, such as the cortex or white mat-

ter. Our dataset spanning the postnatal lifespan allows us to
ross the postnatal lifespan

stered and visualized in UMAP colored by subpopulation and generic marker

ges. Heatmap (C) and dot plots (D and E) similar as in Figures 2C–2E.

ng all IBA1+ microglia in the human hippocampus across ages. Asterisks and

nsets boxed in orange and cyan colors show enlarged view of representative

x plot similar as in Figure 2G (n = 4 subjects per stage) (G).

, 2021; Svoboda et al., 2019) with our in vivo reference map (H). UMAPs (H) and

https://hippo-lifespan.cells.ucsc.edu
https://hippo-lifespan.cells.ucsc.edu
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further estimate age-dependent changes in cellular abundance.

For example, the disease-associated OPALIN-enriched Oligo1

(J€akel et al., 2019) show a trend of steadily increasing with age

(Figure 4E). The largely adult-specific CD83-enriched MG0 was

suggested to contribute to homeostasis in the cortex (Olah

et al., 2020) (Figure 5E). In contrast, the SOX2- (AST2) and

SOX6- (OPC1, OPC2, and immatureOL) enriched progenitors

of astrocytes and oligodendrocytes, respectively (J€akel et al.,

2019; Zhang et al., 2016), both show a trend of decreasing

with age (Figure 2E). The SPP1, TREM2-enriched MG1, which

has been implicated inmultiple degenerative diseases in the cor-

tex (Masuda et al., 2020), also show a trend of decreasing with

age (Figure 5E). We validated the age-dependent expression

patterns in glial subpopulations enriched for SOX2, SOX6,

CD83, EGR3, and CCL2 using immunohistology and in situ ana-

lyses (Figures 2F, 2G, 4F, 4G, 5F, 5G, and S4D).

As a part of the validation, we examined in detail the spatio-

temporal divergence of GFAP+ astrocytes (AST1 and AST6) in

the human hippocampus and found a continuous subregion-

specific increase across ages in their abundance (Figure 3),

which were identified as injury-responding, reactive astrocytes

during neuroinflammation, normal aging, AD, MS, and other

neurological disorders (Liddelow and Barres, 2017). This anal-

ysis presents an example of how our dataset can be used as a

spatiotemporal reference map combined with other data modal-

ities, such as immunohistology and in situ analyses, to reveal

new biological insights.

A reference map assessing glial differentiation from
human stem cells
hPSC-derived systems have emerged as a powerful platform to

model human brain development and disorders. One of the cur-

rent endeavors focuses on recapitulating late-stage brain devel-

opment or adult-onset diseases, both consisting of more

complex cell-type composition, especially for glia. Our standard-

ized classifications of glial subpopulations and systematic inves-

tigation of age-related changes provide a complete human glial

transcriptomic reference map to benchmark hPSC-derived glial

differentiation to specific human developmental, adult, and ag-

ing periods. We quantitatively mapped several datasets contain-

ing glia derived from hPSCs using different protocols to our refer-

ence atlas and found that a significant portion are mapped to

mature glial subpopulations in long-term cultures or after xeno-

graft into mice, including GFAP+ mature astrocytes, mature oli-

godendrocytes, and adult-specific microglia (Figures 2I, 4I, and

5I). These intriguing results demonstrate the potential for

hPSC-based systems to model some aspects of mature human

brains under physiological or pathological conditions. On the

other hand, current protocols for hPSC-differentiation models
Figure 6. Subpopulation-specific transcriptomic dysregulation in glial

(A) UMAP of snRNA-seq of AD human hippocampus and matched controls, colo

(B) Heatmap showing the number of dysregulated genes in AD in each major ce

(C) Venn diagram showing comparison of dysregulated genes in different glial c

(combining all dysregulated genes in Lau et al. (2020), Mathys et al. (2019), Sadi

(Grubman et al., 2019).

(D–F) Selective disruption in glial subpopulations in AD, showing the number of dys

expression (F).

See also Figures S5 and S6 and Tables S4, S5, and S6.
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require further optimization as many in vivo subpopulations are

not detected in culture systems, including those with important

functions (synaptic modulation, e.g., AST4, AST5, AST7,

OPC2, and MG4; myelination, e.g., Oligo2 and MG3) or enriched

for disease risk genes (e.g., AST5, OPC2, MG3, and MG4)

(Figures 2H, 2I, 4H, 4I, 5H, 5I, and S5D). Furthermore, subpopu-

lations that express stress signatures are over-represented in

cultured astrocytes and microglia (e.g., AST1, AST6, and MG1)

(Figures 2I and 5I), suggesting imperfect culture conditions (Bha-

duri et al., 2020). Overall, our reference map provides a resource

to benchmark and improve differentiation of human stem cells

into diverse glial subpopulations for better modeling of glial

biology and associated disorders throughout human life.

Implication of specific glial subpopulations in
neuropsychiatric disorders
GWAS of neuropsychiatric disorders identified many genetic

variants that confer disease susceptibility and contribute to

pathogenesis. We probed a curated database of brain disorder

risk genes (Yu et al., 2010) in our transcriptome atlas across

ages to assess distinct risk gene expression in specific cell

types, in particular glial subpopulations (Figures S5B and S5D).

Strong enrichment of risk genes was found in neurons and glial

subpopulations performing neuronal and synaptic modulation

functions, suggesting a molecular basis for the increased sus-

ceptibility of selected cell types to brain disorders based on

physiological functions (Figure S5). These findings can inform

future analyses of genetic variants for the development of dis-

ease mitigation strategies.

We also directly assessed the disease-associated changes in

AD hippocampi and found a diverse impact on major cell types

and glial subpopulations (Figures 6B and 6D). Only selected glial

subpopulations exhibit transcriptomic dysregulation, with very

different genes affected (Figures 6C–6F and S6F). However,

many disrupted pathways and biological processes associated

with these diverse genes are shared in the AD cortex or other

degenerative disorders (such as a shared stress response), sug-

gesting a convergence of pathological features among different

brain regions in various disease contexts (Figures 6C and S6F).

For example, OPALIN-enriched Oligo1 in our AD hippocampus

has been implicated in the AD cortex (Lau et al., 2020) and the

MS white matter (J€akel et al., 2019). Downregulation of myelina-

tion and upregulation of response to heat and cell death pro-

cesses have been reported in the late-stage AD cortex (Saura

et al., 2022) and in MS (J€akel et al., 2019). GFAP+ astrocytes

(AST1 and AST6) are also dysregulated in the human AD cortex

(Grubman et al., 2019; Lau et al., 2020; Leng et al., 2021; Morabito

et al., 2021; Sadick et al., 2022), the cortex and hippocampus of an

AD mouse model (Habib et al., 2020), and MS (J€akel et al., 2019)
cells in AD

red by major cell type.

ll type.

ells in AD among brain regions, including hippocampus (current study), PFC

ck et al. (2022), and Zhou et al. (2020)); see Figure S6F), and entorhinal cortex

regulated genes (D), GO terms of biological processes (E), and exemplary gene
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(Figures 6D and 6E). Notably, several AD-affected glial subpopu-

lations (AST3, OPC1, Oligo1, Oligo2, and MG4) display impaired

synaptic modulation, a process where genes are susceptible to

disease disruption, as was predicted by our risk gene analysis

(Figure S5). As a rapidly evolving field, hPSC-derived 2D cultures

and 3D brain organoids have been used to model AD or other

neuropsychiatric disorders, where our in vivo map for diseased

glia could further be applied to assess molecular dysregulation

of glial subpopulations in in vitro or ex vivo cultures. The two appli-

cations that we demonstrated in this study may converge in the

near future to fuel our understanding of neuropsychiatric disorders

using hPSC-based modeling.

A combination of our longitudinal analysis across ages and in

AD provides a holistic picture of glial cells under physiological

and pathological conditions. The glial subpopulations we classi-

fied across ages using distinct gene signatures can be used as a

high-confidence reference to map their alterations in diseases.

This contextualization allows us to investigate the impact of AD

on each glial subpopulation with known distinct functions, in

contrast to assessing the gene or pathway changes in each ma-

jor glial type as a whole population in the AD cortex (Saura et al.,

2022). Indeed, we found that only specific glial subpopulations

are affected in AD and genes dysregulated in each subpopula-

tions have very limited overlap (Figure S6G). These findings

would be otherwise masked without subpopulation resolution,

emphasizing the value of our comprehensive atlas across ages

in understanding cellular mechanisms underlying brain homeo-

stasis and disorders.

Limitations of the study
First, we examined a total of 48 hippocampal specimens across

ages, a limited sample size for analyzing sex differences or

providing statistical significance to the observed trends in age-

dependent changes in cell abundance. We may also have

missed some rare subpopulations due to limited cells and spec-

imens sequenced and the sequencing depth. Future larger-scale

sequencing efforts, expanded cohorts, or dataset integration

and cross comparison may validate and enhance the resolution

of our current study. Second, despite unbiased cell counting and

whole-transcriptome characterization of glial subpopulations,

our snRNA-seq analysis does not reveal their spatial distribution,

which can be improved by the emerging spatially resolved

scRNA-seq methods. Our analysis of GFAP+ astrocytes in the

human hippocampus provided an example of integrative anal-

ysis combining other data modalities, such as immunohistology

and in situ analyses, to reveal spatial and temporal cell dy-

namics. Third, as a common issue in snRNA-seq analyses, it re-

mains challenging to determine whether cell subpopulations as-

signed by unsupervised clustering represent unique cell

subtypes or distinct states of the same type, although almost

all glial subpopulations are present in almost all human subjects,

indicating cluster stability. Fourth, current standardized proto-

cols to retrieve frozen specimens from biobanks and prepare

for snRNA-seqmay lead to aberrant gene expression particularly

in microglia (Marsh et al., 2022) and a preferential enrichment of

neuronal transcripts over glial ones, respectively (Lake et al.,

2018). Although we have independently validated several key

findings by immunohistology and in situ analyses, more should

be done in the future to rule out potential bias.
Overall, our study generated a rich resource of single-nuclei

transcriptome atlas of glial subpopulations in the human hippo-

campus across the postnatal lifespan and in AD that not only

provides a holistic view of glial cell molecular diversity but

can be used as a reference map for glial subpopulation identi-

fication across brain regions, ages, species, and disease con-

ditions and to benchmark hPSC differentiation into various glial

cells in 2D cultures, 3D brain organoids, and upon xenograft

into animals.
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Antibodies

Mouse anti-CD83 Bio-rad Cat# MCA1582; RRID: AB_321773

Mouse anti-CD83 BioLegend Cat# 305302; RRID: AB_314510

Sheep anti-GFAP R&D Systems Cat# AF2594; RRID: AB_2109656

Rabbit anti-IBA1 WAKO Cat# 019-19741; RRID: AB_839504

Goat anti-OLIG2 R&D Systems Cat# AF2418; RRID: AB_2157554

Rabbit anti-S100B Sigma Cat# S2644; RRID: AB_477501

Goat anti-SOX2 Santa Cruz Cat# sc-17320; RRID: AB_2286684

Goat anti-SOX2 R&D Systems Cat# AF2018; RRID: AB_355110

Mouse anti-SOX2 Abcam Cat# ab79351; RRID: AB_10710406

Rabbit anti-SOX6 Millipore Cat# AB5805; RRID: AB_2302618

Donkey anti-goat secondary antibody,

Cyanine 2

Jackson ImmunoResearch Cat# 705-225-147; RRID: AB_2307341

Donkey anti-mouse secondary antibody,

Cyanine 2

Jackson ImmunoResearch Cat# 715-225-151; RRID: AB_2340827

Donkey anti-rabbit secondary antibody,

Cyanine 2

Jackson ImmunoResearch Cat# 711-225-152; RRID: AB_2340612

Donkey anti-sheep secondary antibody,

Cyanine 2

Jackson ImmunoResearch Cat# 713-225-147; RRID: AB_2340735

Donkey anti-goat secondary antibody,

Cyanine 3

Jackson ImmunoResearch Cat# 705-165-147; RRID: AB_2307351

Donkey anti-mouse secondary antibody,

Cyanine 3

Jackson ImmunoResearch Cat# 715-165-151; RRID: AB_2315777

Donkey anti-rabbit secondary antibody,

Cyanine 3

Jackson ImmunoResearch Cat# 711-165-152; RRID: AB_2307443

Human EGR3 probe for RNAscope Advanced Cell Diagnostics (ACD Bio) Cat# 470161

Human CCL2 probe for RNAscope Advanced Cell Diagnostics (ACD Bio) Cat# 423811

Biological samples

Human post-mortem hippocampal

specimens

Children’s Hospital of Philadelphia; Johns

Hopkins University Pathology Archive;

Lieber Institute for Brain Development;

Multiple repositories from the NIH

NeuroBioBank

Full list in Table S1

Human surgical hippocampal specimens Children’s Hospital of Philadelphia Full list in Table S1

Chemicals, peptides, and recombinant proteins

Bovine serum albumin (BSA) Life Technologies Cat# 37525

DAKO target retrieval solution (10X) DAKO Cat# S1699

DAPI Thermo Fisher Scientific Cat# D1306;

RRID: AB_2629482

DL-Dithiothreitol (DTT) Sigma Cat# D0632

dNTP Thermo Fisher Cat# R0192

Donkey serum Millipore Cat# S30

EDTA Cellgro Cat# 46034Cl

EDTA-free protease inhibitor Roche Cat# 11836170001

EvaGreen dye, 20X in Water Biotium Cat# 31000

Ficoll solution, type 400 Sigma Cat# F5415-25ML

IGEPAL-630 Sigma-Aldrich Cat# I8896-50ML
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Maxima H Minus Reverse Transcriptase Fisher Scientific Cat# EP0753

MgCl2 Thermo Fisher Scientific Cat# AM9530G

Myelin Removal Beads II Miltenyi Biotec Cat# 130-096-733

NaCl Ambion Cat# AM9760G

NEBuffer 3.1 New England Biolabs Cat# B7203s

Paraformaldehyde (PFA), 16%,

methanol-free

Fisher Scientific Cat# 50-980-487

Phosphate-Buffered Saline (PBS) Corning Cat# 21-040

PMSF protease inhibitor Thermo Fisher Cat# 36978

Proteinase K Solution (20 mg/mL) Thermo Fisher Cat# AM2546

RNase Inhibitor Enzymatics Cat# Y924L

SDS Thermo Fisher Cat# 15553027

Sodium azide Sigma-Aldrich Cat# S2002

Spermidine Sigma-Aldrich Cat# S0266-1G

Spermine Sigma-Aldrich Cat# S4264-1G

SPRIselect Beads BECKMAN COULTER Cat# B23318

Sucrose Sigma-Aldrich Cat# S5016-500G

Superase-In RNase Inhibitor Thermo Fisher Cat# AM2694

T4 DNA Ligase New England Biolabs Cat# M0202S

Tricine-KOH Sigma-Aldrich Cat# T5816-100G

Tris-HCl, pH8.0 Ambion Cat# AM9855G

Triton X-100 Sigma-Aldrich Cat# T9284

Tween-20 Thermo Fisher Cat# 85113

Xylene Fisher Scientific Cat# X5-1

Critical commercial assays

Agilent High Sensitivity DNA Kit Aligent Cat# 5067-4626

Dynabeads� MyOne� Streptavidin C1 Kit Thermo Fisher Cat# 65001

Fuchs-Rosenthal hemocytometer Incyto Cat# DHCF015

Kapa HiFi HotStart Master Mix KAPA Biosystems Cat# KK2601

NextSeq 500/550 High Output v2.5 kit (150

cycles)

Illumina Cat# 20024907

Nextera XT DNA Library Preparation Kit Illumina Cat# FC-131-1024

Qubit dsDNA HS Assay Kit Thermo Fisher Cat# Q32854

TrueBlack Lipofuscin Autofluorescence

Quencher

Biotium Cat# 23007

RNAscope� Multiplex Fluorescent

Reagent kit V2

Advanced Cell Diagnostics (ACD Bio) Cat# 323100

Oligonucleotides

Split barcode primer: Round 1/2/3 IDT Rosenberg et al., 2018

Deposited data

Human hippocampus snRNA-seq data This paper GSE185553, GSE198323, and GSE199243.

UCSC Browser interface: https://hippo-

lifespan.cells.ucsc.edu.

Human anterior cingulate cortex (ACC) and

prefrontal cortex (PFC) snRNA-seq data

(controls)

Velmeshev et al., 2019 PRJNA434002

Human cerebellum, frontal cortex and

visual cortex snRNA-seq data

Lake et al., 2018 GSE97930

Human motor cortex snRNA-seq data

(controls)

Schirmer et al., 2019 PRJNA544731
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Human white matter snRNA-seq data

(controls)

J€akel et al., 2019 GSE118257

Sliced human cortical organoid snRNA-

seq data

Qian et al., 2020 GSE137941

Sliced human brain organoid scRNA-

seq data

Szebényi et al., 2021 GSE180122

iPSC-derived microglia cells scRNA-

seq data

Popova et al., 2021 GSE180945

iPSC-derived microglia cells scRNA-

seq data

Svoboda et al., 2019 GSE139193

iPSC-derived oligodendrocyte scRNA-

seq data

Chamling et al., 2021 GSE146373

iPSC-derived oligodendrocyte scRNA-

seq data

Marton et al., 2019 GSE115011

Schizophrenia GWAS data Trubetskoy et al., 2022 https://www.med.unc.edu/pgc/download-

results/

Major depressive disorder GWAS data Giannakopoulou et al., 2021 https://www.med.unc.edu/pgc/download-

results/

Epilepsy GWAS data International League Against Epilepsy

Consortium on Complex Epilepsies, 2018

https://www.epigad.org/gwas_ilae2018_

16loci.html

Bipolar disorder GWAS data Mullins et al., 2021 https://www.med.unc.edu/pgc/download-

results/

Autism spectrum disorder GWAS data Grove et al., 2019 https://www.med.unc.edu/pgc/download-

results/

Anxiety disorder GWAS data Otowa et al., 2016 https://www.med.unc.edu/pgc/download-

results/

Alzheimer’s disease GWAS data Wightman et al., 2022 https://www.med.unc.edu/pgc/download-

results/

Software and algorithms

Adobe Illustrator CS6 Adobe https://www.adobe.com/products/

illustrator.html; RRID: SCR_010279

Adobe Photoshop CS6 Adobe https://www.adobe.com/products/

photoshop.html; RRID:SCR_014199

Bamtools (v2.3.0) N/A https://bioinformatics.readthedocs.io/en/

latest/bamtools/; RRID: SCR_015987

bcl2fastq (v2.17.1) Illumina https://support.illumina.com/sequencing/

sequencing_software/bcl2fastq-

conversion-software.html; RRID:

SCR_015058

clusterProfiler (v4) Wu et al., 2021 https://github.com/YuLab-SMU/

clusterProfiler/; RRID: SCR_016884

DAVID Knowledge Base (v2021q4) N/A https://david-d.ncifcrf.gov;

RRID:SCR_001881

Drop-seq tools (v1.13) Macosko et al., 2015 http://mccarrolllab.org/dropseq/; RRID:

SCR_018142

GeneOverlap Shen, 2021 https://bioconductor.org/packages/

release/bioc/html/GeneOverlap.html;

RRID:SCR_018419

Imaris 9.0 Bit Plane http://www.bitplane.com/imaris/imaris/;

RRID: SCR_007370

JAVA (v 1.8.0) JAVA https://www.java.com/en/download/
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Microsoft Excel Microsoft https://www.microsoft.com/en-us/p/excel/

cfq7ttc0k7dx?activetab=pivot%

3aoverviewtab; RRID: SCR_016137

MAGMA (v1.10) de Leeuw et al., 2015 https://ctg.cncr.nl/software/magma

PicardTools (v2.13.2) Broad Institute http://broadinstitute.github.io/picard/;

RRID: SCR_006525

R (v4.0.4) R https://cran.r-project.org/; RRID:

SCR_001905

R Studio RStudio https://rstudio.com/; RRID: SCR_000432

randomForest (v4.6.14) Breiman, 2001 https://cran.r-project.org/web/packages/

randomForest/index.html; RRID:

SCR_015718

Samtools (v1.1) N/A http://www.htslib.org/; RRID:SCR_005227

scDbiFinder (v1.4.0) Germain et al., 2021 https://bioconductor.org/packages/

release/bioc/html/scDblFinder.html

sctransform (v0.3) Hafemeister and Satija, 2019 https://github.com/ChristophH/

sctransform

Seurat (v 4.0.0) Hao et al., 2021 https://satijalab.org/seurat/; RRID:

SCR_007322

STAR (v2.5.2a) Dobin et al., 2013 https://github.com/alexdobin/STAR; RRID:

SCR_015899

UMAP R package https://umap-learn.readthedocs.io/en/

latest/; RRID:SCR_018217

Zen 2 Carl Zeiss https://www.zeiss.com; RRID:

SCR_013672

Other

40-mm cell strainer Fisher Scientific 22-363-547

Bioanalyzer 2100 Aligent G2939BA

Confocal microscope Carl Zeiss Zeiss LSM 800

Dounce homogenizer Fisher Scientific 8853000002

Frozen sliding microtome Leica Cat# SM2010R

Illumina NextSeq 550 sequencer Illumina

Qubit Fluorometer Thermo Fisher Scientific Q33238

SuperfrostTMPlus Slides Thermo Fisher Scientific 22-037-246

T100 Thermal Cycler Bio-rad 1861096EDU
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Guo-li

Ming (gming@pennmedicine.upenn.edu).

Materials availability
There are no restrictions on any materials presented in this paper.

Data and code availability
All snRNA-seq data are available at the NCBI GEO: GSE185553, GSE198323, GSE199243 and UCSC Cell Brower (https://hippo-

lifespan.cells.ucsc.edu). Information on the de-identified human specimens used in this study and their sequencing characteristics

are described in Table S1. Scripts used in this study are available at https://github.com/ysu2015/HumanHippocampus_scRNAseq,

maintained byDr. Yijing Su (yijingsu@pennmedicine.upenn.edu). Any additional information required to reanalyze the data reported in

this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissue specimens
De-identified human hippocampal tissue specimens were collected and processed under protocols approved by the Institutional Re-

view Boards of the University of Pennsylvania and the Children’s Hospital of Philadelphia. A total of 75 human hippocampal spec-

imens between the ages of 0.1 to 95 years old were used in this study, including 40 post-mortem specimens from subjects free

from neurological disorders and 8 post-mortem specimens from AD patients (Braak stage ranging from III to VI) for snRNA-seq,

and 25 post-mortem specimens from subjects free from neurological disorders and 2 surgical specimens from epilepsy patients

for immunohistological and in situ analyses (Table S1). Samples were from tissue banks at the Children’s Hospital of Philadelphia,

the Johns Hopkins University Pathology Archive, the Lieber Institute for Brain Development, the NIH NeuroBioBank at the University

of Pittsburgh Brain Tissue Donation Program, the University ofMaryland Brain and Tissue Bank, the University ofMiami Brain Endow-

ment Bank, the Harvard Brain Tissue Resource Center, the Human Brain and Spinal Fluid Resource Center at the VA West Los An-

geles Healthcare Center, and the Mount Sinai School of Medicine (Table S1). Informed consent for each specimen was obtained by

its corresponding institution prior to tissue collection.

METHOD DETAILS

Single nucleus isolation
Single-nucleus RNA sequencing was performed using the SPLiT-seq platform with modifications (Qian et al., 2020; Rosenberg et al.,

2018). Nuclei isolation from frozen hippocampal tissue was performed as previously described with minor modifications (Su et al.,

2017). Briefly, tissue was minced with a razor blade and homogenized for 5 to 10 strokes using a tissue grinder (Fisher Scientific,

8853000002) in a 1 mL of cold homogenization buffer (1 mM DTT, 0.15 mM spermine, 0.5 mM spermidine, EDTA-free protease in-

hibitor, 0.3% IGEPAL-630, 0.25M sucrose, 25mMMgCl2, 20mMTricine-KOH). Homogenates were filtered through a 40-mmstrainer

and mixed with 200 mL of Myelin Removal Beads II (Miltenyi Biotec, 130-096-733) for a 15-minute incubation on ice. The mixture was

transferred on top of a sucrose cushion buffer (0.5 mM MgCl2, 0.5 mM DTT, EDTA-free protease inhibitor, 0.88 M sucrose) at a 1:1

ratio (vol / vol) and centrifuged at 2,800 g for 10 minutes in a swinging bucket centrifuge at 4 �C. Nuclei were collected as pellets and

resuspended with Phosphate-Buffered Saline (PBS, Corning, 21-040-CV) containing 0.01% Bovine serum albumin (BSA, Sigma-

Aldrich, B6917). Nuclei were spun down for 3 minutes at 500 g at 4 �C, resuspended in 1mL of cold PBS-RI (1x PBS, 0.05U/ml RNase

Inhibitor) and passed through a 40-mm strainer. 3 mL of cold 1.33% formaldehyde solution was added to the nuclei suspension for

fixation on ice for 10 minutes. Next, nuclei were permeabilized with 160 mL of 5% Triton X-100 for 3 minutes and centrifuged at 500 g

for 3 minutes at 4 �C. Nuclei were resuspended in 500 mL cold PBS-RI before 500 mL of cold 100 mM Tris-HCl (pH 8.0) was added.

Then, nuclei were spun down at 500 g for 3 minutes at 4 �C and resuspended in 300 mL of cold 0.5 X PBS-RI. Finally, nuclei were

passed through a 40-mm strainer again, counted with a hemocytometer and diluted to 1,000,000 nuclei/mL with cold 0.5 X PBS-RI.

Sequencing library preparation
Library preparation was performed as previously described (Qian et al., 2020; Rosenberg et al., 2018). Briefly, mRNA from single

nuclei were tagged in three rounds with barcoded primers (Integrated DNA Technologies), with in-cell ligations using T4 DNA ligase

(New England Biolabs, M0202S). After adding barcodes, nuclei were washed with 4mL of wash buffer (4mL of 1X PBS, 40 mL of 10%

Triton X-100 and 10 mL of SUPERase In RNase Inhibitor), spun down at 1000 g for 5minutes at 4 �Cand resuspendedwith 50 mL PBS-

RI. Nuclei were counted, diluted and aliquoted into 10,000 nuclei per sublibrary in 50 mL PBS-RI. Lysate of each sublibrary was pre-

pared by adding 50 mL of 2X lysis buffer (20mMTris (pH 8.0), 400mMNaCl, 100mMEDTA (pH 8.0), 4.4%SDS and 10 mL proteinase K

solution) and incubating at 55 �C for 2 hours to reverse formaldehyde crosslinks. Ligation products in each lysate were purified with

DynabeadsMyOne Streptavidin C1 beads, resuspendedwith a solution containing 44 mL of 5XMaxima RT buffer, 44 mL of 20%Ficoll

PM-400 solution, 22 mL of 10 mM dNTPs, 5.5 mL of RNase Inhibitor, 11 mL of Maxima H Minus Reverse Transcriptase, and 5.5 mL of

100 mM of a template switch primer (BC_0127) (Rosenberg et al., 2018) and incubated at room temperature for 30 minutes and then

42 �C for 90minutes for template switching. Then, beadswerewashed and resuspendedwith a solution containing 110 mL of 2XKapa

HiFi HotStart Master Mix, 8.8 mL of 10 mM stocks of primers BC_0062 and BC_0108 (Rosenberg et al., 2018), and 92.4 mL of water for

PCR thermocycling with following parameters: 95 �C for 3 minutes, then five cycles at 98 �C for 20 seconds, 65 �C for 45 seconds,

72 �C for 3 minutes. Next, EvaGreen dye was added into PCR solution after beads were removed for additional qPCR thermocycling

with the following parameters: 95 �C for 3minutes, cycling at 98 �C for 20 seconds, 65 �C for 20 seconds, and then 72 �C for 3minutes.

The qPCR cycle was determined by the qPCR signal. Once the qPCR signal began to plateau, cycling was stopped and followed by a

5-minute incubation at 72 �C. In our experience, an additional 6-7 cycles were needed for sublibraries that contained 10,000 cells.

PCR products were purified using a 0.8X ratio of SPRI Beads and cDNA concentration was measured by Qubit.

Tagmentation was performed with Nextera XT Library Prep Kit on 600 pg of purified cDNA following the manufacturer’s protocol.

The tagmented cDNA libraries were further amplified with 12 enrichment PCR cycles using the indexed primers (P5 primer: BC_0118,

one of indexed P7 primer: BC_0076-BC_0083) (Rosenberg et al., 2018). PCR products were purified with a 0.7X ratio of SPRI beads

to generate an Illumina-compatible sequencing library.
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Sequencing, reads alignment, and preprocessing
After quality control analysis by a Qubit Fluorometer (ThermoFisher Scientific, Q33238) and a Bioanalyzer (Agilent), libraries were

sequenced on an Illumina NextSeq 550 instrument using Illumina 150-cycle High Output Kit v2.5 (20024907) with a modified

150bp paired-end protocol where R1 = 66bps and R2 = 94bps to maximize mapping. The raw data was converted to ‘‘.fastq’’ files

using bcl2fastq (v2.17.1) software. Based on the design, individual cell barcodes and Unique Molecular Identifiers (UMIs) were

embedded on Read2 in the positions of (1-10 UMIs; 11-18 Round3; 49-56 round2; 87-94 round1). Paired-end sequencing reads

were pre-processed using Drop-seq-1.13 (Macosko et al., 2015) with some modifications. Briefly, each mRNA read was tagged

with a cell barcode and a UMI, trimmed off sequencing adaptors and poly-A sequence, and aligned to the human reference genome

assembly (hg38, Gencode release V28). Both exonic and intronic reads mapped to the predicted strands of annotated genes were

retrieved for the cell type classification (Hu et al., 2017). Uniquely mapped reads were grouped by cell barcodes. To digitally count

gene transcripts, a list of UMIs in each gene, within each nucleus, was assembled, and UMIs within ED = 1 were merged. The total

number of uniqueUMI sequenceswas counted and reported as the number of transcripts of that gene for a given nucleus. Rawdigital

expression matrices were generated for each sequencing run. We observed a range of UMIs in different samples due to variability of

sequencing depth (Table S1).

Quality control, cell clustering and dataset integration
Raw expression matrices of each individual specimen were loaded as Seurat objects (v 4.0.0) (Hao et al., 2021) in R (v4.0.4)

using the function ‘‘CreateSeuratObject’’. For each object, genes expressed in < 10 nuclei were discarded; nuclei with > 5%

UMIs mapped to mitochondrial genes were discarded. Doublets were identified and removed using scDbiFinder (v1.4.0) (Ger-

main et al., 2021). For analyzing glial cells across ages, all 32 objects from specimens free from neurological disorders were

merged, nuclei with genes < 200 or > 8,000 were discarded and integrated using the ‘‘reciprocal PCA’’ method (RPCA) (Hao

et al., 2021). For comparing AD and control specimens, objects from 8 AD specimens and all 15 control specimens older

than 73 years old were merged, nuclei with genes < 400 or > 8,000 were discarded and integrated using canonical correlation

analysis (CCA) (Hafemeister and Satija, 2019; Stuart et al., 2019). Integrated datasets for both analyses were respectively scaled

and regressed out effects of library size (total UMI counts) and percentage of mitochondrial genes to mitigate specimen and

preparation heterogeneity prior to further analyses.

Cell clustering, visualization, and marker gene identification
Principal component analysis (PCA) was used to reduce dimensionality of the dataset using the ‘RunPCA’ function in Seurat. Two

methods were used to determine the optimal number of principal components (PCs) used for clustering analysis and visualization:

(1) The cumulative standard deviations of each PC were plotted using the function ‘‘PCElbowPlot’’ in Seurat to identify the ‘knee’

point at a PC number after which successive PCs explain diminishing degrees of variance; (2) The significance of each gene’s asso-

ciation with each PCwas assessed by the function ‘‘ScoreJackStraw’’ in Seurat. For analyzing subpopulations of eachmajor glial cell

type, UMI count matrices of each subset were loaded as a new Seurat object for further partitioning using the same methods and

criteria described above. Specimens or batches with the total number of microglia less than 200 were excluded from the microglia

subpopulation analysis. This is because the integration pipeline (Hao et al., 2021) we used requires a minimal cell number for each

dataset to ensure a statistically confident data integration, and will produce errors during the ‘‘IntegrateData’’ step if this requirement

is not met. Marker genes for each major cell type and for each glia subpopulation were identified with a Wilcoxon rank sum test im-

plemented in the ‘FindAllMarkers’ function with the following criteria: false-discovery rate (FDR)-adjusted p-value < 0.05, log-fold

change R 0.25 (selecting positive markers only), and were detected in R 10% of the cells within their respective clusters

(Table S2). Differentially expressed genes of major cell types and glia subpopulations between AD and controls were identified using

the ‘‘FindMarkers’’ function in Seurat using the following criteria: FDR-adjusted p-value < 0.05, log-fold change R 0.25 or % -0.25,

and were detected in R 10% of the cells within their respective clusters (Table S5).

Benchmarking cell types and subpopulations and comparing transcriptomic similarities to published datasets
Published single-cell transcriptomic datasets were obtained from UCSC Cell Brower (https://cells.ucsc.edu/) and Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.go/geo/). Only specimens free from neurological diseases were used. Datasets were indi-

vidually prepared using the same parameters described above. Clusters of themajor cell types were identified using commonmarker

genes (Table S2).

To compare cell-type transcriptomic similarity across brain regions (Figure 1D), published datasets from different brain regions,

including the prefrontal cortex (PFC), visual cortex, cerebellum, anterior cingulate cortex (ACC), motor and premotor cortex, and

white matter (J€akel et al., 2019; Lake et al., 2018; Schirmer et al., 2019; Velmeshev et al., 2019) were individually prepared and six

major cell types were identified in each. Each dataset was matched to a subset of our hippocampal dataset that spans across

the entire lifespan based on its corresponding age for comparison using a random forest classifier as previously described (Breiman,

2001; Shekhar et al., 2016) (Figure 1D).

To characterize glia subpopulations from human pluripotent stem cell-based 2D or 3D differentiation models using our glia sub-

populations as a reference, published datasets, containing a sufficient number of cell populations of interest, from human pluripotent

stem cell-derived astrocytes (Qian et al., 2020; Szebényi et al., 2021), oligodendrocyte lineage cells in 3D brain organoids (Chamling

et al., 2021; Marton et al., 2019), and microglia in 2D culture and upon xenograft into mice (Popova et al., 2021; Svoboda et al., 2019)
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were prepared separately to identify major cell types. The corresponding glia cluster(s) were subset out for further analyses. For each

glia type, cluster(s) from the query datasets were projected to our glia reference map using a Seurat CCA integration-based method

with default settings (https://satijalab.org/seurat/articles/integration_mapping.html) (Hao et al., 2021). Each query cell was projected

back to the previously computed UMAP visualization plots of its respective glia type (Figures 2H, 4H, and 5H). We applied an empir-

ical prediction score cut-off of 0.5 to exclude query cells of low similarity to any of the in vivo subpopulations, labeling as ‘‘unclas-

sified’’ cells. For each glia type, we then used the highest prediction scores to annotate glial cells to specific subpopulations and

quantified their proportion among all glial cells (Figures 2I, 4I, and 5I).

Gene ontology, disease risk gene, and transcription factor enrichment analyses
Tomap enrichment patterns of gene ontology (GO) terms of biological processes onto different subpopulations for each glial type, we

applied the ‘‘compareCluster’’ function (‘‘clusterProfiler’’ R package) (Wu et al., 2021) with default parameters (Figures 2D, 4D, and

5D). Enriched marker genes for each glia subpopulation were used as input. A p-value, controlled for FDR, less than 0.05 is consid-

ered significantly enriched. A full list of GO terms was summarized in Table S3. To identify the biological processes significantly dys-

regulated in AD, we input the differential expression genes between AD and control specimens for each glia subpopulation to DAVID

Knowledge Base (v2021q4, https://david-d.ncifcrf.gov). A p-value of less than 0.05 is considered significantly enriched. A full list of

GO terms was summarized in Table S5.

We analyzed the enrichment of significantly regulated genes in each category with disease annotations curated from GWAS

studies (Giannakopoulou et al., 2021; Grove et al., 2019; International League Against Epilepsy Consortium on Complex, 2018; Mul-

lins et al., 2021; Otowa et al., 2016; Trubetskoy et al., 2022; Wightman et al., 2022) by calculating effect sizes (BETA) and the enrich-

ment p-values using MAGMA (de Leeuw et al., 2015) (Figures S5A and S5C). The aggregated expression of curated disease asso-

ciated genes from Phenopedia (Yu et al., 2010) (accessed on March 25, 2021) in each major cell type and subpopulation is shown in

Figures S5B and S5D and summarized in Table S4.

A list of human transcription factors (TFs) was downloaded from AnimalTFDB3.0 (Hu et al., 2019) for performing TF expression

analysis. For a given glia type, selected TFs among marker genes of each subpopulation (Table S2) were plotted as a heatmap

for their average expression (Figures S2A, S3A, and S4A).

Immunostaining and confocal microscopy
Immunohistology on brain tissue sections was performed as previously described (Zhou et al., 2018). For formalin-fixed, paraffin-

embedded (FFPE) tissue sections, prior to further processing, they were deparaffinized in 4 times xylene (Fisher Scientific, X5-1),

4 times 100% ethanol, and 4 times 95% ethanol, each for 5 minutes. For paraformaldehyde (PFA)-fixed sections, brain tissue blocks

were fixed with 4% PFA at 4 �C for 24-48 hours, and cryoprotected with 30% sucrose (wt / vol). 40-mm-thick sections were cut on a

frozen sliding microtome (Leica, SM2010R). The sections then underwent antigen retrieval prior to antibody application by being

incubated in 1X target retrieval solution (DAKO) at 95 �C for 12.5 minutes, followed by a 15-minute cooling to room temperature. An-

tibodies were diluted in Tris buffered saline (TBS) with 0.1% Triton X-100, 5% (vol / vol) donkey serum (Millipore, S30), and sodium

azide (Sigma, S2002, 1:100). Sections were incubatedwith primary antibodies at 4 �C for two nights. The following primary antibodies

were applied: Cd83 (mouse, Bio-rad, MCA1582, 1:50), Cd83 (mouse, BioLegend, 305302, 1:50), Gfap (sheep, R&D Systems,

AF2594, 1:1000), Iba1 (rabbit, WAKO, 019-19741, 1:500), Olig2 (goat, R&D Systems, AF2418, 1:500), S100b (rabbit, Sigma,

s2644, 1:500), Sox2 (goat, Santa Cruz, sc-17320, 1:200), Sox2 (goat, R&D Systems, AF2018, 1:200), Sox2 (mouse, Abcam,

ab79351, 1:250), and Sox6 (rabbit, Millipore, AB5805, 1:250). The Cy2- or Cy3-conjugated secondary antibodies (Jackson Immu-

noResearch; 1:300) to the appropriate species and DAPI (Thermo Fisher Scientific, D1306) were incubated at room temperature

for 2 hours. After washing with TBS, sections were incubated with 1X TrueBlack (Biotium, 23007; diluted 1:20 in 70% ethanol) for

1 minute to block the auto-fluorescent lipofuscin and blood components. After washing with PBS, stained sections were mounted

and imaged as Z-stacks on a Zeiss LSM 800 confocal microscope (Carl Zeiss) using a 20X or 40X objective with Zen 2 software

(Carl Zeiss).

In-situ hybridization with immunostaining
PFA-fixed and cryopreserved 40 mm-thick hippocampal tissue sections were mounted on Superfrost� Plus slides and dried at 60 �C
for 10 minutes followed by dehydration with ethanol, blocking of endogenous peroxidases with hydrogen peroxide, antigen retrieval,

protease treatment, and in-situ hybridization using the RNAscope�Multiplex Fluorescent Reagent kit v2 according to manufacturer

specifications (Advanced Cell Diagnostics (ACD), 323100). Tissue was probed with either EGR3 (ACD, 470161) or CCL2 (ACD,

423811) probes and developed with TSA plus Cyanine 3 (Akoya Biosciences, NEL744001KT, 1:100). Following in-situ hybridization,

sections were washed in phosphate-buffer saline (PBS) with 0.1% TritonX-100 (PBST), and subsequently blocked with 10% donkey

serum-PBST for 1 hour at room temperature. Slides were then incubated with anti-Iba1 antibodies (rabbit, WAKO, 019-19741, 1:500)

in 1% donkey serum PBST overnight at 4 �C, washed and then incubated with fluorescently conjugated secondary (donkey anti-rab-

bit AlexaFluor 647, Thermofisher, A-31573, 1:500) for 2 hours at room temperature. Slides were incubated with 1x TrueBlack for 30

seconds to block autofluorescence, washed with PBS and coverslipped with DAPI. Sections were imaged by confocal as

described above.
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Image processing and data analyses
All confocal imageswere blindly acquired among different specimens under the same laser power and gain, analyzed using Imaris 9.0

software (BitPlane) as previously described (Sun et al., 2015a; Sun et al., 2015b). The Spotsmodule in Imaris was used to digitize cell-

nucleus locations in 3D space and to code cell type classifications according to distinct morphological and molecular markers. A

minimum of three randomly chosen areas of equal dimensions in each section were quantitated. To minimize bias caused by sparse

sampling of lowly abundant cells (e.g., CD83+ microglia), quantifications of all areas across three sections per patient were averaged

and considered as one data point. We counted at least 100 cells to confidently quantify the ratio. No statistical methods were used to

predetermine sample size. To quantify the spatio-temporal pattern of GFAP expression among S100B+ cells (Figure 3), subregions of

the hippocampal formation were identified based on its distinct anatomical structure. Three randomly chosen areas of equal dimen-

sions within each sub-region were quantitated and the sum of quantifications of these areas per section was considered as one

data point.

QUANTIFICATION AND STATISTICAL ANALYSIS

The studies were blinded during data collection and quantification. Data in figure panels reflect several independent experiments

performed on different days. No data were excluded. All data are shown as median ± quantiles. All statistical analyses are indicated

in the text or figure legends and performed with the R language for statistical computing (https://www.r-project.org/).
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