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Abstract This article presents a three-dimensional ana-

lytical model to investigate cross-stream diffusion transport

in rectangular microchannels with arbitrary aspect ratios

under pressure-driven flow. The Fourier series solution to

the three-dimensional convection–diffusion equation is

obtained using a double integral transformation method

and associated eigensystem calculation. A phase diagram

derived from the dimensional analysis is presented to

thoroughly interrogate the characteristics in various trans-

port regimes and examine the validity of the model. The

analytical model is verified against both experimental and

numerical models in terms of the concentration profile,

diffusion scaling law, and mixing efficiency with excellent

agreement (with \0.5% relative error). Quantitative com-

parison against other prior analytical models in extensive

parameter space is also performed, which demonstrates that

the present model accommodates much broader transport

regimes with significantly enhanced applicability.

Keywords Cross-stream diffusion � Mixing �
Microfluidics � Pressure-driven flow

1 Introduction

Lab-on-a-chip systems hold great promise for a variety of

applications in biology, medicine, and chemistry (Aurouz

et al. 2002; Reyes et al. 2002; Whitesides 2006). In

microfluidic applications, the utilization of the cross-stream

diffusion under laminar flow for precise analyte handling

plays an essential role in numerous chemical and biological

assays such as sample preparation (mixing and separation)

(Hatch et al. 2004), concentration gradient generation

(Dertinger et al. 2001; Jeon et al. 2000), and molecular

interactions (Hatch et al. 2004). In contrast to macro-scale

devices, the cross-stream diffusion in the low-Reynolds

microchannel flows is governed by molecular diffusion-

dominant transport at the interface between the two fluidic

streams. The non-uniform velocity profile along the cross-

section of the microchannel under the pressure-driven flow

results in unique species transport phenomena including

Taylor dispersion (Beard 2001a, b; Dorfman and Brenner

2001; Lam et al. 2005), heterogeneous transport rate, and

position-dependent diffusion scaling law (Ayodele et al.

2009; Ismagilov et al. 2000; Kamholz and Yager 2001,

2002; Salmon and Ajdari 2007), which have been actively

investigated by several researchers.

The non-uniform velocity profile induces a substantial

difference in the residence time of the analyte at different

positions and gives rise to a unique butterfly shaped con-

centration profile (termed ‘‘butterfly effect’’) along the

cross-section, which was first observed by Kamholz et al.

(1999). By using the confocal fluorescent microscopy,

Ismagilov et al. (2000) found that the diffusion broadening

region near the top and bottom walls of the channel is

significantly wider than that at the half-depth of the chan-

nel, and the thickness of the diffusion zone scales as one-

third power of (zH2/Pe) at the walls and as one-half power

of (zH/Pe) at the half-depth plane, where H is the channel

depth/height, z is the axial distance from the channel inlet,

and Pe is the Péclet number defined using H. Subsequently,

Kamholz and Yager (2001, 2002) presented optical mea-

surement and theoretical analysis to investigate transverse

molecular diffusion in microchannels and found similar

diffusion scaling law. Chen et al. (2006) used conventional
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microscopy to measure the mixing efficiency along the

channel, which also scales as a power law of the ratio of the

normalized downstream distance to the average flow

velocity. As a non-invasive technique, magnetic resonance

imaging (MRI) has also been used to visualize the cross-

stream diffusion. The cross-sectional velocity and analyte

concentration profile were captured, which clearly showed

a butterfly effect (Akpa et al. 2007; Sullivan et al. 2007).

In parallel, modeling and simulation analysis (both

numerical and analytical) have been actively pursued by

numerous researchers to enable a fully resolved view of the

unique transport behavior observed in the experiments.

Numerical methods such as finite difference method

(Kamholz and Yager 2001; Salmon and Ajdari 2007), finite

element method (Beard 2001), the method of lines (Chen

et al. 2006), and lattice Boltzmann (LB) method (Ayodele

et al. 2009; Sullivan et al. 2007) have been utilized to

quantitatively describe the analyte concentration profile in

rectangular microchannels with arbitrary aspect ratios.

However, numerical simulation inherently suffers from two

limitations. First, it is difficult to provide direct, physical

insight into the underlying diffusion transport mechanism.

Large amount of reliable data are necessary to deduce and

generalize the governing law (Ayodele et al. 2009). In

addition, numerical diffusion (or called pseudo-diffusion)

caused by the discretization of the governing equations

induces an additional, artificial broadening of the diffusion

zone leading to error in the analysis, which becomes more

appreciable at high Péclet number regime (e.g., low values

of diffusion coefficients and fast flow velocity). This can be

even exacerbated in the scaling law analysis, where the

scaling coefficient is susceptible to the diffusion flux and

the computational meshes. One way to alleviate the issue

of the numerical diffusion is to employ very fine meshes

for the simulation, which can be prohibitively expensive

for acquiring the large, representative data pool as dis-

cussed above.

In this context, several analytical models have been

developed to address the aforementioned limitations.

However, the non-uniform axial velocity profile in the 3D

convection–diffusion equation poses a formidable chal-

lenge to deriving an analytical solution. Therefore, several

assumptions have been made in prior analytical models,

including (1) the aspect ratio of the channel has to be large

(i.e., flat, slit-like channels) and (2) the depth-wise diffu-

sion is assumed to be negligible (i.e., depth-wise concen-

tration distribution is assumed to be uniform). For instance,

by replacing the non-uniform velocity profile with the

average flow velocity and neglecting the terms associated

with axial and depth-wise diffusion, an analytical model

was obtained (Holden et al. 2003; Wang et al. 2006, 2007)

to predict analyte concentration profile in the 2D domain

(width-wise and axial). Wu et al. (2004) improved this

solution by incorporating axial diffusion. To take into

account the Taylor dispersion resulting from the non-uni-

form velocity profile, an improved model was developed

using two different approaches, the direct incorporation of

the effective Taylor-dispersion coefficient along the axial

direction (Beard 2001a, b; Dorfman and Brenner 2001) and

the depth-wise averaging method (Lam et al. 2005). These

models share several common limitations, such as only

applicable to microchannels with large aspect ratios and

only able to provide 2D concentration map, which mark-

edly limit their utility.

We present an analytical model to investigate the cross-

stream diffusion in rectangular microchannels with

arbitrary aspect ratios under pressure-driven flow. The

three-dimensional steady-state convection–diffusion equa-

tion is solved in terms of a Fourier series. Based on a

double integral transformation (de Almeida et al. 2008;

Moreira et al. 2005; Wortmann et al. 2005) of the gov-

erning equation, the Fourier coefficients are obtained ana-

lytically via eigensystem calculation. A phase diagram

attained from the dimensional analysis is also presented to

thoroughly interrogate the characteristics of various trans-

port regimes and the validity of the present and prior

analytical models. The present analytical model is exten-

sively verified against experimental data extracted from the

literature and quantitatively compared against high-fidelity

numerical analysis and other analytical models in very

broad parameter space within the phase diagram. The

present model enables fully resolved, three-dimensional

insight into the unique transport behavior of the cross-

stream diffusion (e.g., position-dependent scaling law and

the heterogeneous transport rate) in microchannels with

arbitrary aspect ratios, and is thus well-suited for the design

of microfluidic assays based on analyte concentration

manipulation (Keenan and Folch 2008).

The article is organized as follows. The model formu-

lation including the description of the governing equations,

the double integral transformation method, and eigensys-

tem calculation is first described in Sect. 2. Next, the

dimensional analysis and phase diagram analysis encom-

passing various transport regimes is presented to examine

the validity of present and prior analytical models (Sect. 3).

The present analytical model is compared against experi-

mental data, numerical analysis, as well as other analytical

models in Sect. 4. The article concludes with a summary of

the scientific findings and insights gained from the mod-

eling and simulation study (Sect. 5).

2 Model formulation and solution

In this section, we present the governing equations and

analytical solution to the cross-stream diffusion under
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pressure-driven flow. Figure 1 illustrates the coordinates

for a Y-shaped microchannel with a rectangular cross-

section used in this study. The microchannel has two inlet

channels and a main diffusion channel for analyte supply

and cross-stream diffusion, respectively. The present

modeling focuses on the species transport of the analyte in

the main diffusion channel. x, y, and z denote the channel’s

cross-stream, depth-wise, and axial coordinates, respec-

tively. The coordinate origin is located at the center of the

plane, where the inlet channels and the main channel

merge. The length, width, and height of the main channel

are L, W, and H, respectively.

Assumptions are made to simplify the present analytical

model development, including:

(1) The flow in the Y-shaped microchannel is steady state

and laminar.

(2) The length of the channel is significantly larger than its

width and height (i.e., L � W and L � H). Note that in

distinctly contrast to prior models, no constraint is

imposed of the relative magnitude of W and H in the

present model. The flow entry effect after the merging

junction is not taken into account as its length is

negligible compared to the main channel length.

(3) Convective mass transport in the axial direction

dominates over the axial diffusion. The latter is

neglected in the present model.

(4) Streams from both inlets are symmetric (i.e., the same

cross-sectional shape, area, and flow rate) and have

the identical, constant physical properties (e.g., den-

sity and viscosity independent of the analyte

concentration).

(5) The gravitational effect is neglected.

Based on these assumptions, the laminar flow in the

main channel is governed by the steady-state Naviér–

Stokes equation:

lr2u� dP

dz
¼ 0; ð1Þ

where u is the axial flow velocity, P is the pressure, and l is

the dynamic viscosity of the buffer. For fully developed flow

in a rectangular channel, the velocity profile u along the

z-axis can be obtained analytically (Stroock and

McGraw 2004):

uðx; yÞ ¼
"
ð1� 4ðy=HÞ2Þ þ 4

X1
s¼1

� ð�1Þs

e3
s coshðesW=HÞ coshð2esx=HÞ cosð2esy=HÞ

#
u0

ð2Þ

where es ¼ pð2s� 1Þ=2 and u0 is the maximum axial

velocity (e.g., velocity at the center), which can be

expressed as u0 = jUavg. Here, Uavg is the average axial

velocity and

j¼WH

, ZW=2

�W=2

ZH=2

�H=2

"
ð1� 4ðy=HÞ2Þ

þ 4
X1
s¼1

ð�1Þs

e3
s coshðesW=HÞcoshð2esx=HÞcosð2esy=HÞ

#
dxdy

is the ratio of the maximum velocity to the average

velocity.

The analyte species transport can be described by the

steady-state convection–diffusion equation, which is given

by

u
oc

oz
¼ D

o2c

ox2
þ o2c

oy2
þ o2c

oz2

� �
; ð3Þ

where c is the analyte concentration, u is the flow velocity

obtained from Eq. 2, and D is the diffusivity. The above

equation is subject to the following boundary conditions

for cross-stream diffusion:

oc
ox

��
x¼�W=2

¼ 0

cjz¼0 ¼ c0 ¼
0 �W=2� x\0

C0 0� x�W=2
; oc

oz

��
z¼L
¼ 0

�
oc
oy

���
y¼�H=2

¼ 0

8>>>><
>>>>:

ð4Þ
Fig. 1 Geometry of the Y-shaped microchannel and the coordinate

system definition. The coordinate origin is located at the center of the

plane where the inlet channels and the main channel merge
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where c0 is the initial analyte concentration at the merging

junction (z = 0).

By defining ~c ¼ c=C0; ~x ¼ x=W ; ~y ¼ y=H; and ~z ¼ z=L;

Eq. 3 can be normalized as:

Uð~x; ~yÞ o~c

o~z
¼ l

Pe

o2~c

o~x2
þ lc2

Pe

o2~c

o~y2
þ 1

Pe � l
o2~c

o~z2
ð5Þ

where Pe ¼ WUavg=D is the Péclet number defined using

the cross-sectional average velocity Uavg and the channel

width W; c ¼ W=H and l ¼ L=W are, respectively, the

aspect ratio and the length-to-depth ratio of the channel; and

Uð~x; ~yÞ ¼ u=Uavg is the non-dimensional axial velocity.

Similarly, the corresponding boundary conditions are

rewritten as

o~c
o~x

��
~x¼�1=2

¼ 0

~cj~z¼0 ¼ ~c0 ¼
0 �1=2� ~x\0

1 0� ~x� 1=2

�
;

o~c
o~y

���
~y¼�1=2

¼ 0

8>>>><
>>>>:

o~c
o~z

��
~z¼1
¼ 0 ð6Þ

Normally in microfluidic systems, Pe � l� 1; hence the

axial diffusion term o2~c
o~z2 is negligible (the third assumption

above) and Eq. 5 is reduced to

Uð~x; ~yÞ o~c

o~z
¼ l

Pe

o2~c

o~x2
þ lc2

Pe

o2~c

o~y2
ð7Þ

To solve this equation, the method of the double integral

transformation is used. We first assume the solution of the

dimensionless concentration ~c takes the form of a Fourier

series expansion of normalized eigenfunctions /mð~xÞ and

unð~yÞ:

~c ¼
X1
m¼0

X1
n¼0

Cmnð~zÞ/mð~xÞunð~yÞ ð8Þ

The eigenfunctions and related eigenvalues can be

structured from Sturm–Liouville auxiliary problems

satisfying the related boundary conditions:

d2/mð~xÞ
d~x2 þ a2

m/mð~xÞ ¼ 0
d/mð~xÞ

d~x

���
~x¼�1=2

¼ 0

8<
: and

d2unð~yÞ
d~y2 þ b2

nunð~yÞ ¼ 0

dunð~yÞ
d~y

���
~y¼�1=2

¼ 0

8<
:

ð9Þ

By solving Eq. 9, we obtain

/mð~xÞ ¼ cosðamð~xþ 1=2ÞÞ=Nm

am ¼ mp; m ¼ 0; 1; 2; . . .

�
and

unð~yÞ ¼ cosðbnð~yþ 1=2ÞÞ=Nn

bn ¼ np; n ¼ 0; 1; 2; . . .

� ð10Þ

where Nm ¼
R 1=2

�1=2
/2

mð~xÞd~x and Nn ¼
R 1=2

�1=2
/2

nð~yÞd~y: We

then substitute the Fourier series of the concentration (i.e.,

Eq. 8 into Eq. 7) and apply an integral transformation

operator
R 1=2

�1=2

R 1=2

�1=2
/ið~xÞujð~yÞd~xd~y: Taking advantage of

the orthogonal properties of the eigenfunctions, we obtain

an infinite system for the coefficients Cmnð~zÞX1
m¼0

X1
n¼0

dCmnð~zÞ
d~z

Mmnij ¼ RijCijð~zÞ; ð11Þ

where Mmnij ¼
R 1=2

�1=2

R 1=2

�1=2
Uð~x; ~yÞ/mð~xÞ/ið~xÞunð~yÞujð~yÞd~x

d~y (see Appendix for detail) and Rij ¼ � l
Pe ða2

i þ c2b2
j Þ: It

is convenient to rewrite Eq. 11 in a single sum form (by

replacing m, n with k and i, j with q)

X1
k¼0

dCkð~zÞ
d~z

Mkq ¼ RqCqð~zÞ; q ¼ 0; 1; 2; . . . ð12Þ

Using the compact matrix expression, Eq. 12 is given by

C0ð~zÞ½ � ¼ Q½ � Cð~zÞ½ � ð13Þ

where [Q] = [M]-1[R]. The analytical solution of Eq. 13

can be found as

Cð~zÞ½ � ¼ Cð0Þ½ � � e Q½ �~z ð14Þ

The values of C[0] is obtained by applying the integral

transformation to the initial boundary condition ~cj~z¼0 ¼ ~c0:

On determining the eigenvalues and eigenvectors of matrix

[Q], the solution in Eq. 14 in the decoupled form is

Cð~zÞ½ � ¼ Cð0Þ½ � � V½ ��1
e D½ �~z V½ � ð15Þ

where [V] is the eigenvector matrix and [D] is the diagonal

eigenvalue matrix, which satisfies [V][Q][V]-1 = [D].

3 Phase diagram study and other analytical models

Next, we will present a phase diagram obtained from

dimensional analysis to analyze various transport regimes

in the cross-stream diffusion and examine the validity

and applicability of the present and prior analytical

models.

The first analytical model (termed Model A) for

microfluidic cross-stream diffusion assumes that the mi-

crochannel is slit-like with large aspect ratio c (Holden

et al. 2003; Wang et al. 2006). The non-uniform velocity

profile is replaced with an average velocity Uavg, and the

axial and depth-wise diffusion is neglected in the govern-

ing transport equation

o~c

o~z
¼ l

Pe

o2~c

o~x2
ð16Þ

By applying the pertinent boundary conditions, the

solution can be obtained by
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~cð~x; ~zÞ ¼ 1

2
� 2

p

X1
m¼1

sinðmp=2Þ
m

cosðmpð~xþ 1=2ÞÞe�lp2m2~z
Pe

ð17Þ

The second model (termed Model B) seeks to improve

Model A by incorporating axial diffusion in the governing

equation (Wu et al. 2004)

o~c

o~z
¼ l

Pe

o2~c

o~x2
þ 1

Pe � l
o2~c

o~z2
ð18Þ

The corresponding solution is

~cð~x; ~zÞ ¼ 1

2
� 2

p

X1
m¼1

sinðmp=2Þ
m

� cosðmpð~xþ 1=2ÞÞ e
k2z � ðk2=k1Þeðk2�k1Þþk1z

1� ðk2=k1Þeðk2�k1Þ

ð19Þ

where k1;2 ¼ Pe�l
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe�l

2

� �2þl2m2p2

q
:

The third model (termed Model C) (Beard 2001; Lam

et al. 2005) considers both axial diffusion and the non-

uniform velocity profile along the axial direction subject to

the constraints of large aspect ratios and neglecting depth-

wise diffusion, i.e.,

o~c

o~z
¼ l

Pe

o2~c

o~x2
þ 1

Pe � l
Deff

D

o2~c

o~z2

Deff ¼ Dþ Ddisp and Ddisp ¼ D
Pe2

210c2

ð20Þ

where Deff is the effective diffusivity (or dispersion

coefficient) due to the axial molecular diffusion and the

Taylor dispersion.1 The solution of Eq. 20 is the same as

that in Eq. 19 except that k1,2 is modified as2:

k1;2 ¼
Pe � l

2

D

Deff

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe � l

2

D

Deff

� �2

þ D

Deff

l2m2p2

s
ð21Þ

Table 1 summarizes the assumptions and valid regimes

in the aforementioned analytical models. It shows that all

prior models (Models A–C) assume large aspect ratio of

the microchannel (c� 1; the second column in Table 1).

Under this circumstance, the depth-wise diffusion is

sufficiently rapid that the concentration differences do not

persist across the depth direction, and hence, the depth-

wise diffusion can be neglected (i.e., the third column in

Table 1). Thus, it is possible to replace the full set of 3D

equations by depth-averaged equations. In Model A and

Model B, the non-uniformity in the axial velocity profile is

also neglected; hence it is unable to consider the effect of

Taylor dispersion (the fifth column in Table 1). In contrast,

the present model only neglects the axial diffusion in the

species transport (the fourth column in Table 1). As we

will show below that this assumption is valid in almost all

of the microfluidic channels for cross-stream diffusion,

although a complete solution including axial diffusion can

also be pursued using the integral transformation approach

at the cost of more complex model developments.

A phase diagram of the species transport in the diffusion

microchannel is illustrated in Fig. 2, its horizontal and

vertical axes, respectively, denote the aspect ratio of the

channel and the Péclet number. The boundaries between

the transport regions in the diagram are then derived from

the assumptions used in the individual models. In the

dimensional analysis below the term ‘‘sufficiently larger

�’’ and ‘‘sufficiently smaller 	’’, respectively, represent

at least eight times larger or eight times smaller.

3.1 Axial diffusion is negligible

This assumption is made by Model A and the present

model. By comparing the axial diffusion term (i.e., the

third term in RHS of Eq. 5) and the convection term (i.e.,

the LHS of Eq. 5), it indicates that the criterion to ignore

the former is Pe� 1=l: In the practical case of cross-

stream diffusion, the diffusivity of the species is expected

to be in the range of D
 10�11 � 10�9 m2=s, the channel

width W 
 10�5 � 10�3 m, and the average velocity

Uave
 10�4 � 10�1 m=s, yielding a Péclet number of

Pe� 1; which is sufficiently larger than 1=l for a micro-

channel (i.e., L � W in the second assumption in the

previous section). Note that the extreme case involving

even larger diffusivity, smaller channel width, and slower

flow is of little value for practical microfluidic applications

involving cross-stream diffusion (as the analyte will diffuse

instantaneously to yield a uniform concentration profile). In

the phase diagram, Pe� 1=l is a straight line ðPe ¼ 8=lÞ
parallel to and adjacent to the horizontal axis (i.e., the bold

straight line at the bottom of Fig. 2). Therefore, the present

model is applicable to both Region (i) and Region (ii)

above the line of Pe ¼ 8=l; which encompasses almost the

entire domain in the diagram.

3.2 Large aspect ratio (flat channel)

The large aspect ratio is used in all Models A–C (except for

the present model), yielding c = W/H � 1, which is a

vertical straight line. In Fig. 2, c = 8 is used and deemed

‘‘sufficiently’’ large.

1 In Beard’s paper (2001a), the expression of effective diffusivity is

incorrect. See detailed discussion in Dorfman and Brenner (2001) and

response by Beard (2001b).
2 In Lam’s paper (2005), the expression form of k1;2 is incorrect.
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3.3 Depth-wise diffusion is negligible

Likewise, the depth-wise diffusion is neglected in the other

three models (except for the present model). The valid

condition for this assumption is that the time required for

the analyte species to diffuse across the channel depth is

sufficiently less than that for width-wise diffusion and axial

convection, i.e., H2/D 	 W2/D and H2/D 	 L/Uavg, which

means that the depth-wise diffusion is much more rapid

than the width-wise diffusion and axial convection. The

former is spontaneously satisfied for Models A–C as they

all assume large aspect ratio of the channel (see above),

and the latter gives Pe	 lc2 covering the regions to the

right of the parabolic curve defined by Pe� lc2=8 in Fig. 2.

Hence, Region (ii) is the valid region for all Models A–C,

while Model B and Model C also accommodate the thin

Region (iii) as they are able to account for the axial dif-

fusion (see discussion above).

3.4 Non-uniform velocity profile is negligible

The non-uniform velocity profile introduces an additional

axial dispersion term (i.e., Taylor dispersion represented by

Ddisp in Eq. 20) in the transport equation as opposed to

Eq. 18 ignoring the non-uniformity. Therefore, by com-

paring the axial Taylor dispersion and the convection term

in Eq. 20, we can obtain the criterion of neglecting the non-

uniformity in the velocity profile in the species transport:

Pe	 210lc2 or Pe� 210lc2=8: This constraint will be

spontaneously satisfied if the assumption for neglecting the

depth-wise diffusion is valid which imposes a more rig-

orous constraint (i.e., Pe� lc2=8). Therefore, Taylor dis-

persion is negligible in the other three models in which the

depth-wise diffusion is not taken into account.3

The phase diagram study indicates that in contrast to

other analytical Models A–C, the present solution is

applicable to broader transport regimes of microfluidic

cross-stream diffusion (including the entire Region (i) in

Fig. 2 that is unavailable to the existing models) by

employing minimal, practically relevant assumptions,

relaxing the constraints of the large aspect ratio, and con-

sidering the depth-wise diffusion.

4 Results and discussion

In this section, the analytical model will be validated

against experimental data extracted from the literature in

terms of the transverse concentration profile, diffusion

scaling law, and the mixing efficiency, followed by quan-

titative comparison with high-fidelity numerical analysis

and other analytical models in very broad parameter space

Table 1 Summary of the assumptions and physical regions in various analytical models

Models Large aspect

ratio/flat

Neglect depth-

wise diffusion

Neglect axial

diffusion

Neglect non-uniformity

velocity profile

Valid regimes

Present model H (i), (ii)

Model A H H H H (ii)

Model B H H H (ii)

Model C H H (ii), (iii)

Fig. 2 Phase diagram of cross-stream diffusion-based species trans-

port in microchannels. Three regions—(i), (ii), and (iii)—were

defined to establish the validity of the various analytical models:

Region (i) corresponds to cases where the aspect ratio is low or

modest and concentration differences can persist across the depth

direction, Region (ii) corresponds to cases where the aspect ratio is

large and where concentration differences do not persist across the

depth direction (owing to rapid depth-wise diffusion), and Region (iii)

corresponds to where the axial diffusion is not negligible. A

parametric analysis was performed using the data points denoted by

the stars and circles, which will be used for the discussion in

Sect. 4.2.2

3 It should be pointed out the analytical solution in Lam et al. (2005)

is erroneous, which overestimates the contribution from the Taylor

dispersion by more than 3%. By rectifying their solution, the Taylor

dispersion is marginal (much less than 1%) in the species transport,

which agrees with our dimensional analysis herein.
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to investigate the non-uniform, depth-wise transport

behavior, and model applicability within the phase dia-

gram. To obtain accurate results for comparison, 60 terms

in the Fourier series along both ~x and ~y direction in the

present analytical model (Eq. 8) are used. Likewise 60

terms are used in other analytical models (Models A–C) in

Eqs. 17, 19, and 21.

The high-fidelity numerical simulation is performed

with the commercial finite volume-based simulation soft-

ware CFD-ACE? (ESI-CFD, Inc.). The computational

domain is meshed by a block-structured grid using the

preprocessor available within CFD-ACE?. The software

solves the 3D Naviér–Stokes equations for incompressible

fluid flow for the flow velocity and the convection–diffu-

sion equation for the analyte concentration in the micro-

fluidic channels, respectively. The CFD-ACE? solver uses

the SIMPLEC algorithm for pressure–velocity coupling. A

second order scheme is used for spatial discretization to

obtain the analyte distribution. A grid-dependence check

for the numerical simulation was undertaken by refining

the computational mesh, and all the numerical results

presented in this article converge to an accuracy level of

\0.1% between two grid settings.

4.1 Model validation against experimental data

We first compare the present analytical model results with

the 3D experimental data obtained by MRI measurements

(Sullivan et al. 2007) in terms of the cross-sectional con-

centration distribution at various axial locations in the

Y-shaped microchannel. The Y-shaped microchannel in the

experiment has a length of 1.5 cm, a width of 500 lm, and

a depth of 250 lm high (i.e., the aspect ratio c ¼ 2). The

diffusivity of the analyte (Mn2?) is 1.6 9 10-9 m2/s and

the average axial velocity is 1.1 mm/s yielding a Péclet

number *350.

Figure 3 shows the concentration distribution of the

analyte within the microchannel obtained using the present

analytical model. The top trace shows the concentration

profile at the half-depth plane from a top view, and the

bottom trace illustrates the cross-sectional profiles at three

downstream locations from the merging junction (i.e.,

~z ¼ 0:1; 0:55; 1). We can see that the concentration dis-

tribution is not uniform along the channel depth, and the

transverse diffusion near the top and bottom walls is faster

than that at the half-depth of the channel, exhibiting

the well-known ‘‘butterfly effect’’ on the cross-section

(Ismagilov et al. 2000; Kamholz and Yager 2001, 2002;

Kamholz et al. 1999). As discussed above, this is caused by

the longer residence time of the analyte molecules close to

the wall relative to those at the central region due to the

non-uniform velocity profile. It should be pointed out that

to the best of our knowledge; it is the first time that the

‘‘butterfly effect’’ is captured by an analytical model.

Figure 4 depicts the quantitative comparison of the

present analytical model results against the experimental

data and LB simulation results (Sullivan et al. 2007) in

terms of the depth-averaged, transverse concentration

profile at two axial positions, respectively, ~z ¼ 0:33 and

0.78 from the merging junction. Details about data pro-

cessing and averaging are given in Sullivan et al. (2007).

The present analytical results agree very well with both the

experimental observation and LB simulation.

Fig. 3 The concentration

distribution of the half-height

plane (from top view), and the

cross-sectional concentration

distribution at different ~z
locations. The heterogeneous

transport behavior in the depth-

wise direction and the resulting

‘‘butterfly effect’’ in the

microchannels is captured by

the present model

Fig. 4 Comparison of the depth-averaged transverse concentration

profile between the present analytical model and the experimental

data and the lattice Boltzmann (LB) simulation data extracted from

Sullivan et al. (2007)
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Next the present analytical model is used to investigate

the diffusion scaling law in a microchannel. The scaling

law states that the thickness d of the interfacial diffusion

layer between the streams is proportional to a power law of

the ratio of the axial distance to the average flow velocity,

i.e., d
ðz=UavgÞn: Similar to the experiments in Ismagilov

et al. (2000), transport behavior of the Ca? with a diffu-

sivity of D = 1.2 9 10-9 m2/s (yielding Pe = 10,000

when Uavg = 0.08 m/s) in the Y-shaped microchannel

(160 lm wide and 105 lm deep, yielding an aspect ratio of

c = 1.524) was analyzed using the present model. d is

defined as the transverse (along x direction) distance at

which the concentration is reduced to 20% of the maximum

value at the inlet. Figure 5 shows the analytical results of

diffusion scaling law at the channel wall (|y/H| = 1/2) and

at the half-depth plane (y/H = 0), in which the symbols

and the lines, respectively, denote the modeling results and

the fitted lines. Figure 5a delineates the scaling relationship

between d and the downstream distance z. Based on the

slope of the fitted line, it is found that the diffusion

thickness d scales as the 1/3 power (n = 0.3433 obtained

from the fitted line) of the axial distance z at the top and

bottom wall, and 1/2 power (n = 0.4941 from the fitted

line) at the half-depth plane. Likewise, Fig. 5b depicts that

d scales as -1/3 power (n = -0.3372) and -1/2 power

(n = -0.4934) of the average axial velocity Uavg, respec-

tively, at the top and bottom wall and at the half-depth

plane of the channel. The present analytical results agree

with the experimental (Ismagilov et al. 2000) and theo-

retical analysis (Ayodele et al. 2009), which indicates that

1/2 and 1/3 power laws arise from the zero velocity gra-

dient at the half-depth plane and the linearized velocity

profile at the wall, respectively. We also noted that the

measured d in Ismagilov et al. (2000) is larger than the

present analytical results (*50%). Salmon and Adjari

(2007) also found a similar deviation when comparing their

numerical simulation against experimental data in Ismag-

ilov et al. (2000) which they attributed to the chemical

reaction between the fluorescence (fluo-3) and CaCl2 that

varies the local diffusion transport of Ca2?. In addition, the

present analytical values of d in Fig. 5 match very well the

numerical simulation results without chemical reaction in

Salmon and Adjari (2007), which verifies the present

analytical model.

Finally, we compared the present analytical results with

the experimental data of the mixing efficiency in Chen

et al. (2006) obtained from conventional microscopy. The

mixing microchannel is 500 lm wide and 500 lm high

(i.e., aspect ratio w = 1). In their experiments, two separate

fluid streams were injected into the channel. One fluid

contained phenolphthalein (C6H4COOC(C6H4-4-OH)2)

dissolved in 99% alcohol, with a concentration of

0.031 mol/l. The other fluid contained sodium hydroxide

(NaOH) dissolved in 99% alcohol, with a concentration of

0.25 mol/l and pH 13. The diffusivity for hydroxide ion to

phenolphthalein solution is D = 5910-9 m2/s. To quanti-

tatively evaluate the non-uniformity in the concentration

profile, a mixing efficiency is defined (Erickson and Li

2002):

gmixð~y; ~zÞ ¼ 1�
R 1=2

�1=2
j~c� ~c1jd~xR 1=2

�1=2
j~c0 � ~c1jd~x

; ð22Þ

where ~c1 and ~c0are the concentration profile of the com-

pletely mixed and unmixed state, respectively. Figure 6

shows the comparison between the present analytical

results and the experimental data along the downstream

distance. Three sets of the analytical results of the mixing

efficiency are presented, respectively, extracted at the top

and bottom wall (|y/H| = 1/2) and at the half-depth plane

(y/H = 0), as well as the depth-averaged one (i.e., aver-

aging Eq. 22 along the depth-~y). Note that the axial

downstream distance in the horizontal axis of Fig. 6 is non-

dimensionalized in the same manner as (Chen et al. 2006)

to keep the data consistence for comparison. Due to the

non-uniform velocity profile, the mixing efficiency g at the

Fig. 5 The thickness of the

interfacial diffusion layer (d) as

a function of a the downstream

axial distance z; and b the

average velocity Uavg. The data

for b were collected at

z = 500 lm from the Y junction
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top wall is larger than that at the half-depth plane, which

accords with the experimentally observed heterogeneous

transport behavior and ‘‘butterfly effect’’ in the micro-

channels with low aspect ratios. The present analytical

results are in a good agreement with the measured exper-

imental data. Note that the experimental data are closer to

the analytical results at the channel wall than the depth-

averaged one, which as discussed in Chen et al. (2006) can

be attributed to the trapezoidal cross-section of the channel

in the microchannels in the experiments.

4.2 Comparison with numerical and other analytical

models

In the previous section, we verified the present analytical

model against the experimental data reported in the liter-

ature. Due to limited availability of experimental data, in

this section the present analytical model is compared with

full-scale numerical simulation and other three aforemen-

tioned analytical models in the entire computational

domain within a broader parameter space to demonstrate

the salient capability of the present model in terms of

providing accurate, fully resolved 3D species transport.

To quantitatively characterize the discrepancy between

high-fidelity CFD-ACE? simulation and the analytical

model, two error indices are defined (Lam et al. 2005;

Bissacco et al. 2007; Rewienski and White 2003):

Dð~x; ~zÞ ¼ j~c� ~cCFD�ACEþj
�~c

� 100% ð23Þ

Erð~zÞ ¼
~c� ~cCFD�ACEþk k

~cCFD�ACEþk k � 100% ð24Þ

where ~c and ~cCFD�ACEþ are the normalized concentration

profile, respectively, obtained from the analytical model

and CFD-ACE? simulation, and �~c is the average value

(i.e., 0.5 for the normalized concentration). D in Eq. 23

denotes the relative error of a concentration profile along a

transverse line (a function of ~x) at a fixed axial position

(Lam et al. 2005), while Er in Eq. 24 is the relative error

norm (Bissacco et al. 2007; Rewienski and White 2003) of

a concentration profile along the cross-section and is a

function of the axial position ~z:

4.2.1 Butterfly effect of the species transport

In the first case study, a microchannel with a width of

100 lm, a depth of 100 lm, and a length of 1 mm was

analyzed, yielding an aspect ratio c = 1 and the length-to-

width ratio l = 10. The average flow velocity was selected

to be 2 mm/s and the diffusivity of the analyte was taken to

be 1 9 10-9 m2/s corresponding to Pe = 200. Figure 7

shows the image comparison of the concentration profile

along a cross-section at ~z ¼ 1=2 between the present ana-

lytical model, CFD-ACE? simulation, and other three

analytical models (Models A–C in Sect. 3). A salient but-

terfly shaped concentration profile across the channel

arising from the heterogeneous transport rate along the

depth-wise direction was observed in both CFD-ACE?

simulation and the present analytical model, which, how-

ever, is absent in the other three analytical models due to

their assumptions of neglecting the depth-wise diffusion

(Fig. 7).

For quantitative comparison, the transverse concentra-

tion profiles extracted at the top wall (Fig. 8a) and the half-

depth (Fig. 8b) at the downstream distance ~z ¼ 1=2 are

presented in Fig. 8. It shows that the present analytical

solution matches CFD-ACE? result very well at both

Fig. 6 Comparison between the results of the present analytical

model and the experimental data in terms of the mixing efficiency

along the downstream distance extracted from Chen et al. (2006)

Fig. 7 Cross-sectional concentration profile obtained from the CFD-ACE? simulation, the present analytical model, and the other three

analytical models at ~z ¼ 1=2 for the aspect ratio c = 1
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sampling lines, while the other three models exhibit

marked deviation. It is interesting to note that other ana-

lytical models underestimate the cross-stream transport at

the channel wall and overestimate it at the channel half-

depth centerline, as they are unable to capture the non-

uniform transport rate along the depth (i.e., faster at the

wall and slower at the centerline due to the different resi-

dence time of the analyte.)

It should be pointed out that as the aspect ratio c
increases, the ‘‘butterfly effect’’ and the heterogeneous

transport rate phenomenon will diminish and the accuracy

of the Models A–C will gradually improve. Figure 9

illustrates the relative error D of various analytical models

relative to the CFD-ACE? simulation at the half-depth

(y/H = 0) and ~z ¼ 1=2 for two aspect ratios, c = 1

(Fig. 9a) and c = 5 (Fig. 9b). Figure 9a shows that for low

c = 1 the Models A–C deviate significantly from the

numerical data and the present model, leading to a maxi-

mum error of up to 14%. As the aspect ratio c increases to

5, the errors of the other analytical models scale down with

the maximum value around 3.5% (Fig. 9b), which is still

appreciable in contrast to the present analytical model with

\0.5% error in both cases.

4.2.2 Parametric analysis

Equation 5 indicates that the analytical solution for the

analyte concentration profile mainly depends on three

dimensionless parameters: Péclet number Pe, aspect ratio

c, and length-to-width ratio l. In this section, parametric

analysis of the analytical models is carried out in broad

space of Pe, c, and l to quantitatively evaluate their

applicability and accuracy. Given the number of the

parameters, the analysis is pursued in two categories. In the

first category (Fig. 10), c and l are varied in a wide range

(c = 1, 5, 10, 15, 20 and l = 5, 10) with Pe held constant

(Pe = 200), which correspond to the star-shaped data

points and both parabolic curves in the phase diagram in

Fig. 2. In the second category (Fig. 11), the Pe and c are

changed in a range of Pe = 20, 200, 300 and c = 1, 10

with l fixed at 10, which are denoted by the circle and the

bold parabolic curve in the phase diagram. In both analysis,

the concentration profiles at ~z ¼ 1 (at the outlet of the main

diffusion channel) are extracted for comparison.

Under the first category (Fig. 10), it can be seen that the

relative error norm (Er) of the present analytical model is

less than the threshold value Er0
¼ 0:5% in all the cases,

signifying its excellent applicability and accuracy in a

broad parameter space of c and l (subject to l � 1). The

aspect ratio exerts the strongest influence on the accuracy

of the other three analytical models (Models A–C): (1) for

low c, their Er all exceed 5%. As c increases, their accuracy

improves appreciably, indicated by the decrease in Er to

*1.5% (c = 5) and further to *0.8% (c = 10). However,

given Er0
¼ 0:5% the accuracy of the three models are

inadequate for c = 1–10 (i.e., the three star-shaped data

points on the left in Region (i) of the phase diagram. (2)

The length-to-width ratio l (i.e., the parabolic curves in

Fig. 8 Comparison of the

concentration distribution and at

the downstream distance

~z ¼ 1=2: a at the top and bottom

wall (y/H = ±1/2); b at the

half-depth plane (y/H = 0)

Fig. 9 Relative error D
between the numerical results

and the analytical solutions at

the half-depth (y/H = 0) and

~z ¼ 1=2: a the aspect ratio

c = 1; b the aspect ratio c = 5
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Fig. 2) dictates the boundary between Region (i) and

Region (ii), and hence impacts the validity of the under-

lying assumptions of the other three analytical models at

the medium-to-large values of c. For example, the change

from l = 5 to l = 10 (i.e., the translation of the dashed

parabolic curve to the solid one) converts the point of

c = 15 (the fourth star-shaped point from the left) from

Region (i) into Region (ii) and renders the model

assumption valid for enhanced accuracy. This is confirmed

by the data entry of c = 15 in Fig. 10a and b, where Er

drops below Er0
¼ 0:5% when l increases from 5 to 10. (3)

For sufficiently large aspect ratios (i.e., c = 20), the model

assumption is always valid regardless of the length-to-

width ratio l (given Pe = 200 in the case study), thereby

the model accuracy of Models A–C is adequate.

Under the second category (Fig. 11), we compare the

relative error norm (Er) of different analytical models at

various Péclet numbers (Pe = 20, 200, 300) and aspect

ratios (c = 1, 10). Again the present analytical model

outperforms the others and achieves a salient Er\Er0
in all

the cases. The accuracy of the other three models (Models

A–C) is dictated by both aspect ratio c and Péclet number:

(1) for the large aspect ratio c = 10 (Fig. 11a), Models

A–C exhibit excellent agreement with the numerical data at

Pe = 20, while translation to high Péclet numbers

(Pe = 200 and Pe = 300) crosses over the parabolic

curves defining the criterion for neglecting the depth-wise

diffusion (see Fig. 2), leading to larger Er exceeding the

cut-off Er0
¼ 0:5%: For low aspect ratio c = 1 (Fig. 11b),

the error is markedly escalated and surpasses Er0
at all Pe,

and Er is the worst at high Pe where the effect of non-

uniform transport rate along the depth (i.e., ‘‘butterfly

effect’’) is the most dominant. At low Pe, the analyte dif-

fuses faster across the channel and its concentration profile

is much more uniform than that at high Pe, and hence, the

error is diluted.

Finally, it should be pointed out that Er0
¼ 0:5% used in

this article is only for unambiguous definition. Depending

on the requirements on model accuracy, more coarse or

rigorous criterion can be adopted, which manifested in the

phase diagram in Fig. 2 corresponds to shrinking or

enlarging the Region (i), respectively.

5 Conclusions

This article presented an analytical model for cross-stream

diffusion in microchannels with arbitrary aspect ratios,

and a phase diagram study to investigate its unique, het-

erogeneous transport behavior. The Fourier series solution

to the three-dimensional steady-state convection–diffusion

equation with minimal, realistic assumptions was obtained

by the method of double integral transformation and

appropriate eigensystem calculation. A phase diagram

representing various transport regimes governed by the

three dimensionless parameters (i.e., Péclet number,

aspect ratio, and length-to-width ratio) was thoroughly

studied. The boundaries of the regions within the phase

Fig. 10 Comparison of Er at

~z ¼ 1 of various analytical

models in a wide range of aspect

ratios c: a length-to-width ratio

l = 5; b length-to-width ratio

l = 10

Fig. 11 Comparison of Er at

~z ¼ 1 of various analytical

models with different Péclet

numbers Pe: a aspect ratio

c = 10; b aspect ratio c = 1
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diagram were derived from the dimensional analysis of

the original convection–diffusion equation. The present

analytical model was then compared against existing

analytical models in terms of assumptions and applica-

bility using the phase diagram. It convincingly demon-

strates that the present model accommodating

microchannels with arbitrary aspect ratios covers much

broader transport regimes and more practical microfluidic

applications.

The present analytical model was extensively validated

against experimental data extracted from the literature in

terms of the concentration profiles, diffusion scaling law,

and mixing efficiency. Meanwhile, it was also quantita-

tively compared against high-fidelity numerical analysis

(CFD-ACE?) and other analytical models in very broad

parameter space to examine the non-uniform, depth-wise

transport behavior as well as accuracy and applicability of

the analytical models. Key scientific findings and insights

obtained from the study include:

1. To the best of our knowledge, the present effort

represents the first analytical model applicable to

microchannels with arbitrary aspect ratios for captur-

ing the non-uniform transport rate (i.e., the ‘‘butterfly

effect’’). The present model also for the first time

accurately predicts the position-dependent scaling-law

of diffusion (1/3-power at the channel wall and 1/2-

power at the half-depth plane) using an analytical,

closed-form solution.

2. The parametric analysis in the phase diagram indicates

that the present model is adequate in almost all the

regions of practical interest except for Region (iii) (see

below). The accuracy of the other analytical models

(Models A–C) built on the assumption of large aspect

ratio and uniform depth-wise concentration is suscep-

tible to the aspect ratio c, Péclet number Pe, and

length-to-depth ratio l.

(a) Given a fixed Pe, Models A–C exhibits poor

accuracy for low c (e.g., 1–5 in this study)

regardless of l. The length-to-width ratio l plays

an important role when c falls in the medium-to-

large value range (e.g., 10–15 in this study),

where the variation in l can impact the validity of

the model assumption for neglecting depth-wise

diffusion. Large c markedly enhances accuracy

for Models A–C.

(b) With a constant length-to-width ratio l, likewise

prior Models A–C are inapplicable to low c in all

Péclet range. For c at the medium-to-large value

range (e.g., c = 10 in Fig. 2), the model appli-

cability strongly depends on the Péclet number. A

high Pe still can invalidate the assumption of

neglecting depth-wise diffusion and lead to large

model errors.

3. The only major assumptions used in the present model

are the long channel length (i.e., l � 1) to minimize

the flow entry effects and reasonable Péclet number

(Pe � 1/l) to neglect axial diffusion. The former is

also adopted by prior analytical models and is valid for

almost all cross-stream diffusion microchannels.

Through analysis above, it is also found that the

extremely low Péclet number is indeed unrepresenta-

tive in the targeted application areas (e.g., mixing,

concentration gradient generation, and assay under

hydrodynamic flow). It should be pointed out that the

double integral method can be further extended

(involving more significant derivation effort) to

include axial diffusion into the analytical solution.
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Appendix

By substituting the expression of Uð~x; ~yÞ; we have

Mmnij ¼ j
Z1=2

�1=2

Z1=2

�1=2

"
ð1� 4~y2Þ

þ4
X1
s¼1

ð�1Þs

e3
s coshðesW=HÞ coshð2esc~xÞ cosð2es~yÞ

#

�/mð~xÞ/ið~xÞunð~yÞujð~yÞd~xd~y ð25Þ

The above equation involves four kinds of integrations

in terms of ~xand ~y; shown as:

Pm;i ¼
Z1=2

�1=2

/mð~xÞ/ið~xÞd~x ð26Þ

Qn;j ¼
Z1=2

�1=2

ð1� 4~y2Þunð~yÞujð~yÞd~y ð27Þ

Rm;i;s ¼
Z1=2

�1=2

coshð2esc~xÞ/mð~xÞ/ið~xÞd~x ð28Þ

Sn;j;s ¼
Z1=2

�1=2

cosð2es~yÞunð~yÞujð~yÞd~y ð29Þ
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