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Immature dentate granule cells (imGCs) arising from adult hippocampal
neurogenesis contribute to plasticity and unique brain functionsin rodents? and are
dysregulated in multiple human neurological disorders®>, Little is known about the
molecular characteristics of adult human hippocampal imGCs, and even their
existence is under debate'*8, Here we performed single-nucleus RNA sequencing
aided by a validated machine learning-based analytic approach to identify imGCs and
quantify their abundance in the human hippocampus at different stages across the
lifespan. We identified common molecular hallmarks of humanimGCs across the
lifespan and observed age-dependent transcriptional dynamics in humanimGCs that
suggest changes in cellular functionality, niche interactions and disease relevance,
that differ from those in mice®. We also found a decreased number of imGCs with
altered gene expressionin Alzheimer's disease. Finally, we demonstrated the capacity
for neurogenesis in the adult human hippocampus with the presence of rare dentate
granule cell fate-specific proliferating neural progenitors and with cultured surgical
specimens. Together, our findings suggest the presence of a substantial number of
imGCsin the adult human hippocampus via low-frequency de novo generation and
protracted maturation, and our study reveals their molecular properties across the
lifespan and in Alzheimer's disease.

During adult hippocampal neurogenesis, activated neural stem cells
generate proliferating intermediate neural progenitors (IPCs) and
neuroblasts, whichinturn give rise to post-mitoticimGCs that mature
over time? (Fig. 1a). The presence of adult-born dentate granule cells
(GCs) in humans was first demonstrated in specimens from patients
who previously received nucleotide analogues that dated newborn
cells’®, and was independently confirmed and further characterized
using theradiocarbon dating approach™'?. As accumulating evidence
hasattributed the function of adult neurogenesis to unique properties
ofimmature neurons that are distinct from mature neurons>** %, the

immature neuron populationisanimportant target for analysis. Recent
contradictory reports have provided immunohistological evidence
for>>”16° and against®?°* the existence of immature neurons in the
adulthumandentate gyrus. These studies have relied largely onimmu-
nostaining of doublecortin (DCX), an immature neuron marker that
requiresintricate histological protocols for postmortem adult human
brain specimens®*%. These controversies highlight a major gap in our
knowledge aboutimmature neurons inthe human hippocampus with
limited markers and call for new approaches for their identification and
analysis. Amore precise identification ofimmature neurons could be
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Fig.1|snRNA-seqandimmunohistological analyses ofimGCs in the human
infant hippocampus. a, Schematicillustration of the experimental design.
CBL, cerebellum; CTX, cortex; FrCTX, frontal cortex; HIP, hippocampus; MTG,
middle temporal gyrus of cortex; NB, neuroblast; NSC, neural stemcell; OLF,
olfactoryepithelium; VisCTX, visual cortex. b, UMAP visualization of 15,434
nucleifrom4 humaninfant hippocampal specimens, coloured by cluster.

The GCclusteris highlighted witha dashed circle. c, Wheel plot visualizing
scores of each cell to each prototype by the machine learning model. Dots
representindividual cellswhose distance to each prototype is proportional to
thesimilarity score of that prototype. Each black line indicates a similarity
score of 0.85to each prototypical celltype.d, Transcriptional congruence
between the corresponding mouse® and human cell types measured by a

obtained by considering simultaneous expression of multiple genes,
ideally the whole transcriptome, at single-cell resolution. To investi-
gate the existence, abundance and molecular properties of neurons
with immature neuronal characteristics in the human hippocampus,
we performed single-nucleus RNA sequencing (snRNA-seq) aided by a
machinelearning-based analytical approach to examine humanimGCs
across the human lifespan (Fig. 1a).

snRNA-seq of human infant hippocampi

We first performed snRNA-seq analysis of four infant hippocampus
specimens (Supplementary Tables1and2), adevelopmental stage with
abundantimGCs'®®. Unsupervised clustering identified 14 clusters on
the basis of their defining markers (Fig. 1b and Extended Data Fig. 1a,b).
TheimGCs expressimmature neuronal marker DCX and pan-GC marker
prospero homeobox1(PROX1), whereas calbindin (CALB1) is expressed
insomeimGCs, butis more enriched in mature GCs**?* (mGCs) (Fig. 1a).
Within the GC cluster marked by prominent PROX1enrichment, DCX*
imGCs were intermingled with other cells and could not be separated
by finer partitioning (Extended DataFig.1c), in contrast to clear cluster-
ing ofimGCsin the mouse dentate gyrus single-cell mRNA-sequencing
(scRNA-seq) dataset’ (Extended Data Figs. 2a and 3). Therefore, the
conventional unsupervised method is insufficient to identify theimGC
populationin human snRNA-seq datasets, similar to previous analyses
of the adult human hippocampus®?.

Identifying imGCs by machine learning

To identify imGCs, we next explored a supervised machine learning
approach?®, This prototype-based scoring method uses a training set
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multi-class random forest classifier***?trained on different human cell types.
The confusion matrix plotindicates the percentage of cells ofagiven mouse
cell cluster (row, based on published annotations’) assigned to a corresponding
human cell type (column, classified by the machine learning model).

e, Comparison of positive gene weights definingimGCs in humans and mice
generated by separate machine learning models. f,g, Sample confocal
immunostainingimages (f) and quantification (g) of STMN1enrichmentin
imGCsinthe humaninfant hippocampus.yr, years.Scalebars, 10 pm. Asterisks
indicate DCX" or CALBI cells among STMNI'PROX1" cells (f). Dots represent
datafromindividualsections; the centrelinerepresents the mean, box edges
shows.e.m.and whiskers extend to maximum and minimum values (n=4
subjects) (g).

of cell prototypes to extract weighted panels of molecular features
de novo, which are then used to quantify the resemblance of each
individual cell from query datasets to each prototypical cell type for
classification with high fidelity. Applications of supervised models
have been shown to be highly effective in differentiating transcrip-
tionally ambiguous cell subtypes in scRNA-seq datasets in multiple
systems?*?$732_ As avalidation of model performance, we first tested
this approach toidentify immature neurons using scRNA-seq datasets
from the mouse hippocampus across ages® (Supplementary Table 3)
for comparison with those from unsupervised clustering, which results
in distinct subclusters of neuroblasts, imGCs and mGCs identified
via established markers (Extended Data Figs. 2a-c and 3). To mirror
our human analysis, we selected high-confidence Dcx Prox1*Calbl”
imGCs from the GC clusters in the P5 mouse hippocampal dataset as
a prototype, as well as all major non-neuronal cell-type prototypes
(astroglia, oligodendrocyte progenitor cells (OPCs) and microglia)
for training (Fig. 1a and Extended Data Fig. 2c; Methods). The trained
model was used to score each cell from the query mouse hippocam-
pal datasets across ages independently of the clustering information
(Extended Data Fig. 2d-f and Supplementary Table 4). We identified
immature neurons using a conservative, empirical cut-off (P > 0.85) for
the similarity score to the mouse imGC prototype and compared our
classifications with published clustering annotations’. Model-classified
immature neurons were largely within the neuroblast and imGC clus-
ters, with some appearingin theimmature CA neuron and GABAergic
(y-aminobutyric acid-producing) neuron clusters at P5, yet they resided
almost exclusively inthe GClineage in the juvenile and adult mouse hip-
pocampus (Extended DataFig. 3). Notably, within the GClineage, imGCs
include the majority of cells in the neuroblast and imGC clusters, fewer
intheIPC clusters, and almost none in the mGC clusters (Extended Data
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Fig.2|snRNA-seqanalysis of humanimGCs across ages. a, UMAP plots
showing scRNA-seq and snRNA-seq datasets of humanbrain specimens
coloured by four broad cell classes (top rows) and by similarity score to
prototypicalimGCs (bottom rows). Datasetsinbold were integrated and are
showninaggregate foreachage group (with four or five subjects for each age).
GW, gestational week. b, Quantification of proportions ofimGCs (with

Fig. 3¢,f,i). Therefore, proof-of-principle analysis using well-defined
mouse hippocampal datasets demonstrates the efficacy and selectivity
of our machine learning-based approach toreliably identify immature
neurons with almost no contamination of mature neurons.

We next implemented the same strategy for the human infant hip-
pocampaldatasetby traininganewscoring modelusing high-confidence
humaninfantimGC prototype cells (DCX'PROX1"CALB1 cells fromthe
GC cluster) and prototypes from all major non-neuronal cell types
(astrocytes (Astro), OPCs, mature oligodendrocytes (mOli) and micro-
glia)ata99%accuracy rate (Fig.1a and Extended DataFig. 4a). Consist-
ent with their immature nature, the positive gene weights for human
imGCs are enriched for gene ontology (GO) terms related to nervous
system development, neurogenesis and synaptogenesis, and are closely
connected to DCX in the gene network (Extended Data Fig. 4b-d and
Supplementary Tables 4 and 5). Immature neuronsin theinfanthuman
hippocampus were thenidentified by the trained model using the same
conservative similarity score cut-off as for mouse (P > 0.85) (Fig. 1c).
Asavalidation for cellidentities, we compared corresponding cell types
atthewhole transcriptome level between our model-classified human
celltypes and published cluster annotations in the adult mouse data-
set’ using anindependent random forest classifier’**? and found high
transcriptomic congruence (Fig.1d). For example, theidentified human
imGCs displayed much higher resemblance to mouse neuroblasts and
imGCs than to mGCs (Fig.1d). Human mGCs, defined as cells from the
GC cluster with lower similarity scores (P < 0.85) to theimGC prototype,
displayed high resemblance to mouse mGCs, but not to neuroblasts or
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similarity scores P> 0.85) among all GCs in each human hippocampal specimen
across ages. Prenatal and postnatal data points are fitted separately with
generalized linear model fitting (black lines) and 95% confidence intervals
(grey shaded areas). Datasets from donors aged 40 to 92 years are highlighted
intheinset.c, Pearson correlation of gene expression of the corresponding
mouse’and humanimGCs and mGCs.

imGCs (Fig. 1d). Despite this general conservation, orthologous posi-
tive gene weights generated separately by machine learning models
for human and mouse imGCs showed substantial species differences
(Fig.1e and Extended Data Fig. 4e).

To confirm the enriched expression of top weighted genes in
imGCs, we screened candidates on the basis of antibody availability
and focused on STMNI (Fig. 1e), a tubulin-depolymerizing protein®,
for immunohistology. Inindependent infant human dentate gyrus
specimens (Supplementary Table1), 93.8% of DCX'PROX1"imGCs were
STMNI1, whereas 91.4% and 20.7% of STMN1'PROX1" cells were DCX*
and CALB1", respectively (Fig.1f,g). Similar results were obtained in the
adult mouse dentate gyrus (Extended Data Fig. 4f,g).

HumanimGC abundance across lifespan

We then applied our trained model to assess each cell in query
scRNA-seq or snRNA-seq datasets from human brain specimens of
various developmental stages and regions (Supplementary Tables 2
and 3). We first examined published datasets of the prenatal human
hippocampus®* and prefrontal cortex®, both of which contain abun-
dant immature neurons. Indeed, we found a large number of cells
with high similarity scores (P> 0.85), including, most prominently,
GCs, some CA neurons and GABAergic neurons in the hippocampus,
and some neurons in the cortex (Fig. 2a), suggesting that, as in mice
(Extended DataFig.3a-c), ourapproach selects for cells withimmature
neuronal features but not exclusively for imGCs. We next performed
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Fig.3|Commonand divergent molecular features ofimGCs across the
lifespan and between humans and mice.a, Commonenriched genesin
humanimGCs or mGCs across age (two-sided Wilcoxon rank-sum test, false-
discovery rate (FDR)-adjusted P-value < 0.05). Adoles., adolescent. b, Top GO
term groups for common humanimGC-enriched genes. Dev., development;
reg., regulation.c, Scatter plot (left) showing log, fold change (FC) of expression
betweenimGCsand mGCsand violin plots (right) of exemplary genes.d, Venn
diagram ofimGC-enriched genesinhumans and mice. e, Unique features of
imGC-and mGC-enriched genesin humansand mice.f,g, Pseudo-age
alignment of humanimGCs coloured by age group, inscatter (left) or density
(right) plots (f) and summarized (g). Dots representingimGCsineach age
group arefitted with loess (lines) with 95% confidence interval (grey shaded
areas) with Pearson’s rfor correlations of pseudo- and real-age groups (g).

h,i, Distinct patterns of age-dependent gene expressionin humanimGCs

(h; likelihood ratio test, Benjamini-Hochberg-adjusted P, g < 0.01) and
representative GO terms (i; one-sided Fisher’s exact test, FDR P< 0.05).j, Sample

snRNA-seq on human postnatal hippocampal specimens across ages,
with four to five subjects each for child, adolescent, adult, and aging
stages (Supplementary Tables 1and 2). We integrated the published
prenatal®* datasetand all of our postnatal hippocampal datasets using
canonical correlation analysis® (CCA) (Supplementary Fig. 1) and
classified 15 cell clusters into 4 broad classes on uniform manifold
approximation and projection (UMAP) plots of 6 age groups (Fig. 2a,
inbold). Cells with high similarity (P> 0.85) to the human imGC pro-
totype were identified in every hippocampal specimen across all ages,
most of which are clustered together in UMAP plots, suggesting their
transcriptomic proximity (Fig. 2a). The identified immature neurons
resided almost exclusively in the GC cluster in postnatal datasets
(Fig. 2a and Extended Data Fig. 5). We also applied the same model to
several published datasets from various postnatal human brain regions
(Supplementary Table 3). We identified immature neurons in three
published adult human hippocampus datasets***?% (Fig. 2a). Adult
human olfactory epithelium exhibits continuous neurogenesis; we also
identified immature neurons, which matched the published annota-
tions based onunsupervised clustering® (Fig. 2a). By contrast, almost
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confocalimmunostaining images and quantification of two exemplary genes
displaying age-dependent expressioninhumanimGCs. Scale bar, 10 um.

Dot plotsshowing gene expressionvaluesasing.BoxplotsasinFig.1g (n=3
subjects per group). Asterisks indicate NEUROD4" or NFIA® cells and hashtag
symbolsindicate NEUROD4 or NFIA cellsamong PROX1"and STMNI"imGCs.
k, Exemplary ligand-receptor pairs of imGCs interacting with neighbouring
celltypes (using CellPhoneDB*) with age-dependent gene expression changes
(two-sided Moran’s/test, Bonferroni P< 0.05; n =28 specimens). Dots
represent mean expression of the ligand-receptor pair for the cell-type pairin
eachspecimenwithfittingasing.Inboxplots, the centre line represents the
median, box edges show quantiles and whiskers extend to maximumand
minimum values. I, Enrichment patterns of brain disorder risk gene expression
inhumanimGCs and mGCs across the lifespan (one-sided Fisher’s exact test,
FDRP<0.05).AD, Alzheimer's disease; ASD, autistic spectrum disorders; EPI,
epilepsy; MDD, major depressive disorder; SCZ, schizophrenia.

noimmature neurons were identified from datasets of the adult human
frontal cortex, cerebellum, visual cortex®, middle temporal gyrus of
the cortex® and prefrontal cortex** (Fig. 2a and Extended Data Fig. 5).
Together, these results demonstrate the sensitivity and specificity of
our approach to identify human immature neurons in various brain
scRNA-seq or snRNA-seq datasets.

Following identification of imGCs, quantification of all hippocam-
pal datasets showed that the average percentages of imGCs among
all cells in the GC cluster in each age group range from 51.8% in the
prenatal stage, 9.4%ininfancy, to 3.1-7.5% from 4 years old and beyond
(Fig.2b), which are very similar to results reported on the basis of DCX
immunohistology**.

As avalidation for the imGC identity in our datasets, Pearson cor-
relation analysis showed that the identified humanimGCs resembled
mouse neuroblasts and imGCs, but notmGCs’, whereas human mGCs
resembled mouse mGCs, but not neuroblasts orimGCs (Fig. 2c). Immu-
nohistological analysis using independent postmortem human dentate
gyrus specimens across ages (Supplementary Table 1) showed that
over 70% of DCX'PROX1*imGCs were STMNI', whereas only 18-39%



of STMNI'PROX1* neurons were CALBI" (Extended Data Fig. 6a-d).
We confirmed the neuronal identity of STMN1'PROX1" cells with
additional markers (Extended Data Fig. 6e,f).

imGC molecular profiles across lifespan

Capturing human imGCs by snRNA-seq across the lifespan enables a
systematic analysis of their immature neuronal signature and tran-
scriptomic landscape. To account for batch bias prior to quantitative
gene expression comparison, we aligned published prenatal** and our
postnatal human hippocampal datasets across ages using single-cell
variational inference*’ (scVI) in addition to CCA%® (Supplementary
Fig.2). Toidentify the common molecular signature of humanimGCs
irrespective of age, we compared imGCs to their mGC counterparts at
differentages and found a preferential enrichment of genesinimGCs of
allagesrelated to nervous system development (for example, NEUROD1
and BHLHE22), ion transport (for example, FXYD7 and KCNQS5) and
neuron projection development (for example, SEMA6D and NR2F1)
(Fig.3a,b, Supplementary Fig. 3 and Supplementary Table 6). Among
these genes, only 15.5% overlapped with orthologous genes enrichedin
mouseimGCs across ages’ (for example, FXYD7), indicating substantial
interspecies differences (Fig. 3c-e and Supplementary Table 7).

To deconvolve potential age-dependent molecular changes, we
aligned allhumanimGCs on a pseudo-age trajectory using Monocle*.
We observed amarked temporal transcriptomic shift correlated with
the specimen age (Pearson’s r = 0.813) (Fig. 3f,g). This correlation was
unique toimGCs, but not mGCs, and was observed only in humans but
notinmice during the time window examined® (Fig. 3g and Extended
Data Fig. 7). A gene co-variation kinetics analysis encapsulated five
distinct age-dependent patterns, including a continuous upregu-
lation of glutamate receptor signalling pathways and downregula-
tion of neuronal migration- and projection morphogenesis-related
genes (Fig. 3h,i, Supplementary Fig. 4 and Supplementary Table 8).
We confirmed age-dependent expression of two exemplary genes,
NEUROD4 and NFIA, in human imGCs, but consistent expression
in mouse imGCs across ages using immunohistology (Fig. 3j and
Extended DataFig. 8). Transcriptomic mapping of different cell types
inthe hippocampus together enables probing cell-cell interactions
onthebasis of cognate ligand-receptor expression. AnimGC-centric
analysis using CellPhoneDB* revealed age-dependent interactions
betweenimGCs and their neighbouring cell typesinthe dentate gyrus
(Fig. 3k and Supplementary Fig. 5). To explore the potential contribu-
tion of imGCs to different brain disorders, we performed disease-risk
gene enrichmentanalysis for Alzheimer's disease, autistic spectrum
disorders, epilepsy, major depressive disorder and schizophrenia, and
revealed their selective expression in imGCs at specific ages, many
of which coincide with critical periods of the suspected aetiologies
of the disorders, such as the aging stage for Alzheimer's disease and
early developmental stages for autistic spectrum disorders (Fig. 31
and Supplementary Fig. 6).

Dysregulated imGCs in Alzheimer's disease

Todirectly examine how neurological disorders may affectimGCs, we
performed snRNA-seq of hippocampal specimens from eight patients
with Alzheimer's disease and eight matched controls integrated?®
together with five controls in the original aging group (Fig. 4a and
Supplementary Tables 1and 2). In all these specimens, we identified
imGCs almost exclusively in GC clusters, and quantification showed
that the percentage of imGCs among all GCs was twofold lower in Alz-
heimer's disease compared with controls, whereas the percentage of
GCsamongall cells sequenced per sample was similar (Fig. 4b,c). Our
finding is similar to previously reported immunohistological quanti-
fication of DCX*imGCs among NeuN* GCs regarding the proportion
of imGCs and the level of decrease in Alzheimer's disease™'®,
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Fig.4|Reduced number and altered gene expression ofimGCsin patients
with Alzheimer's disease. a,b, UMAP plots of theintegrated dataset of
patients with Alzheimer's disease and controls (Ctrl) coloured by cluster

(a) and broad cell class (top row) and similarity score to prototypicalimGCs
(bottomrow) (b). ¢, Quantification of proportion ofimGCs among GCs (top)
and GCsamong total cells obtained per specimen (bottom). Each dot
represents datafrom one specimen; the centre line represents the mean, box
edgesshows.e.m. and whiskers extend to maximum and minimum values
(n=8and13individuals for Alzheimer's disease and control, respectively;
*p=0.0197; NS, not significant; one-tailed Mann-Whitney test).d,e, GO terms
(d) and examples (e) of genes downregulated inimGCsin Alzheimer's disease.
f, Quantification of the number of significantligand-receptor pairs ofimGCs
interacting with neighbouring cell types (using CellPhoneDB*?). Each dot
represents data from one specimen. Dataare mean +s.e.m.(n=8and13
individuals for Alzheimer's disease and control, respectively; *P < 0.05;

**P < 0.005; P-value of significant pairs from left to right: 0.013, 0.001, 0.017
and 0.012; one-tailed Mann-Whitney test).

Quantitative analysis identified 14 downregulated genesinimGCsin
Alzheimer's disease, which are mostly associated with synaptic plastic-
ity and signalling (for example, NRXNI) (Fig. 4d,e and Supplementary
Table 9). An imGC-centric cell-cell interaction analysis*’ revealed
significantly decreased interactions of imGCs with astrocytes, OPCs,
GABAergicinterneurons and Cajal-Retzius cellsin Alzheimer's disease,
indicating aberrant niche interactions (Fig. 4f).

Postnatal human hippocampal neurogenesis

Our transcriptomic analysis could not differentiate whetherimmature
neurons in the adult human brain were born late in life or born earlier
and remained in the immature state®*®, In an attempt to examine the
capacity for neurogenesis, we observed GC fate-specific KI67' PROX1"
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proliferating neural progenitors and TBR2'PROX1*IPCs?in the human
hippocampus across ages (Fig. 5a,b). However, the numbers of these
precursor cells were very low in the adult human hippocampus
(Fig.5¢c,d), indicating low frequencies of de novo generation of imGCs.

Because there is almost no practical means to birthdate newborn
neurons in humans in vivo, we developed an ex vivo culture method to
directly examine the capacity for neurogenesis qualitatively in the post-
natal human hippocampus. We culture freshly surgically resected human
hippocampi from patients diagnosed with epilepsy in growth factor-free,
chemically defined medium** in the presence of EdU to label dividing

6 | Nature | www.nature.com

Fig. 5| Capacity for neurogenesisin the postnatal human hippocampus
acrossage.a-d, Sample confocalimmunostainingimages of MKI167 (a) and
TBR2 (b) and quantification of MK167" (c) and TBR2* (d) cells among PROX1"
neuronal progenitorsinthe human dentate gyrus across ages. Scale bars,

10 pm. Asterisksindicate MKI67" or TBR2" cellsamong PROX1* GCs (a,b). Each
dotrepresents the sum value of quantification of multiple sections from one
specimen (n=10 specimens) (c,d). e-g, Aslice culture system to demonstrate
the capacity for neurogenesisin the adult human dentate gyrus. e, Schematic
illustration of the experimental procedure. f, Sample image of a well containing
threeslices. Scale bar,1cm. g, Sample confocal staining images of
EdU-incorporating newbornimGCs expressing different markersin the
postnatal human dentate gyrus. Scale bars, 100 pm (low-magnification
images) and 10 pm (expanded insets 3and 4).

cells (Fig. 5e,f and Extended Data Fig. 9a—c). We observed EQU*PROX1"
newborn GCs after 1-2 weeks in culture in 8 out of 10 specimens from
patients ranging in age from 2 to 61 years (Fig. 5g and Supplementary
Table1), and these cells were SI00B™ (ref.”) and CALB1 (Extended Data
Fig. 9d). More than 80% of EQU*PROXI" cells were DCX" or STMNI1*, and
88.6% of DCX'EdU" cellswere STMNI' (Fig. 5g and Extended Data Fig. 9e).
Wealso observed EQU*TBR2'PROX1" IPCs (Fig. 5g). Theseresultsindicate
the capacity for the adult human dentate gyrus to generate new GCs and
validate the enrichment of STMN1in imGCs.

Discussion

Rather than relying on a few pre-selected marker genes ,our
study highlights the advantage of the snRNA-seq analysis to precisely
define a cell subtype in silico on the basis of its whole transcriptome.
Our study reveals dynamic molecular properties of imGCs compared
withmGCsinthe human hippocampus across the lifespan. As expected,
imGCs predominantly express transcripts related to immature neu-
ronal hallmarks, such as development, neurogenesis and plasticity.
The significant differences observed in the molecular landscapes
between imGCs and mGCs support the notion of unique contribu-
tions of human immature neurons to brain functions. We also mined
the datasets for novel candidate genes enriched in human immature
neurons, such as STMNI. Of note, we found differential transcriptional
programmes in human imGCs across ages, as well as other properties
that diverged fromimGCs in mice®, highlighting interspecies variance.
Furthermore, we observed adecreased number of imGCsin Alzheimer's
disease and identified altered gene expression and reduced interac-
tions with niche cells. The mechanisms underlying such age- and
disease-related changes in human imGCs remain to be determined.
Asthe similarity score cut-off for humanimGCs was determined on
the basis of validation in the mouse dataset, we could have under- or
over-estimated the numbers of human imGCs in our study. Although
we could not determine when these imGCs were born, the presence
of GC fate-specific proliferating progenitors in the adult human hip-
pocampus revealed by immunohistology indicates that at least some
ofimGCsareborninadulthood. Future larger-scale snRNA-seq analysis
may capture these rare proliferating neural progenitors for molecular
analyses. Our slice culture birth-dating study directly demonstrates the
capacity of the adult human hippocampus to generate new neurons.
Compared with early development, newborn GCs in adult rodents*®
exhibit immature characteristics for a prolonged period, which lasts
longer in aging mice*’*®, and more than ten times longer in adult pri-
mates*°. Our results support amodel in which new neurons are con-
tinuously generated at low frequencies, but exhibit protracted neuronal
maturation and are maintained in animmature state for along period
oftime, leading to anaccumulation of asignificant number of neurons
with immature neuronal characteristics at any given time in the adult
human hippocampus (Extended Data Fig. 10). The function of adult
neurogenesis arises primarily from the unique properties of immature
neurons>*™ rather than proliferating neural progenitors per se.

3,5,17-21,45



Our study reveals the molecular landscape of humanimGCs across the
lifespanand provides resources and methods that will facilitate future
investigations into their functions and disease relevance.
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Methods

Tissue specimens

De-identified human tissue specimens were collected and processed
under protocols approved by the Institutional Review Boards of the
University of Pennsylvaniaand the Children’s Hospital of Philadelphia.
A total of 62 human postmortem hippocampal specimens taken
between GW20 and 92 years of age, including 54 specimens from
individuals free from neurological disorders and 8 specimens from
patients with Alzheimer's disease, were used for snRNA-seq and immu-
nohistological analyses (Supplementary Table1). Specimens were col-
lected fromtissue banks at the Children’s Hospital of Philadelphia, the
Johns Hopkins University Pathology Archive, the Lieber Institute for
Brain Development, and the NIH NeuroBioBank at the following reposi-
tories: University of Pittsburgh Brain Tissue Donation Program, the
University of Maryland Brain and Tissue Bank, the University of Miami
Brain Endowment Bank, the Harvard Brain Tissue Resource Center,
the Human Brain and Spinal Fluid Resource Center at the VA West Los
Angeles Healthcare Center, and the Mount Sinai School of Medicine.
Allembryonic tissues were from diagnostic autopsies. As postmortem
interval could affect results of snRNA-seq* and immunohistology analy-
sis (for example, of DCX*?), we tried to collect specimens with as short
postmortem intervals as possible (listed in Supplementary Table1).In
addition, fresh surgically resected human hippocampal tissue from 10
patients between the ages of 2 and 61 years were used for ex vivo slice
culture, collected from the Children’s Hospital of Philadelphia and the
Hospital of the University of Pennsylvania (Supplementary Table 1).
Informed consent for each specimen was obtained by its corresponding
institution prior to tissue collection.

For mouse immunohistological analysis, postnatal day (P)14, P60
and1.4-year-old, wild-type, male and female C57BL/6 mice were used.
No obvious sex phenotype was observed in any of the experiments.
Animals were housedina12-hour dark/light cycle with food and water
ad libitum. Animal procedures were performed in accordance with
protocols approved by the Institutional Animal Care and Use Commit-
tee of the University of Pennsylvania.

Single-nucleus RNA sequencing

We used a modified SPLiT-seq approach for nuclei isolation and
snRNA-seq®***. Nucleiisolation from snap-frozen hippocampal tissue
was performed as previously described with minor modifications®*.
In brief, after a visual inspection to include the dentate gyrus by its
distinct anatomical structure, tissue was minced with a razor blade
and Dounce (Fisher Scientific, 8853000002) homogenized for 5to 10
strokes usinga chilled tissue grinder in1ml of chilled homogenization
buffer consist of 1mMbDL-dithiothreitol (DTT, Sigma-Aldrich, D0632),
0.15 mM spermine (Sigma-Aldrich, S4264-1G), 0.5 mM spermidine
(Sigma-Aldrich, S0266-1G), EDTA-free protease inhibitor (Roche,
11836170001), 0.3% IGEPAL-630 (Sigma-Aldrich, 18896-50ML), 0.25M
sucrose (Sigma-Aldrich, S5016-500G), 25 mM MgCl, (ThermoFisher
Scientific, AM9530G), and 20 mM tricine-KOH (Sigma-Aldrich, T5816-
100G). Homogenates were filtered through a 40-pum cell strainer
(Fisher Scientific,22-363-547), and mixed with 200 pl Myelin Removal
Beads Il (Miltenyi Biotec, 130-096-733) for a 15-minincubation onice.
The mixture was then transferred on top of a sucrose cushion buffer
(0.5 mM MgCl,, 0.5 mM DTT, EDTA-free protease inhibitor, 0.88 M
sucrose) at a volume ratio of 1:1in centrifuge tubes, and centrifuged
at2,800g for 10 min in a swinging bucket centrifuge at 4 °C. Nuclei
were collected as pellets and resuspended in 0.01% Bovine serum albu-
min (BSA, Sigma-Aldrich, B6917) in chilled phosphate-buffered saline
(PBS, Corning, 21-040-CV). Nuclei were spun down for 3 min at 500g
at 4 °C before resuspension in 1 ml of chilled PBS-RI (PBS containing
0.05U pl™RNase Inhibitor (Enzymatics, Y924L)) and filtered through a
40-pm cell strainer. For specimens analysed by the SPLiT-seq method,
additional processing steps were applied as follows: 3 ml of chilled

1.33% formaldehyde solution was added to the nuclei suspension for
fixation for 10 min. Next, nuclei were permeabilized with 160 pl of
5% Triton X-100 (Sigma-Aldrich, T9284) in chilled PBS for 3 min and
spundown at 500g for 3 minat4 °C. Nuclei were then resuspended in
500 ml chilled PBS-RI before 500 pl of chilled 100 mM Tris-HCI (pH 8)
was added. Nuclei were spun down again at 500g for 3 min at4 °C and
resuspendedin 300 pl chilled 0.5 PBS-RI. Finally, nuclei werefiltered
through a40-um strainer again before being counted with ahaemocy-
tometer and diluted to one-million nuclei per ml.

The majority of the hippocampal specimens was processed using
SPLiT-seq as previously described®>*. In brief, single-nuclei mRNA
was tagged in three rounds with barcoded primers (Integrated DNA
Technologies) forin-cell ligation using the T4 DNA ligase (New England
Biolabs, M0202S). Ligation products were purified with Dynabeads
MyOne Streptavidin C1 beads (ThermoFisher Scientific, 65001) and
resuspended with Kapa HiFi HotStart Master Mix (KAPA Biosystems,
KK2600) for a PCR thermocycling. Next, beads were removed from
the PCR products, followed by the addition of EvaGreen dye (Biotium,
31000) for aqPCR thermocycling. The PCR products were then purified
using KAPA Pure Beads (KAPA Biosystems, KK8000). One hippocampal
specimen was processed using droplet-based snRNA-seq technique®
with modifications”. In brief, the single-nucleus suspension and the
barcoded beads (ChemGenes, MACOSKO-2011-10) were diluted and
co-encapsulated using a microfluidic device (uFluidix, Batch #9508).
Droplets were broken and reverse transcription was performed to
generate cDNA.

Tagmentation was performed with Nextera XT Library Prep Kits
(Illumina, FC-131-1024). The tagmented cDNA libraries were further
amplified with 12 enrichment PCR cycles using the lllumina Nextera
XT i7 primers and the P5-TSO hybrid primer®. After quality control
analysis by a Qubit Fluorometer (ThermoFisher Scientific, Q33238)
and a Bioanalyzer (Agilent), libraries were sequenced on an Illlumina
NextSeq 550 instrument using Illumina High OutputKit v2.5 (75-cycle
(20024906) for libraries prepared with Drop-seq; 150-cycle (20024907)
for libraries prepared with SPLiT-seq). Paired-end sequencing reads
were pre-processed using the Drop-seq software (v1.13, http://mcca-
rrolllab.com/dropseq/) with modifications®*¢*’, In brief, each mRNA
read was tagged with a barcode and a unique molecular identifier
(UMI), trimmed off sequencing adaptors and poly-A sequences, and
aligned to the human reference genome assembly (Genome Reference
Consortium hg38, Gencode release v28) using Spliced Transcripts
Alignment to aReference (STAR, v2.5.2a)% using default settings. Both
exonicandintronicreads mapped tothe predicted strands of annotated
geneswere retrieved for the cell type classification”. Uniquely mapped
reads were grouped by cell barcodes. To generate a digital expression
matrix, alist of UMIsineach gene, within each nucleus, was assembled,
and UMIs that differ in just one nucleotide were merged into a single
UMI (edit distance =1). The total number of UMIs was counted and
reported as the number of transcripts of that gene for agiven nucleus.
Raw digital expression matrices were generated for each sequencing
run (summarized in Supplementary Table 2).

Quality control, cell clustering, and dataset integration

Raw count matrices were loaded into the R (v3.6) package Seurat
(v3.1.4)%. For each specimen, genes expressed in <10 nuclei were dis-
carded. Nuclei with <400 or >5,000 genes were discarded; nuclei with
>5% UMIs mapped to mitochondrial genes were discarded. For normali-
zation, UMI counts for all nuclei were scaled by library size (total UMI
counts), multiplied by 10,000 and transformed to a log scale. Highly
variable genes were identified using the function FindVariableFeatures
inSeurat. The top principal components (PCs), determined by the PCEI-
bowPlot function, were selected for dimensionality reduction, cluster-
ing and visualization with UMAP or ¢-distributed stochastic neighbour
embedding (¢-SNE). Marker genes for each cluster were identified with
aWilcoxon rank-sum testimplemented in the FindAlIMarkers function
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with the following criteria: adjusted P-value < 0.01 (controlled for FDR),
logfold change >0.5,and genes detected in <25% of the cells withinits
corresponding cluster were excluded. In particular, PROX1, the defining
marker for excitatory dentate GCs, was used to determine whether a
hippocampal specimen contains cells or nuclei from the dentate gyrus.
For the hippocampus, only specimens with a distinct PROX1-enriched
excitatory neuronal cluster containing at least 50 cells or nuclei were
included. For non-hippocampal specimens, a distinct PROXI-enriched
excitatory neuronal cluster precluded further analysis. UMI count
matrices from published datasets®**?73*35373% were retrieved from
the respective repositories and processed independently using the
same criteria (summarized in Supplementary Table 3).
ToinvestigateimGCs across the human lifespan under physiological
conditions, hippocampal datasets from our postnatal specimens at the
infant (0-2yearsold, 4individuals, 15,434 nuclei), child (3-6 years old,
4individuals, 24,607 nuclei), adolescent (13-18 years old, 4 individuals,
16,310 nuclei), adult (40-60 years old, 5 individuals, 29,832 nuclei),
and aging (86-92 years old, 5 individuals, 16,055 nuclei) stages, and
from a published prenatal report** (GW16-GW27) were normalized
within each age group toremove sequencing variation (implemented
insctransform functionin Seurat®) prior to integration usinga CCAin
Seurat® (Supplementary Fig.1and Supplementary Tables1and 2). To
investigateimGCsin Alzheimer's disease, hippocampal datasets from
our patient specimens (73-88 years old, 8 individuals, 27,508 nuclei)
and matched controls (73-88 years old, 8 individuals, 21,955 nuclei)
and the 5 control specimens from the aging group (Supplementary
Tables 1and 2) were normalized using the sctransform method*® and
integrated using CCA* (Fig. 4a,b). For both integrated datasets, the
top 2,000 highly variable genes and the first 30 principal components
were used for cell alignment before clustering and UMAP visualization.

Immature neuron signature extraction and prototype-based
cell scoring using machine learning
To provide a precise and holistic characterization of humanimGCs, we
implemented a supervised learning approach to learn comprehensive
genefeatures fromimGCs of unambiguousidentities (prototypes), which
wethenused to quantitatively evaluate the similarity of each cellin query
(test) brain snRNA-seq datasets. Amultinomial machine learning method
using a L2-norm regularized logistic regression model (implemented
in the LogisticRegression function in scikit-learn®® in Python v3.7) was
applied with modifications®. To validate the sensitivity and specificity
ofthisapproach, wefirst recapitulated our analytic paradigm (Fig.1a) in
scRNA-seqdatasetsfromthe mouse hippocampusacrossages’byselecting
prototypes from the early postnatal dataset (P5) for model training,
scoring each cell in the juvenile (P12-P35) and the adult (P120-P132)
datasets, and benchmarking the classifier performance to the published
annotations based on unsupervised clustering and known marker
expression’ (Extended DataFigs. 2a—-cand 3).In the context of the mouse
dentate gyrus, despite clear separation by unsupervised clustering, we
disregarded thefiner partitioning of subtypes in the GClineage to mimic
the scenariowithin human GCs and selected immature neuron prototypes
from all the GC clusters in the mouse P5 dataset. Cell selection criteria
described below for the human dataset were strictly followed with one
difference, which was the lack of mOli as a prototypical cell type, as the
mouse P5 dataset does not containa mOli cluster (Extended DataFig. 2a).
Giventhessignificant species differences between mice and humans
and the potential technical variability in the published datasets, we
chose cell-type prototypes from our unsupervised-clustered snRNA-seq
dataset of the infant human hippocampi as the training data for the
prototype-based scoring model. The prototypes consist of imGCs
and all major non-neuronal cell types, including Astro, OPC, mOli
and microglia. As DCX transcripts are not exclusive to the GC cluster,
the imGC prototypes were selected based on consideration of their
defining gene expression features, DCX*CALBI PROXI", only fromthe
GC cluster, which was included as the only neuronal cell prototype to

avoid the potential contamination from non-GC immature neurons
inthe infant hippocampus. Other cell-type prototypes were selected
from their respective clusters by their defining features, including
AQP4" cells from the astrocyte cluster, PDGFRA" cells from the OPC
cluster, MOBP" cells from the mOli cluster, and CX3CRI" cells from the
microglia cluster. To further refine the most representative cell popu-
lations as prototypes, two negative selection criteria were applied: (1)
cells expressing common markers of the other prototypical cell types
were excluded from prototypes. For example, imGC prototypes were
expected to exhibit no expression of markers of astrocytes (SLCIA2 and
AQP4),0PCs (PDGFRA), oligodendrocyte lineage cells (OL/G2, CNP, MBP
and MOBP) and microglia (CX3CR1and PTPRC); (2) cells were excluded
fromall prototypesifthey expressed defining markers of other known
celltypesin the hippocampal dataset, including GABAergic interneu-
rons (GADI and GAD2), CA neurons (SATB2), ependymal cells (FOX/I),
endothelial cells (FLTI) and blood cells (HBAI).

The cell scoring model was trained on the log-transformed,
max-normalized count matrix of the prototype cells with all genes
retained, followed by a gene ranking procedure?®® to refine for highly
variable cell-type specific markers. An optimal regularization param-
eter of 0.75 for the logistic regression model was chosen by plotting
theregularization strength against the classifier accuracy, looking for
the most stringent value of regularization with the maximal accuracy
rate (-99%). A cross-validation procedure was applied to the training
set to estimate the average accuracy of the model (implemented in
the LogisticRegressionCV function in scikit-learn) with the following
parameters, training set: validation set = 85%:15%, and training set ran-
domly split for 35 iterations (using a stratified k-fold cross-validation
approach). The resulting trained model uses a list of positively- and
negatively-weighted coefficients to rank genes according to their ability
topredicteach cell category. Importantly, the trained modelreliesona
combinatorial gene panel rather than afew arbitrarily picked markers
to define the transcriptomic profile of imGCs, which strikes a balance
among immature, neuronal, and regional (dentate gyrus) features.

Acollection of human scRNA-seq and snRNA-seq datasets from vari-
ous brainregions and developmental stages were individually prepared
using Seurat® as query (test) datasets (Supplementary Tables 2 and 3).
For optimal performance of the machine learning-based classification,
we ensured that query datasets have similar sequencing characteristics
asour training dataset by performing random down-sampling (imple-
mented inthe rbinom functioninR) on query expression matrices with
significantly higher average number of genes and reads per cell (>2,000
genes per cell and >4,000 reads per cell) to a similar level of depth as
our training set (-1,100 genes per cell and -2,000 reads per cell) prior
to quality control and downstream processing on query datasets. This
process was repeated ten times to ensure robustness and consistency.
Thetrained model scored the probabilistic similarity (P) to each proto-
type of eachindividual cell from the log-transformed, max-normalized
count matrices of the test datasets without prior knowledge of clus-
tering information. The predicted probability, ranging from0to1,
was calculated using the softmax function (implemented in the pre-
dict_probafunction inscikit-learn)®. The P, > 0.85 was empirically
setasaconservative cut-off of the similarity score to classify acellasan
immature neuron, which was first validated with the mouse dataset. To
ensure the specificity of our method, we compared our scoring model
predictions on astrocytes, OPCs, mOlis, and microgliausing P> 0.85as
the cut-off of similarity score for cell type classifications to the unsu-
pervised clustering labelsin the hippocampal dataset across ages and
found that our method classified cells with 94% to 99% specificity. Two
types of plots were used for visualization: (1) each cell was plotted on
awheel plot polygon using the polygonalPlot function® to show its
similarity to each prototype (Fig. 1c and Extended Data Fig. 2f); (2) a
similarity score for each cell toimGC prototypes from the test datasets
was projected to its corresponding UMAP or ¢-SNE plots (Figs. 2aand 4b
and Extended Data Fig. 3b,e,h).
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Comparison of human and mouse cell type classifications

To independently evaluate the transcriptomic similarity of nuclei or
cells in the human and mouse dentate gyrus, a previously described
multi-classrandom forest classifier (using the R package ‘randomForest’
(v4.6.14)***?) was trained on the human infant hippocampal dataset on
six celltypes, including imGCs and mGCs (determined by the machine
learning model), astrocytes, OPCs, mOlis, and microglia. The number of
nucleifromeachcluster kused as the training set (V,) was determined
by N, =min(200, 75% of Inuclei,|). Acommon set of highly variable
orthologous genes in both human and mouse datasets (identified
using homology tables in Ensembl BioMart®?) was used to train the
classifier on N for 500 decision trees. The remaining nuclei fromeach
of the six cell types were used as the validation set to estimate the
accuracy, resulting in an out-of-bag classification error rate of 11.84%.
The classifier was then used to map cells of the corresponding cell types
from a scRNA-seq dataset of the adult mouse hippocampus’ using the
published annotations based on unsupervised clustering (Fig. 1d).

In addition, we performed a Pearson correlation analysis (Fig. 2c)
comparing human hippocampal imGCs and mGCs across ages deter-
mined by the machine learning model to the mouse neuroblasts, imGCs,
and mGCsbased onthe top orthologous highly variable genes. Dataset
Ainref.’was used as the mouse dataset, where imGCs and mGCs were
annotated as ‘granule-immature’ and ‘granule-mature’, respectively.

Deep generative model for batch correction

To eliminate sequencing variation within the human hippocampal
datasets, we took precautions prior to quantitative gene expression
comparisonby correcting the datamatrix using scVI** (v0.6.8) in Python
(v3.7), aneural network-based deep generative modelling method.
Consequently, we obtained a shared, batch-corrected latent space
among all the human hippocampal datasets across ages with the fol-
lowing parameters: (1) selecting the 20,000 most variable genes (using
the subsample_genes function in scVI); (2) training the variational
auto-encoder model (VAE) with 90% of cells, holding 10% for valida-
tion to monitor overfitting and to measure accuracy (Supplementary
Fig.2a), using128 hidden layers, and generating 30 latent dimensions
(implemented in the UnsupervisedTrainer(model = VAE) function in
scVI); and (3) training the model at alearning rate of 1e-3and 100 epochs
(implemented in the ‘train’ functioninscVIl). UMAP was applied to the
latent dimensions for visualization (Supplementary Fig. 2b). Robust
clustering was achieved post-scVI-correction with excellent cluster cor-
respondence to the results from the canonical correlation analysis by
Seurat’, astate-of-the-art cell alignment tool, indicating effective batch
correction (Supplementary Fig. 2c). We measured the efficacy of data
matrix correction by comparing the expression of the housekeeping
‘stably expressed genes*®* across all age groups, benchmarking the
efficacy of the SCTransform correction method*® (implemented in Seu-
rat) (Supplementary Fig. 2d). Prior to the differential gene expression
comparisons, mouse datasets’ across ages were processed separately
with scVIfor consistency using the same parameters.

Differentially expressed gene analyses

To investigate differentially expressed genes (DEGs) in imGCs and
mGCs across ages under physiological conditions, analysis was per-
formed on the scVI-processed datasets in humans and in mice sepa-
rately using a two-sided Wilcoxon rank-sum test (implemented in
the FindMarkers function in Seurat). For the human DEG analysis, all
humanimGCs and mGCs across ages were included. Separately for the
mouse DEG analysis, all cells in the mouse granule-immature (imGC)
and granule-mature (mGC) populations from dataset A in ref. ° were
included. Only DEGs with orthologues in humans (identified using
homology tables in Ensembl BioMart®?) were included for further
analyses. To compare gene expression inimGCs between Alzheimer's
disease and controls, DEG analysis was performed on the integrated

dataset (using the RNA slot of the Seurat object) (Fig. 4a,b) using a
two-sided Wilcoxon rank-sum test (implemented in FindMarkers). All
imGCs in the Alzheimer's disease and control groups were included.
For all analyses, max.cells.per.ident in the FindMarkers function was
determined by the cell number of the group with fewer cells for a fair
statistical comparison. Genes with an FDR-adjusted P-value <0.05 and
fold change (log scale, absolute value) >0.1 were considered signifi-
cantly differentially expressed.

Pseudotime analysis

The R package Monocle* (v2.8) was applied to constructsingle-cell and
single-nuclei pseudo-temporal trajectories of human imGCs, human
mGCs, mouseimGCs, and mouse mGCs across ages. The scVI-processed
datamatrices of the four cell types were individually imported into the
Monocle pipeline. The highly variable genes within each cell type across
ages, identified heuristically using the vst method (implementedin the
FindVariableFeatures function in Seurat), were used to sort cells into
apseudotime order. The DDRTree method was used to reduce dimen-
sion (implemented in the ‘reduceDimension’ function in Monocle).
The minimum spanning tree on cells was plotted for visualization
(implemented in the plot_cell_trajectory function in Monocle).

Gene expression patterns were grouped after aligning cellsona
pseudo-age trajectory (Fig. 3h and Supplementary Fig. 4a). Significant
genes were determined using a likelihood ratio test (implemented
in the differentialGeneTest function in Monocle), with Benjamini-
Hochberg-adjusted P-value < 0.01and g-value < 0.01.

Gene ontology, disease-risk gene enrichment and functional
protein association analyses

GO networks of biological processes were built with the ClueGO (v.2.5.5)
plug-in®*in Cytoscape® (v3.7.2) with the following settings: ‘GO Biological
process (January 9,2020)’ was selected; running the default one-sided
hypergeometric test, only pathways with FDR-adjusted P-value < 0.05
were displayed; the ‘GO fusion’ option was enabled. Genes identified
inthe machine learning model or from differential expression analyses
were selected as the significantly regulated genes and used as input.
For groups with more than 200 significantly regulated genes, a mini-
mum of 7 genes per cluster were used; and for all other groups, a mini-
mum of 3 genes per cluster were used. Inaddition, the compareCluster
function (implemented in the R package clusterProfiler®) was applied
to obtain representative GO term enrichment patterns (Fig. 3i) with
the following parameters, fun = ‘enrichGO’, ont = ‘BP’, minGSSize = 3,
pAdjustMethod = ‘fdr’, FDR-adjusted P-value <0.05, and g-value <0.05.

To map risk genes for brain disorders, we calculated the DEGs of
imGCs and mGCs at each age using the ‘one_vs_all_degenes’ function
(implementing the Bayes’ method) in scVI*° using the following param-
eters, mode = ‘vanilla’, min_cells =1,n_samples = 10000. DEGs with natu-
rallog Bayes factor >1.1 were considered significant. We then analysed
the enrichment of the significant DEGs in each category with disease
annotations collected from the Phenopedia database® (accessed on
25March2021) by calculating odds ratios and the enrichment p-values.
P-values were determined by a one-tailed Fisher’s exact test (imple-
mented in the fisher.test function in R) and corrected by controlling
for the FDR for multiple comparisons.

Functional protein association network analysis was performed
using the stringApp (v1.5.1) plug-in®® in Cytoscape® with default set-
tings (Extended Data Fig. 4d). First-degree neighbours representing
high-confidence connections were calculated with the following param-
eter:score=0.35.

Cell-cellinteraction analysis

We applied the CellPhoneDB* tool (v2.1.4) with its default settings to
infer potential ligand-receptorinteractions betweenimGCs and their
neighbouring cell typesin the dentate gyrusin each sample, including
astrocytes, OPC, mOli, microglia, choroid plexus cells, ependymal cells,



endothelial cells, GABAergic interneurons, and Cajal-Retzius cells.
Other excitatory neurons that were spatially separated from imGCs
were excluded from the analysis. To investigate imGC nicheinteractions
across ages, thescVI-processed hippocampal datasets (Supplementary
Fig.2) were used. Gene expression levels <1.0 were considered negligi-
bleandsetto 0. Toinvestigate perturbations of Alzheimer's disease on
imGCnicheinteractions, the integrated dataset (using the SCT slot of
the Seurat object) (Fig. 4a,b) were used. For both analyses, the mean
expression of each ligand-receptor interaction pair for each cell type
pair was calculated. A null distribution was generated by a one-sided
random permutation of cell type identities over1,000 times, followed
by computation of the mean of eachinteraction pair for eachiteration.
The specificity of eachinteraction pair was determined by comparing
the actual mean expression level against the null distribution. Statis-
tically significant ligand-receptor interaction pairs, called using a
threshold of P-value <0.05, were used to quantify the number of inter-
action pairs for each cell type pair across ages (Supplementary Fig. 5)
or in Alzheimer's disease analysis (Fig. 4f). To determine age-related
changes of human imGCs across the lifespan, we further assessed
expression patterns of each significant ligand-receptor pair across
ages using a Moran’s / test®. A specific cell-type interaction pair with
a Bonferroni-adjusted P-value <0.05 was considered age-dependent
(exemplary gene pairs shown in Fig. 3k).

Human dentate gyrus ex vivo slice culture analysis

Fresh surgically resected hippocampal tissue was placed in ice-cold
sterile cutting solution and taken immediately for vibratome-slicing.
The cutting solution, an artificial cerebro-spinal fluid (aCSF) sucrose-
based solution, containing 210.3 mM sucrose, 3 mM KCI (Sigma-Aldrich,
P9333, CAS 7447-40-7),1.3 mM MgCl,-6H,0 (Sigma-Aldrich, 442615-M,
CAS 7791-18-6), 2 mM CacCl,-2H,0 (Sigma-Aldrich, C3306, CAS
10035-04-8), 26 mM NaHCO; (Sigma-Aldrich, S5761, CAS 144-55-8),
1.25 mM NaH,PO, (Sigma-Aldrich, S3139, CAS 7558-80-7), and 20 mM
D-(+)-glucose (Sigma-Aldrich, G6152, CAS 50-99-7), was pre-saturated
with carbonated oxygen (95% 0,/5% CO,)”. Tissue specimens were first
visuallyinspected to ensure inclusion of the dentate gyrus by its distinct
anatomical structure. Slicing was performed within a laminar flow
biosafety cabinet in continually oxygenated (95% 0,/5% CO,) cutting
solution, usingaLeica VT 1200S vibratome at 0.1 mm s speed, 1.2 mm
vibration amplitude, and with300 pm thickness interval**.In each well,
1.5 ml per well pre-warmed (37 °C) EdU* BrainPhys medium**”, contain-
ing BrainPhys Neuronal Medium (StemCell Technologies, 05790), 2%
SM1Neuronal Supplement (StemCell Technologies, 05711),1% N2 Sup-
plement (ThermoFisher Scientific,17502048),1% antibiotic-antimycotic
(ThermoFisher Scientific, 15240062), and 1 uM EdU (ThermoFisher
Scientific, A10044), was added between asterile Millicell tissue culture
plate well insert (Millipore, PICM03050) and a well of a 6-well plate.
Hippocampal slices were transferred and sparsely distributed onto
the Millicell well inserts for better access to medium and oxygen dur-
ing culture. Slices were cultured within a 37 °C, 5% CO,, 90% humidity
sterileincubator, with half of the mediumin each well replenished with
freshmediumevery two days. To prepare for whole-mount immunohis-
tological analysis, slices were fixed with 4% paraformaldehyde (wt/vol;
in 0.1 M phosphate buffer, pH 7.4) for 4-6 h depending on the tissue
size, followed by overnight cryoprotection with 30% sucrose (wt/vol).
EdUincorporation was detected using Click-iT EAU Alexa Fluor 647 kit
(ThermoFisher Scientific, C10340) prior to primary antibody incuba-
tionas previously described”. There are limitations for this approach,
such as the use of pathological specimens from patients with epilepsy
(Supplementary Table 1), and axonal and neuronal injuries from slic-
ing. We characterized the cellular composition, viability, and oxidative
stress state” of slice cultures and compared them to those of human
postmortem specimens by immunohistology (Extended Data Fig. 9a-c).
Importantly, to avoid the contribution from FGF-2 on neural progenitor
reprogramming”™, we cultured slices in the absence of any exogenous

growth factors (EGF or FGF-2) and for ashort period of cell culture time
to assess the intrinsic capacity for postnatal human neurogenesis.

Immunostaining and confocal microscopy

Brain tissue sections were pre-treated and immunohistology was
performed following a published protocol® with modifications for
optimal antigen retrieval. In brief, brain tissue blocks were fixed with
4% paraformaldehyde (PFA) at 4 °C for 24-48 h, and cryoprotected
with 30% sucrose (wt/vol). Forty-micrometre-thick sections were
cut on a frozen sliding microtome (Leica, SM2010R) as previously
described”. A small proportion of the brain specimens was prepared
as formalin-fixed, paraffin-embedded (FFPE) sections. Prior to fur-
ther pre-treatment, 10 um FFPE sections were deparaffinized in4 times
xylene (Fisher Scientific, X5-1), 4 times 100% ethanol, and 4 times 95%
ethanol, each for 5 min. Tissue sections were incubated with fresh-made
0.5% NaBH, (Sigma-Aldrich, 213462; in 0.1 N phosphate buffer) for
30 minand washed 4 times with PBS, each for 5 min. The sections then
underwent antigen retrieval prior to antibody application by being
incubated in 1x target-retrieval solution (DAKO) at 95 °C for 12.5 min,
followed by 15 min of cooling to room temperature. Antibodies were
dilutedin Tris buffered saline (TBS) with 0.1% Triton X-100, 5% (vol/vol)
donkey serum (Millipore, S30), and sodium azide (Sigma, S2002,1:100).
Sections were incubated with primary antibodies at 4 °C for five days.
The following primary antibodies were applied: ATF4 (CREB-2, rabbit,
Abcam, ab28830, 1:250), calbindin (rabbit, Abcam, ab49899, 1:250),
calbindin (rabbit, SWANT, D-28k, CB38,1:500), cleaved caspase 3 (rab-
bit, Cell Signaling Technology, 9661s, 1:250), doublecortin (rabbit,
Cell Signaling Technology, 4604s,1:500), doublecortin (goat, Santa
Cruz Biotechnology, sc8066,1:250, only works against mouse tissue),
IBA1 (rabbit, WAKO, 019-19741,1:500), Math3 (Neurod4, mouse, Santa
CruzBiotechnology, sc393724,1:100), MKI67 (mouse, BD Biosciences,
550609, 1:500), NeuN (mouse, Millipore, MAB377X,1:500), NEUROD1
(mouse, Abcam, ab60704,1:250), NFIA (mouse, CDI Laboratories, 1.2C6,
1:500), OLIG2 (goat, R&D Systems, AF2418,1:500), OP18 (Stmnl, mouse,
Santa CruzBiotechnology, sc48362,1:250, only works against human tis-
sue), PROX1 (rabbit, Abcam, ab101851, ab11941,1:500), PROX1 (goat, R&D
Systems, AF2727,1:500), S100b (rabbit, Sigma, s2644,1:500), STMN1
(goat, GeneTex, GTX89411, 1:500, only works against mouse tissue),
STMN1 (rabbit, Abcam,ab24445,1:500),and Tbr2 (Eomes, rabbit, Abcam,
ab216870, 1:250). The cyanine (Cy)-conjugated secondary antibod-
ies raised in donkey (Jackson ImmunoResearch; 1:300), including
Cy2anti-goat (705-225-147), mouse (715-225-151), rabbit (711-225-152), Cy3
anti-goat (705-165-147), mouse (715-165-151), rabbit (711-165-152), Cy5
anti-goat (705-175-147), mouse (715-175-151), and rabbit (711-175-152),
were incubated at room temperature for 2 h along with DAPI (Roche,
10236276001,1:1000). After washing with TBS, sections were incubated
with 1x TrueBlack (Biotium, 23007; diluted 1:20 in 70% ethanol) for
1minto block the autofluorescent lipofuscin and blood components.
After washing with PBS, stained sections were mounted and imaged as
Z-stacks on a Zeiss LSM 800 confocal microscope (Carl Zeiss) using a
20x or a40x objective with Zen 2 software (Carl Zeiss).

Image processing and data analysis

All confocal images were blindly acquired among different speci-
mens under the same laser power and gain, and analysed as Z-stacked
images using Imaris 9.0 software (BitPlane) as previously described””.
The Spots moduleinImaris was used to digitize cell-nucleus locations
in 3D space and to code cell type classifications according to distinct
morphological and molecular markers. A minimum of three randomly
chosen areas of equal dimensions within each dentate gyrus tissue
were quantitated. The sum of quantifications of these areas per section
was considered as one data point. In Fig. 5¢c,d, owing to the sparsity of
marker positive cells, quantification of all sections from one patient
specimen were summed as one data point. No statistical methods were
used to predetermine sample size.
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To quantify total numbers of PROX1* GCs (Fig. 5c,d) or DAPI* cells
(Extended Data Fig. 9b), semi-automated nuclear staining quanti-
fication was performed using Fiji-lmage)’®. DAPI and PROX1 chan-
nels of confocal image files (.czi) were converted to .tiff format and
imported to Image). The DAPI channel was utilized to manually select
the sub-granular zone and GC layer as aregion of interest (ROI) in each
image using the ‘polygon’ tool. The resulting cropped image was uti-
lized to generate individual ROIs for each nucleus inanimage by back-
ground subtraction with arolling ball radius of 50, auto-thresholding
with the default algorithm, despeckling, nuclear segmentation using
the watershed function, and finally ROl generation via the Analyze
Particles function with aminimalsize of 5 and circularity 0.2t01.0. For
quantification of number of PROX1" GCs (Fig. 5¢,d), the corresponding
PROX1 channelimage for each file was then opened and each nucleus
was background subtracted with rolling ball radius of 50. Mean intensi-
ties of each nucleus within the previously determined ROls were meas-
ured, and results were inspected in the R software with attention to
the overall intensity distributions. Thresholds for assigning marker
positivity were determined manually by measuring the mean intensity
of nuclei with the minimal signal that would have been determined to
be marker positive by traditional manual counting. This process was
repeated three times for each image file and results were averaged to
ensure consistency and reproducibility.

Quantification and statistical analysis

The studies were blinded during data collection and quantification.
Datain figure panels reflect several independent experiments per-
formed on different days. No data were excluded. An estimate of vari-
ation within each group of data is indicated using s.e.m. All data are
shownasmean + s.e.m. All statistical analyses areindicated in the text
or figure legends, performed with the R language for statistical com-
puting (v3.6; https://www.r-project.org/).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The snRNA-seq data are available at the Gene Expression Omnibus data-
base under accession numbers GSE185553, GSE185277 and GSE198323.
Specimen information and sequencing statistics are described in
Supplementary Tables 1and 2. Sources of the published scRNA-seq
or snRNA-seq datasets used in this study are described in Supplemen-
tary Table 3. Source data are provided with this paper.

Code availability

The computational code used in this study is available at GitHub
(https://github.com/zhoujoeyyi/humanlmmatureNeurons) or upon
request.
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Extended DataFig.2|Machinelearning model trained with the mouse
early postnatal hippocampal scRNA-seq dataset. a, b, Unsupervised
clustering and t-distributed Stochastic Neighbor Embedding (t-SNE)
visualization of all cells from the mouse postnatal (P5) hippocampus’ colored
by cluster (a) and marker gene expression (b).imGC: immature dentate granule
cell; GC: dentate granule cell; IPC:intermediate progenitor cell; OPC:
oligodendrocyte precursor cell. RGL: radial glia-like cell; VLMC: vascular and
leptomeningeal cell. ¢, A schematicillustration of the machine learning-aided
analysis using the mouse hippocampal scRNA-seq datasets’, mirroring our
analysis pipelinein human studies (Fig. 1a). In brief, Dcx"Calbl Prox1"imGCsin
the P5mouse dentate gyrus were selected as prototypestotrainascoring
modelto comprehensively learn their gene features. The trained model
containing an aggregate of weighted features (“gene weights”) was then used
to quantitatively evaluate the similarity of each cell to theimGC prototypein
query (test) datasets of the early postnatal (P5; self-scoring), the juvenile (P12-35)
and the adult (P120-132) hippocampus’. To assess the efficacy of our method,
we classified cells with high similarity scores to the imGC prototype asimGCs

and compared our model classifications to the published annotations based on
unsupervised clustering® (Shown in Extended Data Fig. 3). d, Measuring
performance of the machine learning model. Line plot showing the accuracy
score of the machine learning classifier varying with decreasing regularization
strength as estimated by cross-validation. Red line shows 95% confidence
interval on the estimation of the accuracy score. #Sum abs (coeffs): sum of the
absolute value of regression coefficients. e, Heatmap showing expression of
top-weighted genesintop-scoring cells of each prototype determined by the
machinelearning model. Geneslisted are the top 25 weights defining mouse
imGCs. f, Wheel plot visualizing the scores of each cell to each prototype. Dots
representindividual cellswhose distance to each prototypeis proportional to
thescoreof that prototype.Red and lime green dots represent the prototypical
imGCs and all other GCs, respectively. Dotted line indicates asimilarity score of
0.85toeach prototypical celltype. Note that unlike in the human system
(Fig.1c), no mature oligodendrocyte (mOli) cluster was present in the PSmouse
hippocampus.
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Extended DataFig. 3 | Validation of prototype-based scoring of mouse
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postnatal (a), juvenile (d), and adult (g) stages, colored by four broad cell
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¢, f,i, Benchmarking cells with high similarity scores (P> 0.85) with the
published annotations’. Percentage of cellsin the GC lineage clusters (based
on published annotations®) that are selected asimGCs by our trained machine
learning model areindicatedinred, bold text.
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Extended DataFig.4|Machinelearning model performance and feature
extraction of gene weights defining humanimGCs. a, Efficacy of the
machine-learning approach. Line plot showing the accuracy score of the
machinelearning model varying with decreasing regularization strength as
estimated by cross-validation. Red line shows 95% confidence interval on the
estimation of theaccuracy score. b, Heatmap showing expression of top gene
weightsintop-scoring cells of each prototype determined by the machine
learning model. Genes listed are the top 15 weights defining human imGCs.
¢, Gene ontology (GO) network of biological processes of the positive gene
weights defining humanimGCs, colored by functionally related ontology
group. Onlysignificantly enriched nodes are displayed (one-sided
hypergeometric test, false-discovery rate-adjust p value (FDR) < 0.05).
Thenodesizerepresents the termenrichment significance. Examples of the

most significant terms per group are shown. See also Supplementary Table 5
forthelist of GO terms. d, Functional protein-protein association network®® of
the positive gene weights defining humanimGCs, highlighting the first-degree
neighbors (high-confidence connections) in orange related to DCX. e, Overlap
ofthe positive gene weights defining imGCs in humans and in mice that were
generated by separate machine learning models. See Supplementary Table 4
for thelists of genes. f, g, Immunohistological analysis showing Stmnl
enrichmentinimmature neuronsinthe adult mouse dentate gyrus. Shown are
sample confocal images (f) and quantification (g) of Stmnlexpressionin
imGCsintheadult mouse hippocampus. Individual dots represent value of
quantification for different sections (f). Scale bars, 10 pum. Box plots similar as
inFig.1g (n =4 mice) (g).
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scRNA-seq or snRNA-seq datasets of the human brains. Box plots represent

Extended DataFig. 5|Specificity of the machinelearning approachfor

mean s.e.m. with whiskers for max and min. See Supplementary Tables1,2,3

for the specimensusedinoursand all published datasets.

identification of humanimmature neurons. The fractions of cells with high
similarity scores (P> 0.85) among non-GC excitatory neuron (a), GABA

interneuron (b), and non-neuronal cell (c) clustersin various
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dentate gyrus, confirming their neuronalidentity. Asterisks indicate
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Extended DataFig.10|Protracted neuronal maturationleads to
accumulation ofimmature neuronsinthe presence oflow frequency of
denovonew neuron generation. a, Process of adult hippocampal
neurogenesis?. Proliferating intermediate progenitor cells (IPCs) and
neuroblasts (brown) arising from activated neural stem cells (NSCs, grey)
generate new post-mitoticimmature dentate granule cells (imGCs, red), which
develop over time into mature dentate granule cells (mGCs, lime-green).

b, An“imGC protracted maturation” model explaining how low-rate,
continuousIPCgeneration canlead toalarge number ofimGCs asareservoir,
asopposed toa“fast maturation” model. The size of theimGCreservoirinthe
adulthippocampus depends onanumber of factors at the cellular level, such as
therate of stemcell activation and IPC generation, the number of progeny each
IPC generates, the percentage of progeny that survives’, and the duration of
imGCs remaining in theimmature state, and these parameters may vary
tremendously across species and ages®®. Here we illustrate side-by-side two
schematic models showing how changing one factor, the length of imGC
maturationduration, alone while keeping all other parameters the same can
lead tosignificant differencesin the outcome onthe number ofimGCsata
giventime. ForIPCsinanewly generated cohortatagiventimet, they go

through stereotypical developmental stages to become imGCs and then mGCs
(x-axis). At time t+1,anew IPC cohortis generated (y-axis). With all other
parametersthe same, if theimGCs mature fast, very fewimGCs will be observed
atany giventime (left model). In contrast, ifthe average length of imGC
maturation durationis substantially longer, imGCs in various maturation
stages accumulate over time and are present as alarge populationinany
“snapshot” (right model). Prolonged maturation duration of new neuronsin
the hippocampus has been demonstrated in non-human primates using
nucleotide analog tracing analysis to be at least six months* and over ayear*°.
Furthermore, humaninduced pluripotent stem cell-derived transplanted
neurons display significantly slower maturation compared to those of three
non-human primates®. ¢, d, Anindifference curve qualitatively depicting
different combinations of two factors, the average rate of new neuron
generation (f,) and the average duration of imGC maturation (t,), to achieve
anequalsize ofimGCreservoirs (c). Hypothetical examples shownind.
Asignificantly longer t,in the adult human hippocampus spares the system
from high demand of r, to maintain the same size ofimGC reservoir, whichis a
potential model to explain the seemingly counterintuitive discrepancy
between the few IPCsand alarge number ofimGCsin our results.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X’ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X’ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Sequencing data was obtained from the NextSeq 550 sequencer (lllumina) and was pre-processed using Drop-seq_tools (v1.13, http://
mccarrolllab.com/dropseq/, RRID: SCR_018142). Spliced Transcripts Alignment to a Reference (STAR, v2.5.2a, RRID: SCR_015899) was used to
align sequencing reads to the human reference genome assembly (Genome Reference Consortium hg38, Gencode release v28).
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Data analysis #tt Bioinformatic analysis:
#it#H# R based:
R (v3.6, RRID: SCR_001905); R Studio (v1.1, RRID: SCR_000432); Seurat (v3.1.4, RRID: SCR_007322); randomForest(v4.6.14, RRID:
SCR_015718); biomaRt (v2.46.3, RRID:SCR_019214); Monocle (v2.8, RRID: SCR_016339); sctransform (v0.3); clusterProfiler (v3.18.1, RRID:
SCR_016884).
#### Python based:
Python (v3.7, RRID:SCR_008394); Spyder (v4.2.0, RRID:SCR_017585); scikit-learn (v0.24.1, RRID: SCR_002577); backspinpy (v0.2.1); The
prototype-based scoring machine learning method and the 'polygonPlot’ tool were modified from La Manno et al., Cell 2016 (ref 28; https://
github.com/linnarsson-lab/ipynb-lamanno2016); scVI (single-cell Variational Inference, v0.6.8); seaborn (v0.11.1, RRID:SCR_018132);
matplotlib (v3.3.2, RRID:SCR_008624); scanpy (v1.6.0, RRID:SCR_018139); pytorch (v1.7.1, RRID:SCR_018536); scipy (1.6.0,
RRID:SCR_008058); CellPhoneDB (v2.1.4, RRID: SCR_017054).
#it## Others:
Cytoscape (v3.7.2, RRID: SCR_003032); ClueGO (v2.5.5, RRID: SCR_005748); stringApp (v1.5.1).

#i#t#H# Image analysis:
Imaris (BitPlane, v.9.0, RRID: SCR_007370); Zen 2 (Carl Zeiss, RRID: SCR_013672); Fiji Image J (NIH, v1.53f51, RRID:SCR_003070).

#itH# Making figures:
Adobe lIllustrator CS6 (Adobe, v16.0.3, RRID: SCR_010279).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The snRNA-seq data are available at the GEO database (accession numbers, GSE185553, GSE185277, and GSE198323). Specimen information and sequencing
statistics are described in Supplementary Tables 1, 2. Sources of the published scRNA-seq or snRNA-seq datasets used in this study are described in Supplementary
Table 3.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We used a total of 62 human post-mortem specimens and 10 surgical specimens to ensure that there were multiple biological and technical
replicates for each experiment. No statistical method was used to predetermine sample size. Sample size was determined by the number of
available specimens.

For snRNA-seq analysis of the neurotypical human hippocampus across ages, 4-5 specimens were included in each age group. For snRNA-seq
analysis of the human hippocampus in AD, at least 8 specimens were included in each group. Collecting nuclei from multiple donors for
sequencing allows us to minimize technical artifacts and ensure that the transcriptomic differences observed between experimental groups
are consistent between donors.

For immunohistological analysis of immature neurons in the neurotypical human hippocampus across ages, 4 specimens were included in
each age group. For immunohistological analysis of neural progenitor cells in the neurotypical human hippocampus across ages, a total of 10
specimens were included in the experiment. For immunohistological analysis of the wild-type mouse hippocampus, 3-4 mice were included in
each age group or per experiment.

Data exclusions  No data were excluded for quantifications of histological experiments.

For snRNA-seq analysis, well-established quality-control filters were applied to each specimen prior to downstream analyses: genes expressed
in < 10 nuclei were discarded; Nuclei with < 400 or > 5,000 genes were discarded; nuclei with > 5% UMIs mapped to mitochondrial genes
were discarded.

PROX1, the defining marker for excitatory dentate granule cells, was used to determine whether a hippocampal specimen contains cells or
nuclei from the dentate gyrus. For each hippocampus specimen, only specimens with a distinct PROX1-enriched neuronal cluster containing at
least 50 cells or nuclei were included. For non-hippocampal specimens, a distinct PROX1-enriched neuronal cluster precluded further analysis.
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Replication Replication attempts were successful. For snRNA-seq of immature neuron age-dependent features, 4-5 human donors were used per age
group. For snRNA-seq of immature neurons in AD, 8 AD patients and 8 sex- and age-matched human donors were sequenced. Data
integration methods were applied prior to any quantification or gene expression analysis and we observed that nuclei from different donors
were clustered by their cell type but not by donor. Immunohistological experiments were performed on different days using multiple
specimens from a total of 24 post-mortem donors and 10 surgical donors.

Randomization  For snRNA-seq analysis of the neurotypical human hippocampus across ages, subjects were classified based on their age group: infant (0-2.1
years old), child (3.2-6.7 years old), adolescent (13-18.5 years old), adult (40-60 years old), and aging (86-92 years old). The age numbers were

determined by the min and max age of the available specimens we have within each age group.

For snRNA-seq analysis of the human hippocampus in AD, subjects were classified based on their disease status: AD patients or neurological
disease-free "control" donors.

For immunohistological experiments, subjects were classified based on their age group: prenatal (GW20-GW39.4), infant (0-2.4 years old),
child (4-7 years old), adolescent (13-17 years old), younger adults (25-46 years old), and more mature adults (55-64 years old). The age

numbers were determined by the min and max age of the available specimens we have within each age group.

Blinding Human specimens were de-identified and assigned with a unique code. Investigators only had access to basic information about donors, such
as age, sex, ethnicity, PMI, etc.

Investigators were not blinded during snRNA-seq analysis as such analysis does not require human quantification, but rather computer-based
quantification.

Investigators were blinded in all immunohistological experiments during tissue processing, image acquisition, and cell quantification.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies D ChlIP-seq
Eukaryotic cell lines D Flow cytometry
Palaeontology and archaeology D MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

XXOOX X s
OO0XXOOKX

Dual use research of concern

Antibodies

Antibodies used The following primary antibodies were used in this study: Atf4 (CREB-2, rabbit polyclonal, Abcam, ab28830, RRID:AB_725570),
Calbindin (rabbit polyclonal, Abcam, ab49899, RRID: AB_1267903), Calbindin (rabbit polyclonal, SWANT, D-28k, CB38, RRID:
AB_10000340), cleaved Caspase 3 (rabbit polyclonal, Cell Signaling Technology, 9661s, RRID:AB_2341188), Doublecortin (rabbit
polyclonal, Cell Signaling, 4604s, RRID: AB_561007), Doublecortin (goat polyclonal, Santa Cruz, sc8066, RRID: AB_2088494), Ibal
(rabbit polyclonal, WAKO, 019-19741, RRID:AB_839504), Math3 (Neurod4, mouse monoclonal (D-10), Santa Cruz, sc393724), Mki67
(mouse monoclonal (B56), BD Biosciences, 550609, RRID:AB_393778), NeuN (mouse monoclonal (clone A60), Millipore, MAB377X,
RRID:AB_2149209), Neurod1 (mouse monoclonal (3H8), Abcam, ab60704, RRID:AB_943491), Nfia (mouse monoclonal (1.2C6), CDI
Laboratories, RRID: AB_2618885), Olig2 (goat polyclonal, R&D Systems, AF2418, RRID:AB_2157554), Op18 (Stmn1, mouse
monoclonal (A-4), Santa Cruz, sc48362, RRID: AB_628297), Prox1 (rabbit polyclonal, Abcam, ab101851, RRID: AB_10712211), Prox1
(rabbit polyclonal, Abcam, ab11941, RRID: AB_562212), Prox1 (goat polyclonal, R&D Systems, AF2727, RRID: AB_2170716), S100b
(rabbit polyclonal, Sigma, s2644, RRID:AB_477501), Stmn1 (goat polyclonal, GeneTex, GTX89411, RRID: AB_10726709), Stmn1 (rabbit
polyclonal, Abcam, ab24445, RRID: AB_778117), and Thr2 (EOMES, rabbit monoclonal (EPR21950-241), Abcam, ab216870).

The following Cyanine (Cy)-conjugated secondary antibodies, all raised in donkey from Jackson ImmunoResearch, were used at 1:300
in this study to detect the binding of primary antibodies: Cy2 donkey anti-goat (705-225-147, RRID: AB_2307341), Cy2 donkey anti-
mouse (715-225-151, RRID: AB_2340827), Cy2 donkey anti-rabbit (711-225-152, RRID: AB_2340612), Cy3 donkey anti-goat
(705-165-147, RRID: AB_2307351), Cy3 donkey anti-mouse (715-165-151, RRID: AB_2315777), Cy3 donkey anti-rabbit (711-165-152,
RRID: AB_2307443), Cy5 donkey anti-goat (705-175-147, RRID: AB_2340415), Cy5 donkey anti-mouse (715-175-151, RRID:
AB_2340820), and Cy5 donkey anti-rabbit (711-175-152, RRID: AB_2340607).

Validation Atf4 (rabbit polyclonal, Abcam, ab28830, RRID:AB_725570): validated by manufacturer to detect antigen from human tissue by IHC.

Calbindin (rabbit polyclonal, Abcam, ab49899, RRID: AB_1267903): validated by manufacturer to detect antigen from human, mouse,
and rat tissue by WB and IP.

Calbindin (rabbit polyclonal, SWANT, D-28k, CB38, RRID: AB_10000340): validated by manufacturer to detect antigen from human,
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monkey, mouse, chicken, rat, and fish tissue by WB and IHC.

cleaved Caspase 3 (rabbit polyclonal, Cell Signaling Technology, 9661s, RRID:AB_2341188): validated by manufacturer to detect
antigen from human, monkey, mouse, and rat tissue by WB, IP, IHC, IF, and FC.

Doublecortin (rabbit polyclonal, Cell Signaling, 4604s, RRID: AB_561007): validated by manufacturer to detect antigen from mouse
and rat tissue by IF.

Doublecortin (goat polyclonal, Santa Cruz, sc8066, RRID: AB_2088494): validated by manufacturer to detect antigen from mouse, rat,
human, and avian tissue by WB, IP, IF, IHC, and ELISA.

Ibal (rabbit polyclonal, WAKQ, 019-19741, RRID:AB_839504): validated by manufacturer to detect antigen from mouse, rat and
human tissue by ICC and IHC.

Math3 (Neurod4, mouse monoclonal (D-10), Santa Cruz, sc393724): validated by manufacturer to detect antigen from mouse, rat
and human tissue by WB, IP, IF, and ELISA.

Mki67 (mouse monoclonal (B56), BD Biosciences, 550609, RRID:AB_393778): validated by manufacturer to detect antigen from
human, monkey, mouse, chicken, rat, and fish tissue by FC and IHC.

NeuN (mouse monoclonal (clone A60), Millipore, MAB377X, RRID:AB_2149209): validated by manufacturer to detect antigen from
mouse, rat and human tissue by IHC.

Neurodl (mouse monoclonal (3H8), Abcam, ab60704, RRID:AB_943491): validated by manufacturer to detect antigen from human
tissue by IHC-P, WB, and FC.

Nfia (mouse monoclonal (1.2C6), CDI Laboratories, RRID: AB_2618885): validated by manufacturer to detect antigen from human
tissue by WB, IP, and ChlP.

Olig2 (goat polyclonal, R&D Systems, AF2418, RRID:AB_2157554): validated by manufacturer to detect antigen from human tissue by
ELISA and WB.

Op18 (Stmn1, mouse monoclonal (A-4), Santa Cruz, sc48362, RRID: AB_628297): validated by manufacturer to detect antigen from
mouse, rat and human tissue by WB, IP, IF, IHC(P), and ELISA.

Prox1 (rabbit polyclonal, Abcam, ab101851, RRID: AB_10712211): validated by manufacturer to detect antigen from mouse and
human tissue by WB, IP, and IHC.

Prox1 (rabbit polyclonal, Abcam, ab11941, RRID: AB_562212): validated by manufacturer to detect antigen from human tissue by
WB.

Prox1 (goat polyclonal, R&D Systems, AF2727, RRID: AB_2170716): validated by manufacturer to detect antigen from human tissue
by WB and ELISA.

S100b (rabbit polyclonal, Sigma, s2644, RRID:AB_477501): validated by manufacturer to detect antigen from human, guinea pig, rat,
and bovine tissue by IHC/ICC/IF and microarray.

Stmn1 (goat polyclonal, GeneTex, GTX89411, RRID: AB_10726709): validated by manufacturer to detect antigen from mouse and
human tissue by WB and ELISA.

Stmn1 (rabbit polyclonal, Abcam, ab24445, RRID: AB_778117): validated by manufacturer to detect antigen from mouse and rat
tissue by IHC-FoFr, WB, IHC-P, IHC (PFA fixed), IHC-FrFl, and ICC/IF.

Thbr2 (EOMES, rabbit monoclonal (EPR21950-241), Abcam, ab216870): validated by manufacturer to detect antigen from human,
mouse and rat tissue by ICC, IHC, and IP.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

The wild-type, male and female C57BL/6 mice of different ages were used in this study: Postnatal day 14 (n = 3), Postnatal day 60 (n =
4), and 1.4 years old (n = 3). No obvious sex phenotype was observed in any of the experiments. Animals were housed in a 12-hour
light/dark cycle with food and water ad libitum, room temperature: 67-75 °F, humidity: 26-73 %.

No wild animals were used in this study.

No field-collected samples were used in this study.

Animal procedures were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee of
the University of Pennsylvania.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<

Lc0c Y21o




Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

For snRNA-seq and histological analyses, a total of 62 human post-mortem hippocampal specimens between the ages of
gestational week (GW) 20 to 92 years old, including 54 specimens from subjects free from neurological disorders and 8
specimens from AD patients, were used (Supplementary Table 1). The neurological disease-free donors were separated into
Six age groups.

Prenatal: 2 male, 2 female, median age: GW31.7, median PMI (post-mortem interval): 16.5 hours.

Infant: 5 male, 3 female, median age: 1 year, median PMI: 12 hours.

Child: 5 male, 3 female, median age: 4.2 years, median PMI: 20.5 hours.

Adolescent: 4 male, 4 female, median age: 15 years, median PMI: 18.6 hours.

Adult: 10 male, 3 female, median age: 50.2 years, median PMI: 20.5 hours.

Aging: 8 male, 5 female, median age: 83 years, median PMI: 12.4 hours.

For AD patients, they are composed of 4 males and 4 females, with a median age of 80 years, a median PMI of 15.5 hours,
and Braak stage ranging from Ill to VI.

Tissue samples were visually inspected to include the dentate gyrus by its distinct anatomical structure. For each
hippocampus specimen used from snRNA-seq analyses, only specimens with a distinct PROX1-enriched neuronal cluster
containing at least 50 cells or nuclei were included.

In addition, for the slice culture experiment using fresh surgically resected human hippocampal tissue: a total of 10 patients
between the ages of 2 to 61 years old were used (5 male, 5 female, median age: 15 years). Tissue samples were visually
inspected to include the dentate gyrus by its distinct anatomical structure.

De-identified patient information was described in Supplementary Table 1. Informed consent for each specimen was
obtained by its corresponding institution prior to tissue collection. All embryonic tissues were from diagnostic autopsies.

For snRNA-seq and histological analyses: specimens were collected from tissue banks at the Children’s Hospital of
Philadelphia, the Johns Hopkins University Pathology Archive, the Lieber Institute for Brain Development, the NIH
NeuroBioBank at the following repositories: University of Pittsburgh Brain Tissue Donation Program, the University of
Maryland Brain and Tissue Bank, the University of Miami Brain Endowment Bank, the Harvard Brain Tissue Resource Center,
and the Human Brain and Spinal Fluid Resource Center at the VA West Los Angeles Healthcare Center, and the Mount Sinai
School of Medicine.

For the slice culture experiment using fresh surgically resected human hippocampal tissue: specimens were collected from
the Children’s Hospital of Philadelphia and the Hospital of the University of Pennsylvania.

De-identified human tissue specimens were collected and processed under protocols approved by the Institutional Review
Boards of the University of Pennsylvania and the Children’s Hospital of Philadelphia.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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