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Abstract
The emerging technology of brain organoids deriving from
human pluripotent stem cells provides unprecedented oppor-
tunities to study human brain development and associated
disorders. Various brain organoid protocols have been devel-
oped that can recapitulate some key features of cell type di-
versity, cytoarchitectural organization, developmental
processes, functions, and pathologies of the developing
human brain. In this review, we focus on patterning of human
stem cell-derived brain organoids. We start with an overview of
general procedures to generate brain organoids. We then
highlight some recently developed brain organoid protocols
and chemical cues involved in modeling development of spe-
cific human brain regions, subregions, and multiple regions
together. We also discuss limitations and potential future im-
provements of human brain organoid technology.
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Introduction
Human brain organoids are neural tissues differenti-
ated from pluripotent stem cells (PSCs) with self-

organized three-dimensional (3D) structures that
recapitulate some key characteristics of the cell type
diversity, cytoarchitectural organization, and
www.sciencedirect.com
developmental trajectories of the embryonic human
brain [1,2]. Brain organoid technology overcomes many
limitations of conventional approaches, such as 2D
neural cultures, and provides platforms for investiga-
tion of human brain development and disorders.

Human brain organoids have recently been widely used
in modeling human neural development (e.g. differ-
entiation [3e5], migration [6] and evolution [7]),
neurological and psychiatric disorders (e.g. schizo-
phrenia [8], lissencephaly [9], hypoxia [10], viral in-
fections [4,11e14]), brain cancers [15], drug screening
and testing [16,17], AAV capsid selection for gene
therapy [18], and have been transplanted into the
rodent brain [19e21]. In this review, we first describe
common procedures for brain organoid generation, and
then focus on patterning of brain region- or subregion-

specific organoids. We also highlight emerging tech-
nologies for engineering organoids consisting of multi-
ple CNS regions in continuum. Finally, we discuss
current limitations and prospects for
future improvements.
Generation of brain organoids from human
pluripotent stem cells
Generation of brain organoids starts from undifferenti-
ated human embryonic stem cells (hESCs) or induced
pluripotent stem cells (hiPSCs) cultured either on
mouse-derived feeder cells or under feeder-free con-
ditions (Figure 1). Notably, protocols are usually
different between feeder and feeder-free conditions.
Second, 3D embryoid bodies (EBs) are formed through
the re-aggregation of single-PSC suspensions in micro-

wells, such as Aggrewell [22], V/U-bottom wells, or 3D
printed wells [23], or through the self-aggregation of
PSCs colonies in low-adherence plates [3,4]. Addi-
tionally, engineered materials, such as microfilaments
[24] and microfluidic chips [25], have been used. The
third step is to differentiate EBs into neural pro-
genitors. Brain organoid protocols are generally divided
into unguided and guided categories based on this step.
The unguided protocol takes advantage of the property
that EBs differentiate preferentially toward neuro-
ectoderm through intrinsic signals simply by the

absence of exogenous growth factors in the culture
media. The derived cerebral organoids contain tissues
resembling multiple brain regions in an unpredictable
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Figure 1
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Procedures for generation of brain organoids from human pluripotent stem cells. Embryoid bodies (EBs) are formed from hESCs or hiPSCs via re-
aggregation, self-aggregation or engineered approaches. EBs can undergo unguided or guided differentiation with specific morphogens or related ag-
onists/antagonists for patterning into organoids with brain region-specific neural progenitors (NPCs). Organoids then go through a long-term culture in
basal culture media (such as, neurobasal or DMEM/F-12) with additional factors for promoting maturation (such as, ascorbic acids, cAMP, NT3, BDNF,
and GDNF). During this process, dynamic culture devices (e.g. orbital shaker, spinning bioreactor, and microfluidics), and different approaches (e.g.
slicing method, or culturing at air-liquid interface) can be used to enhance the diffusion of oxygen, nutrition, and metabolites of organoids and prevent cell
death. Organoids are analyzed using different approaches to identify their cellular populations, molecular signatures, neural functions, and network
connections. IPC: intermediate progenitor cell.

2 Cellular Neuroscience
fashion, including the cerebral cortex, ventral telen-
cephalon, choroid plexus and retina, and sometimes
non-neural cells [26]. The guided protocol is based on
timed modulation of key morphogen-related signaling
pathways, which generates organoids possessing spe-
cific brain region components with higher
Current Opinion in Neurobiology 2022, 74:102536
reproducibility [3,4]. For both protocols, EBs are
sometimes embedded in the extracellular matrix
(ECM), such as Matrigel, to support morphogen gra-
dients and tissue growth, and promote organization in
organoids. Brain organoids are further cultured to pro-
mote neural differentiation and maturation under
www.sciencedirect.com
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various conditions, such as the slicing method [27], the
aireliquid interface method [28,29], and they can be
transplanted into animals [19e21]. Organoids of
different kinds can also be fused together as “assem-
bloids” to investigate their interactions [6,30]. For
organoid characterization, cellular and molecular iden-
tities are usually investigated with histological, immu-
nocytochemical, and omics methods [31], including

single-cell/bulk RNA-sequencing and ATAC-
sequencing [32], whereas physiological functions and
synaptic connections can be analyzed by calcium im-
aging [33], electrophysiology recording, and rabies
viral tracing.
Patterning of brain region-specific
organoids
Significant progress has been made in generating
different brain region-specific organoids by fine turning
of distinct morphogens mimicking a similar differenti-
ation program as the developing embryonic central
nervous system (CNS) (Figure 2). In general, the “dual-
SMAD inhibition” by simultaneously inhibiting the
bone morphogenic proteins (BMPs) and TGFb path-
ways is used for patterning the neuroectoderm fate.

During normal brain development, retinoic acid (RA),
WNTs, and FGFs cause early caudalization, while their
inhibition promotes rostral differentiation. With appro-
priate gradients, the neuroectoderm further forms the
neural tube and develops along the rostral-caudal axis
into the prosencephalon (or forebrain), mesencephalon
(or midbrain), rhombencephalon (or hindbrain), and
spinal cord. During this process, Sonic hedgehog (SHH)
is critical for ventral region patterning, while BMP and
WNTs are important for dorsal fate patterning.

Forebrain organoids
The forebrain is further segregated into the telen-
cephalon containing the cerebral cortex and basal

ganglia and the diencephalon containing retina, thal-
amus, and hypothalamus. Several protocols have been
developed to pattern brain organoids specifically repre-
senting some of these regions (Figure 2).

The cortical organoid is sometimes termed as dorsal
forebrain organoid as the cerebral cortex is the major
component of the forebrain. The first reported cortical
organoid protocol [34] used TGFb and WNT in-
hibitors for telencephalic fate patterning and produced
tissues with self-organized multilayered ventricular

and neuronal zones that expressed markers for radial
glia cells and neurons of different cortical layers
(CTIP2, TBR1, and SATB2). The Pasca group [3]
used dual-SMAD inhibition and then FGF2/EGF for
expanding ventricular progenitors without the exoge-
nous ECM. Organoids generated using this approach
contain astrocytes and neurons with synapses and
appeared to be more consistent from multiple batches
www.sciencedirect.com
and cell lines [22]. The Ming group [4,35] used dual-
SMAD inhibition, followed by continuous TGFb in-
hibition and WNT activation, then embedding EBs in
Matrigel to promote expansion of ventricular struc-
tures and cortical-specific progenitors. After long-term
culturing with a spinning bioreactor or the slicing
method, they observed well-organized six-layer struc-
tures identified by expression of REELIN, CUX1,

BRN2, SATB2, CTIP2, or TBR1 markers, as well
as a prominent progenitor layer containing human
enriched outer radial cells. One limitation of all these
approaches is the presence of multiple ventricular
structures, which could compromise their applications.
Recent studies reported methods to generate a single
neural tube by geometric constraint [36], or manual
dissection of a single neural rosette [37], although it
remains challenging to reliably maintain the single-
ventricular structure over the long-term.

The ventral forebrain comprises the medial (MGE) and
lateral (LGE) ganglionic eminence, which is patterned
by high SHH and low WNT activity, respectively.
Several protocols generated MGE organoids by acti-
vating the SHH pathway [6,34,38,39]. RNA-sequencing
and immunostaining identified the presence of MGE-
specific neural progenitors and diverse interneurons.
These organoids were fused with cortical organoids to
model interneuron migration, crosseregion interactions,
and brain disorders, such as Timothy syndrome. The
striatum mainly originates from the LGE. Striatal orga-

noids were patterned with TGFb activation (Activin A),
WNT inhibition (IWP-2), and RA activation (SR11237),
leading to expression of LGE-specific and striatal
medium spiny neuron markers [40]. Fused cortico-
striatal assembloids exhibited unidirectional synaptic
connections from excitatory cortical neurons to striatal
GABAergic medium spiny neurons and were used to
model Phelan-McDermid syndrome.

Thalamus and hypothalamus are developed from caudal
and rostral diencephalon, respectively. Thalamic orga-
noids were generated using dual-SMAD inhibitors and

insulin for early caudal neural fate induction, then a
MEK-ERK inhibitor (PD0325901) for antagonizing
excessive caudalization and BMP7 for thalamic fate
patterning [41]. Thalamic identities, including specific
neural and progenitor cell populations, were validated by
scRNA-sequencing. Furthermore, fused thalamic-cortical
organoids exhibited reciprocal axonal projections. Hy-
pothalamic organoids were generated by exposing
hiPSC-derived neuroectoderm to high SHH and WNT
signaling [4], leading to expression of hypothalamic
neural progenitor and peptidergic neuronal markers.
Midbrain and hindbrain organoids
The substantia nigra, a dopaminergic neuron-enriched
region in the midbrain, plays key roles in Parkinson’s
Current Opinion in Neurobiology 2022, 74:102536
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Figure 2
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Patterning of brain region-specific organoids. The ex vivo brain organoids are patterned following similar differentiation programs of distinct brain
regions as in vivo. The developing neural tube is generally patterned into rostral-caudal regions by low to high gradients of RA, WNTs, and FGFs, and into
dorsal-ventral regions by the opposite gradients of BMP/WNTs and SHH. Shown are examples of patterning of different brain region specific organoids by
manipulating specific signaling pathways. SMADi: SMAD inhibitors including BMPi or TGFbi; BMPi: BMP inhibitors including Noggin, LDN-193189, or
Dorsomorphin; TGFbi: TGFb inhibitors including SB-431542 or A-83; WNTi: WNT inhibitors including IWR-1, IWP-2, or XAV-939; Notchi: Notch inhibitor
DAPT; MEK-ERKi: MEK-ERK inhibitor PD0325901; WNTa: WNT activators including WNT3A or CHIR 99021; SHHa: SHH activators including recom-
bined SHH, purmorphamine, or SAG; TGFba: TGFb activator Activin A; RAa: RA activators including RA, SR11237 or Vitamin A.

4 Cellular Neuroscience
disease. At least seven midbrain organoid protocols were
developed by six research groups [4,42e47] (Figure 2).
Neuroectodermal EBs were first induced by dual-SMAD
inhibition together with WNT activation. Some pro-
tocols embed EBs in Matrigel to promote tissue growth
and structural organization [43e45,47]. To pattern EBs
toward the midbrain floor plate, SHH activation and
FGF8 treatment were commonly used [4,42,43,47],
although some protocols showed that FGF8 is not
essential [44e46]. They all reported the presence of
Current Opinion in Neurobiology 2022, 74:102536
dopaminergic neurons with TH or DAT markers and
dopamine synthesis, and some with dopamine receptors.
Further refinement of patterning methods will hopefully
model other midbrain regions, such as the ventral
tegmental area.

The hindbrain comprises the medulla, pons, and cere-
bellum. Cerebellar organoids have been generated using
a TGFb inhibitor, FGF2 and insulin for early cerebellar
neuroepithelium induction [48] (Figure 2). Sequential
www.sciencedirect.com
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addition of FGF19 and SDF1 produces a continuous
polarized neural-tube-like structure that can be further
developed into laminated cerebellar cytoarchitectures
with rhombic lip-like zones. Cerebellar precursors for
Purkinje cells, Golgi cells, granule cells, and DCN pro-
jection neurons were validated by immunostaining.
However, it remains challenging to establish long-term
cultures to generate well-organized neural networks

with lobular morphogenesis. Some other hindbrain
organoids were recently generated by activation of SHH
and RA without pre-SMAD inhibition [49]. Immuno-
staining and qPCR identified several hindbrain markers
(GBX2, 5-HT, CHATand HB9) in a tubular structure at
day 30. Functionality was demonstrated by increased 5-
HT synthesis and TPH2 expression in response to
specific metabolites of gut microbiota at day 85. How-
ever, maintenance of the structural organization and
reproducibility of organoids for long-term cultures
remain challenging, since variability of the 5-HT neuron

proportion increased, and the tubular structure was
missing at day 60. These organoid methods recapitulate
some features of early-stage hindbrain and can be used
for modeling diseases, such as DandyeWalker syn-
drome. Further efforts are needed to generate well-
organized tissues during long-term culturing as well as
to model some other hindbrain regions, such as medulla
and pons.
Spinal cord organoids
The spinal cord bridges the brain and body and is
essential for sensory input and motor output. Its dorsal
and ventral neural development is guided by high
BMP/WNTand SHH signaling, respectively, while the

rostroecaudal fate is patterned by high to low RA gra-
dients. The Takahashi group [50] used TGFb inhibi-
tion combined with bFGF and WNT activation,
followed by continuous RA and BMP4 treatment at the
late stage to generate dorsalized spinal cord-like orga-
noids with enriched dorsal spinal progenitors and four
types of dorsal spinal cord interneurons (Figure 2).
They further generated intermediate and ventral spinal
organoids by removing BMP4 and adding low or high
concentrations of an SHH agonist, respectively.
Another study further demonstrated that the dosage,

timing and duration of BMP4 treatment modulate cell
types and organization in dorsal spinal cord organoids
[51]. However, these methods did not produce
morphologically or functionally mature neurons. A
recent study generated spinal cord organoids by guiding
hiPSCs to a caudal fate with dual-SAMD inhibitors and
a WNT activator in 2D, making EBs with bFGF, and
then replacing bFGF with RA for neural differentiation
and maturation [52]. These organoids recapitulated
many aspects of spinal cord development, and pro-
duced neurons exhibiting mature markers, dendritic

spines, and spontaneous and evoked neural activity
with short-term plasticity.
www.sciencedirect.com
Together, tremendous progress has been made in
generating various brain region-specific organoids and
we expect many more to come in the near future. Most
approaches focus on generating organoids with desired
cell types and diversity, which need to be better
benchmarked with endogenous human cell types not
only at the transcriptome level, but also epitran-
scriptomic [53] and epigenetic levels [54]. More

attention also needs to be devoted to proper cytoarchi-
tectural organization and long-term maintenance.
Patterning of organoids modeling
subregions of the brain
Many brain subregions play critical roles in specific
functions and disorders and organoids with subregion
specificity can lead to a better understanding of their
development, functions and pathologies. The Ming
group showed the first example of organoids (ARCO)
modelling the human arcuate nucleus (hARC) of the
hypothalamus [55], which is essential for transmitting
signals of hunger. The protocol uses dual-SMAD inhi-
bition followed by extended WNT inhibition and triple
SHH activation (SHH, SAG, and purmorphamine)
(Figure 2). Immunostaining showed hypothalamic pro-

genitor markers at day 15 and hARC markers, including
OTP, DLX, TBX3, and POMC, at day 40. scRNA-seq
analysis aided by machine learning showed highly
similar signatures between the native neonatal hARC
and hiPSC-derived ARCOs. Furthermore, PradereWilli
syndrome patient-derived hARC organoids exhibited
molecular, cellular and functional deficiencies.

Two groups recently reported that upregulated RA
signaling is related to mid-fetal stage human prefrontal
cortex (PFC) development [56,57]. Aided by this
knowledge, the Nowakowski group generated cortical

organoids based on a previous protocol [34] and then
added vitamin A starting from day 35. scRNA-
sequencing identified a higher proportion of PFC-like
excitatory neurons in RA-treated organoids, which was
confirmed by histology of SATB2, CTIP2 and AUTS2
co-expression [56]. However, whether RA treatment
could also produce cells of other brain regions, such as
striatal neurons as reported in another study [37], has
not been examined.

Generation of brain subregion-specific organoids is the

next frontier for brain organoid technology and over-
coming limitations of insufficient knowledge on
developmental mechanisms for promoting subregion
identities in humans will be essential for future prog-
ress [56,57].
Engineering multi-region CNS organoids
Another frontier of brain organoid technology is to
generate organoids modeling multiple CNS regions
together. Current methods include unguided cerebral
Current Opinion in Neurobiology 2022, 74:102536
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Figure 3

Engineering of multi-region organoids. (a) Region-specific organoids can be combined to form assembloids, which can exhibit interneuron migration
as well as functional long-range neural connections. (b) Micropatterning on glass slides results in geometric restriction of hiPSC colony growth, which can
result in the formation of complex 3D tissues when combined with media containing matrigel or suspension culture. (c) By controlling the mechanical
properties of the cellular environment, biomaterials can regulate the structural development of organoids. (d) Genetic engineering of cells offers a means
of creating synthetic organizers within organoids that direct cell differentiation through the release of different morphogens. (e) Microfluidic devices can
deliver spatial gradients of cellular morphogens or small molecules, thereby regionally patterning cells toward different fates.
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organoids [26] and assembloids from fusion of indi-
vidually patterned organoids of different CNS regions
[30] (Figure 3a). However, the unguided nature of

cerebral organoid generation leads to significant vari-
ability, whereas the lack of smooth continuums and
structural intermediaries in assembloids can potentially
yield inconsistent or spurious neural connections be-
tween different regions. To address these shortcom-
ings, engineering solutions leveraging recent work in
the fields of biomaterials, microfluidics and synthetic
biology are increasingly being utilized [58e60].

Bioengineering approaches are uniquely suited for
mimicking the complex array of biophysical cues [61,62]

and morphogens [63,64] involved in regulating the
developing CNS. A recent study used a combination of
glass micropatterning of hiPSC cultures to spatially
confine their growth with a 4% Matrigel environment to
enable the formation of 3D cellular structures
Current Opinion in Neurobiology 2022, 74:102536
(Figure 3b). By adding BMP4 to the media, Karzbrun
et al. [36] were able to induce folding of the basal tissue
into a 3D structure reminiscent of the neural tube,

containing PAX6þ neural tissue organized around a
single lumen and surrounded by an outer layer of ecto-
dermal tissue. This microengineered system could
generate a variety of tissue types, including 3D struc-
tures containing a dorsal-ventral (D-V) axis. In another
approach, D-V patterning can emerge in a subset of both
murine [65] and human [66] neural-tube organoids by
precisely tuning the stiffness of hydrogel matrices for
encapsulation (Figure 3c). Furthermore, Cederquist
et al. [67] demonstrated a genetic engineering approach
for D-V patterning by using small aggregates of stem cells

with inducible SHH expression positioned at a single
pole of their forebrain organoids to create a spatial
gradient of SHH signaling, allowing ventral forebrain
fates to emerge close to the induced signaling center and
more dorsal forebrain regions able to develop toward to
www.sciencedirect.com
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the opposite pole [67] (Figure 3d). Finally, microfluidic
devices can be used for D-V patterning by delivering
opposing spatial gradients of SHH and BMP4/7 for
mouse ESCs embedded inMatrigel/Geltrex [68], akin to
what occurs in vivo (Figure 3e).

Microfluidic devices have also been developed to reca-
pitulate patterning of the neural tube and spinal cord

along the anterior-posterior (A-P) axis (Figure 3e). Rifes
et al. [69] developed a device that exposes a 2D layer of
hESCs to a linear gradient of glycogen synthase kinase 3
inhibitor (GSK3i) to pattern an A-P axis [69]. This
cellular monolayer expands to become around 100 mm in
thickness over 2 weeks as cells differentiate into
continuously distributed forebrain, midbrain or hind-
brain progenitors as a function of their position along the
GSK3i gradient [69]. Critically, the tissue contains an
isthmic organizer between the midbrain and hindbrain
boundaries, a group of cells that produce soluble factors

that further instruct regional brain development in the
neural tube [69e72]. The lack of isthmic organizers in
single-cell transcriptomic data from cerebral organoids
[69] highlights the strength of their microfluidic system
to deterministically and spatially pattern cells along a
smooth continuum. An analogous microfluidic gradient
approach also successfully patterned hiPSCs along the
A-P axis of the spinal cord to generate diverse types of
motor neurons [73].

Moving forward, one challenge for these engineering

approaches is to extend the time over which they can be
applied, as brain organoid development often occurs
over the course of many months. Seo et al. [74] com-
bined initial micropatterning of stem cell cultures with
subsequent suspension culture in order to form elon-
gated spinal cord organoids with D-V-like features. In
addition, methods for dynamically altering the compo-
sition or release of soluble factors from biomaterials [59]
as well as synthetic biology strategies for creating
improved signaling centers via gene circuits that
autonomously regulate cellular aggregation [75] could
prove to be invaluable for long-term organoid culture.

These and future methods could potentially yield
forebrain organoids containing both prefrontal and
motor cortex regions, whole-brain organoids with fore-
brain, midbrain and hindbrain, and hypothalamic orga-
noids with various nuclei.
Limitations and future directions
The last decade has witnessed the tremendous progress
of brain organoid technologies. Starting from hESCs or
hiPSCs, researchers could nowmodel thedevelopment or
disorders of diverse brain regions and subregions. Many
key features of thedevelopmental humanbrain, including
the molecular signatures, cellular composition and func-
tions, structural organization, and crosseregion interac-
tion have been recapitulated by organoids. Despite
www.sciencedirect.com
significant advances, it should be emphasized that orga-
noid technology is still an emerging discipline and has
various limitations. For example, lack of arealization
and limited tissue organization hampered the study of
crosseregion interactions and functions in organoids.
High variability complicates preclinical studies and
interpretation of phenotypes. Besides, organoids only
model a limited timewindow of early development stages

and produce limited cell types and atypical physiology
[76,77]. All these features have compromised certain
applications of brain organoids.

With a clear understanding of these limitations, im-
provements are needed to fully realize the potential of
brain organoid technologies. On a micro scale, orches-
trating types, timing and gradients of morphogens can
help generate more specific subregion organoids. On a
macro scale, brain organoids with appropriately organized
multiple regions and cell populations can be created by

controlling spatial gradients of patterning factors to
model crosseregion interactions and network genesis.
Most organoid protocols were unable to maintain well-
organized 3D architectures over the long-term. This
could also be improved via maintaining proper and dy-
namic gradients of morphogens and proper extracellular
matrix during long-term cultivation. The reproducibility
of organoids in regards to the size, structures, and cellular
composition remains challenging. Standardizing control-
lable culture conditions, like starting cell number, orga-
noid density, and media change frequency, will help to

reduce batch-to-batch variabilities. Cultivation with
defined hydrogel or ECM-free approaches could also
reduce the variability caused by batch effects of the
Matrigel. Robust protocols require validation with mul-
tiple cell lines and batches across laboratories. Current
brain organoids mostly lack several cell types of the
developing brain, such as microglia and endothelial cells,
which can be reconstructed by co-culture. Lastly, current
brain organoids mainly recapitulate early embryonic
stages and future developments are needed to extend
this model into later developmental stages with forma-
tion of functional neuronal circuits and columns as seen

in the human brain. Within the next few years, we will
have an increased array of brain organoids for the field to
investigate basic biology of human brain development, to
model various developmental brain disorders, and to test
therapeutic treatments. Along with such rapid advances,
ethical issues need to be considered and frequently
updated [78].
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