TET1 Controls CNS 5-Methylcytosine Hydroxylation, Active DNA Demethylation, Gene Transcription, and Memory Formation

Garrett A. Kaas,¹ Chun Zhong,³ Dawn E. Eason,¹ Daniel L. Ross,² Raj V. Vachhani,¹ Guo-li Ming,³ Jennifer R. King,² Hongjun Song,³ and J. David Sweatt^{1,*}

¹Department of Neurobiology and Evelyn F. McKnight Brain Institute

²Department of Pharmacology & Toxicology

University of Alabama at Birmingham, Birmingham, AL 35294, USA

³Institute for Cell Engineering, Department of Neurology, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

*Correspondence: dsweatt@uab.edu

http://dx.doi.org/10.1016/j.neuron.2013.08.032

SUMMARY

Dynamic changes in 5-methylcytosine (5mC) have been implicated in the regulation of gene expression critical for consolidation of memory. However, little is known about how these changes in 5mC are regulated in the adult brain. The enzyme methylcytosine dioxygenase TET1 (TET1) has been shown to promote active DNA demethylation in the nervous system. Therefore, we took a viral-mediated approach to overexpress the protein in the hippocampus and examine its potential involvement in memory formation. We found that Tet1 is a neuronal activity-regulated gene and that its overexpression leads to global changes in modified cytosine levels. Furthermore, expression of TET1 or a catalytically inactive mutant (TET1m) resulted in the upregulation of several neuronal memory-associated genes and impaired contextual fear memory. In summary, we show that neuronal Tet1 regulates DNA methylation levels and that its expression, independent of its catalytic activity, regulates the expression of CNS activity-dependent genes and memory formation.

INTRODUCTION

In recent years, epigenetic modifications of DNA and chromatin have been identified as essential mediators of memory formation through their regulation of gene expression (Sultan and Day, 2011), with methylation of cytosine bases in DNA (5mC) playing a critical role in both memory consolidation and storage (Feng et al., 2010a; Lubin et al., 2008; Miller et al., 2010; Miller and Sweatt, 2007; Monsey et al., 2011). Although originally thought to act as a stable transcriptional silencer (Bonasio et al., 2010; Feng et al., 2010b), new evidence of rapid, reversible changes in 5mC levels at memory and synaptic plasticityassociated genes implies the presence of an active DNA demethylation mechanism in response to neuronal activity (Guo et al., 2011b; Lubin et al., 2008; Ma et al., 2009; Miller and Sweatt, 2007).

The near-simultaneous discoveries of a hydroxylated form of 5mC (5hmC) (Kriaucionis and Heintz, 2009) and the Ten-eleven translocation (Tet) family of enzymes required for its conversion (Tahiliani et al., 2009) has now offered insight into how these changes in DNA methylation might occur. Specifically, all three Tets (TET1-TET3) have been shown to catalyze the conversion of 5mC to 5hmC as well as its further oxidation into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), respectively (He et al., 2011; Ito et al., 2010, 2011). These modified bases may then function as DNA demethylation intermediates subject to deamination, glycosylase-dependent excision, and repair resulting in a reversion back to unmodified cytosine (Bhutani et al., 2011; Branco et al., 2012). However, it has now become apparent that 5hmC is not merely a DNA demethylation intermediate but also functions as a stable epigenetic mark enriched within gene bodies, promoters, and transcription factor binding sites, where it may influence gene expression (Hahn et al., 2013; Mellén et al., 2012; Szulwach et al., 2011).

In the adult brain, alterations in global DNA methylation patterns in response to neuronal activity (Guo et al., 2011a; Miller-Delaney et al., 2012) are at least partially mediated by TET1, which is both necessary and sufficient for demethylation of the fibroblast growth factor 1 (Fgf1) and the brain-derived neurotrophic factor (Bdnf) promoters in response to electroconvulsive shock (Guo et al., 2011b). Complementary studies have shown that Bdnf is critical for memory formation (Bekinschtein et al., 2008; Mizuno et al., 2000), and its promoter region undergoes rapid demethylation after associative learning in a fear conditioning paradigm in rodents (Lubin et al., 2008), suggesting the possibility that Tet1 may contribute to memory formation. However, at present, the role of Tet-mediated regulation of 5hmC and subsequent active DNA demethylation in relation to the expression of neuronal plasticity genes and memory has not been extensively explored, although Zhang et al. recently reported that Tet1 deletion in a knockout mouse model resulted in altered neurogenesis and a deficit in spatial memory in the Morris water maze (Zhang et al., 2013).

In this study, we sought to investigate the role of TET1 enzymatic activity in memory formation, through its ability to promote

Figure 1. TET1 Is Expressed in Neurons and Its Transcript Levels Are Altered by Neuronal Activity

(A and B) NeuN-labeled (A) neurons and TET1-labeled (B) cells in the hippocampus. (C) Merged image of NeuN and TET1 double labeling, counterstained with DAPI. Inset, higher magnification of the CA1 pyramidal cell layer showing merged signal present in the soma of neurons. (D and E) GFAP-labeled (D) astrocytes and TET1-labeled (E) cells in the hippocampus. (F) Merged image of GFAP and TET1 double labeling, counterstained with DAPI. Inset, higher magnification of a GFAP-positive cell with TET1 labeling in the soma. Scale bar, 200 μ m. Inset scale bar, 20 μ m. (G) Quantitative reverse-transcription PCR analysis of *Tet1* expression in primary hippocampal neuron cultures depolarized with 25 mM KCl for 0.5, 1, and 4 hr compared to vehicle controls. Data represent the combined results of two independent experiments ($F_{3, 22} = 23.91$; n = 5–6 total/group). Vehicle versus 4 hr KCl treatment. ***p < 0.001, one-way ANOVA followed by Bonferroni post hoc test. (H) Quantitative reverse-transcription PCR analysis of *Tet1* expression in dorsal CA1 subregion 0.5, 1, and 3 hr. *p < 0.05, one-way ANOVA followed by Bonferroni post hoc test. (I) Quantitative reverse-transcription PCR analysis of *Tet1* expression in dorsal CA1 0.5, 1, and 3 hr. *p < 0.05, one-way ANOVA followed by Bonferroni post hoc test. All data are presented as mean ± SEM.

demethylation and, therefore, gene expression. We found that endogenous TET1 is expressed in neurons throughout the hippocampus and that its transcript levels are regulated by neuronal activity. In addition, we used an AAV-mediated approach to overexpress the catalytic domain of TET1 or a catalytically inactive mutant version TET1m in the hippocampus and found that active TET1 drove hydroxylation of 5mC and resulted in active demethylation in vivo. Surprisingly, we observed that overexpression of either TET1 or TET1m increased expression of many immediate early genes (IEGs) implicated in memory and induced a selective deficit in long-term contextual fear memory.

RESULTS

TET1 Is Primarily Expressed in Neurons and Its Transcript Levels Are Regulated by Neuronal Activity

Although TET1 has recently been shown to regulate the expression of several genes in the dentate gyrus after neuronal activation (Guo et al., 2011b), little is known about TET1 localization within the hippocampus. To address this, we double labeled hippocampal tissue sections with the neuronal marker NeuN and an antibody against TET1. Immunohistochemical analysis revealed strong colocalization of TET1 and NeuN signals in neurons throughout the hippocampus (Figures 1A–1C). Within neurons, the 5-methylcytosine dioxygenase was found to be present in both the nucleus and soma (Figure 1C, inset). In addition, we asked whether TET1 was also expressed in nonneuronal cells in the CNS by double labeling sections with the astrocytic marker GFAP and TET1. At lower magnification, we did not observe obvious colocalization (Figures 1D–1F) but under higher magnification, we did detect low levels of TET1 staining in the soma of several astrocytes (Figure 1F, inset).

Next, we sought to determine whether the transcript levels of *Tet1*, like those of other epigenetic regulators necessary for memory formation, may be modified after neuronal stimulation, fear conditioning, or both (Miller and Sweatt, 2007; Oliveira et al., 2012). To determine whether *Tet1* expression levels

were regulated by neuronal activity, we utilized a primary hippocampal neuronal culture system and examined the effect of KCI-induced cell depolarization on its transcription. We found that prolonged KCl incubation of hippocampal neurons consistently resulted in a significant reduction in Tet1 mRNA compared to vehicle controls (Figure 1G). Next, using a flurothyl-induced epileptic seizure paradigm, we sought to establish whether or not Tet1 message could also be transcriptionally regulated by neuronal activity in vivo. Again, we observed a significant reduction in *Tet1* levels several hours postepisode (Figure 1H). Finally, we trained animals using a robust context plus cued fear conditioning paradigm to ascertain whether the expression of Tet1 was also modulated during memory formation. Like the two experiments before, a consistent downregulation of Tet1 was observed after fear learning (Figure 1I). The transcript levels of the other two Tet-family members, Tet2 and Tet3, did not consistently respond to stimulation using any of our activityinducing paradigms (Figures S1B and S1C available online). In all experiments, we monitored the expression of the gene activity-regulated cytoskeleton-associated protein (Arc) as a positive control to ensure that neuronal activation had indeed occurred (Figure S1A).

Considering the role of TET1 in active DNA demethylation, we asked whether other genes whose products are involved in the conversion of 5mC back to an unmodified cytosine were also regulated by neuronal activity. We focused our attention on four genes previously implicated in the active DNA demethylation pathway, which included the cytidine deaminase apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (Apobec1) (Guo et al., 2011b; Popp et al., 2010) and three glycosylases, thymine-DNA glycosylase (Tdg) (Cortellino et al., 2011), strand-selective monofunctional uracil-DNA glycosylase 1 (Smug1) (Kemmerich et al., 2012) and methyl-CpG-binding domain protein 4 (Mbd4) (Rai et al., 2008). Quantitative reverse-transcription PCR for these genes revealed a general trend toward downregulation several hours after neuronal activation both in vitro and in vivo, similar to that observed for Tet1 (Figure S2). However, unlike Tet1, these trends were not observed consistently across all our paradigms. Together, these data reveal that TET1 is broadly expressed in neurons throughout the hippocampus and exhibits activity-dependent changes in its mRNA levels, both in vitro and in vivo. In addition, other active DNA demethylation genes also appear to be transcriptionally regulated after neuronal activity. Furthermore, the alterations in the expression of active DNA demethylation machinery observed here temporally overlaps with previously reported changes in DNA methylation after fear conditioning (Lubin et al., 2008; Miller and Sweatt, 2007).

Global Alteration of Modified Cytosines after Neuronal Activity

Using an approach similar to that previously reported (Globisch et al., 2010), we developed an HPLC/MS system for the accurate, precise, and simultaneous measurement of 5mC and 5hmC levels in biological samples (Figures 3A and 3B). Our rationale for the development of this quantitative analytical chemistry approach was to directly test whether TET1 was capable of actively regulating 5mC hydroxylationin vivo. To confirm that our system was accurate and sensitive, we measured global 5mC and 5hmC levels using a set of commercially available genomic DNA standards previously quantified by mass spectrometry. We found that the percentage of 5mC and 5hmC present in each sample, as measured by our method, closely resembled the results generated by the manufacturer, suggesting that our system was able to accurately measure modified cytosines (Figures 3C and 3D).

Based on our expression analysis of Tet1 and other genes implicated in active DNA demethylation (Figures 1 and S2), we examined whether changes in 5mC and 5hmC could be detected on a global scale following neuronal activity. To explore this possibility, we used our flurothyl seizure-inducing paradigm to facilitate generalized seizures in mice and subsequently collected dorsal CA1 tissue from animals at varying time points upon recovery. Surprisingly, we observed a significant reduction in the relative percentage of 5mC at both 3 and 24 hr after seizure when compared to our naive animals (Figure 3E). In addition, the levels of 5hmC were also reduced at the 24 hr time point (Figure 3F). Thus, using our HPLC/MS system, we discovered that neuronal activation alters the global levels of both 5mC and 5hmC in vivo. Overall, these studies serve to validate this HPLC/MS method as an accurate analytical technique to quantitatively measure the levels of 5mC and 5hmC, the proposed substrate and product of TET1 in the CNS.

Viral-Mediated Overexpression of TET1 Catalytic Domain Results in Global Changes in Modified Cytosines

To assess whether TET1 was capable of catalyzing 5mC hydroxylation and triggering a decrease in 5mC levels via active DNA demethylation, we stereotaxically injected AAVs overexpressing a hemagglutinin (HA)-tagged catalytic domain of human TET1, or a catalytically inactive version (TET1m), into the dorsal hippocampus (Guo et al., 2011b). At 2 weeks postinfection, AAV-mediated expression was consistently observed throughout the entire dorsal half of the hippocampus (Figure 3A). Immunostaining of coronal sections and western blots confirmed consistent expression of both peptides in area CA1 (Figures 3B and 3C). We next assessed the functional consequences of TET1 and TET1m overexpression by measuring the global levels of 5hmC, 5mC and cytosine in microdissected CA1 tissue using our HPLC/MS analysis system previously optimized for accuracy and sensitivity (Figures 2A-2D). We found that after 14 days, 5hmC levels in CA1 increased from 0.49% in controls to 0.95% of all cytosines in tissue overexpressing TET1 (Figure 3D). Likewise, the amount of 5mC in TET1 samples was reduced by 41%, as would be expected by conversion of 5mC into 5hmC (Figure 3E). Finally, in AAV-TET1-injected samples, we observed a significant increase in the global levels of unmodified cytosines compared to both controls (Figure 3F). No statistically significant alterations in the levels of 5mC, 5hmC, or cytosine were observed from tissue infected with the catalytically inactive TET1m. Our analyses of global modified cytosines provides direct evidence that overexpression of TET1 in vivo, in the CNS, leads to increased 5mC to 5hmC conversion and promotes active DNA demethylation.

Overexpression of TET1 Catalytic Domain Dysregulates Genes Known to Be Induced by Neuronal Activity and Memory Formation

Previous work has provided evidence that overexpression of the TET1 catalytic domain in the dentate gyrus results in the increased expression levels of both *Bdnf* and the brain-specific isoform of the gene *Fgf1B*. Therefore, we reexamined the effects of TET1 on the expression of the synaptic plasticity-associated gene *Bdnf* and several other candidate genes formerly reported to either positively and negatively impact memory formation (Figure 3G). As a control, we examined a number of genes normally used for quantitative real-time PCR normalization due to their constitutive activity, as it is related to their roles in the maintenance of basic cellular functions and, thus, not generally influ-

Figure 2. Measurement of Global 5mC and 5hmC Levels in the Hippocampus after Neuronal Activation

(A) LC-MS/MS-MRM chromatograms of nucleosides using three commercial 948 bp standard DNA fragments (dmC 0.01, dhmC 0.001, and dC 1.0) showing peaks corresponding to the response obtained from gas phase transitions of dC to C, dmC to mC, and dhmC to hmC. cps, counts per second. (B) Standard curves for 5mC and 5hmC. The percentages of 5mC and 5hmC are plotted against the known ratios of methylated and hydroxymethylated DNA to the total amount of cytosine in the standard samples. (C and D) Validation of HPLC/MS system for 5mC and 5hmC detection accuracy was performed using a set of previously measured genomic DNA samples (Zymo Research). (E and F) 5mC and 5hmC levels in area CA1 of adult mice at several time points after flurothyl-induced seizures compared to controls ($F_{4, 29} = 13.41$; each biological replicate (n = 6/group) represents an average of 3 technical replicates). Naive versus 3 or 24 hr. **p < 0.01, ***p < 0.001; one-way ANOVA followed by Bonferroni post hoc test. In (E) and (F), data are presented as mean ± SEM.

enced by epigenetic mechanisms. With the exception of glucuronidase beta (Gusb), expression of either TET1 or TET1m had no effect on the expression levels of these "housekeeping" genes. In addition, the expression levels of phosphatase-encoding genes such as calcineurin B, type 1 (CaNB1), protein phosphatase 1 (PP1) isoforms beta and gamma, and protein phosphatase 2A alpha (PP2A), several of which are thought to negatively influence memory formation, remained unaffected. Similarly, the transcripts of genes involved in synaptic plasticity, like Ca2+/calmodulindependent kinase 2A (CamKIIa), cyclindependent kinase 5 (Cdk5), glutamate receptor 1 (Glur1), and reelin (Reln),

were also unchanged. However, in contrast, we found that overexpression of TET1 as well as the catalytically inactive TET1m significantly increased the mRNA levels of not only *Bdnf* but other activity-dependent, immediate early genes (IEGs) including FBJ osteosarcoma oncogene (*Fos*), *Arc*, early growth response 1 (*Egr1*), homer homolog 1 (*Homer1*), and nuclear receptor subfamily 4, group A, member 2 (*Nr4a2*). Finally, based on our earlier findings of changes in the expression of genes thought to act downstream of TET1 5mC hydroxylation (Figure S2), we reexamined the transcript levels of *Tdg*, *Apobec1*, *Smug1*, and *Mbd4* to investigate whether they too were affected by TET1 or TET1m overexpression. Indeed, the mRNA levels of all four were significantly increased after TET1 infection. However, we found that only the transcript levels of *Apobec1* were elevated

Figure 3. Functional Characterization of AAV-Mediated Expression of TET1 and TET1m in the Dorsal Hippocampus

(A) Representative images of YFP expression 14 days after AAV injection along the anterior-posterior axis of the hippocampus under white and UV light, respectively. (B) Protein samples from area CA1 tissue expressing YFP, HA-TET1, or HA-TET1m analyzed by western blot to confirm expression of both peptides. Actin was used as a loading control. (C) Representative images of dorsal hippocampal sections 14 days after AAV-mediated expression of YFP, TET1, and TET1m. Sections were double labeled with anti-GFP, anti-HA, and conterstained with DAPI. Robust viral expression was restricted to area CA1. Scale bar, 200 μ m. (D) Percent 5mC in microdissected area CA1 ($F_{2, 12} = 66.8$; n = 4–5/group). YFP versus TET1. ****p < 0.001, one-way ANOVA followed by Bonferroni post hoc test. (F) Percent unmodified cytosines in microdissected area CA1 ($F_{2, 12} = 31.04$). YFP versus TET1. ****p < 0.001, one-way ANOVA followed by Bonferroni post hoc test

after the expression of both peptides (Figure 3G). Overall, our mRNA expression analysis of memory-related genes indicates that loci whose transcriptional regulation are tightly coupled to and rapidly induced by neuronal activation as well as genes encoding enzymes acting downstream of TET-mediated 5mC hydroxylation are sensitive to increases in TET1 enzyme levels. Lastly, the upregulation of memory-associated IEGs and the deaminase *Apobec1* do not appear to be directly dependent on increased levels of 5hmC, as the catalytically inactive TET1m elicited a similar effect.

Long-Term Memory Formation Is Impaired by Expression of TET1, Independent of Its Catalytic Activity

Having observed that AAV-mediated overexpression of TET1 in the dorsal hippocampus regulates the transcript levels of a number of genes involved in synaptic plasticity and memory formation (Figure 3G) and that TET1 is capable of driving the production of 5hmC in the hippocampus (Figures 3D-3F), we next sought to investigate the potential cognitive effects of TET1 overexpression. Two weeks after viral injection of TET1 and TET1m constructs, animals were subjected to several behavioral paradigms to evaluate locomotion, anxiety, and memory formation. We found open-field activity levels of all groups tested to be similar, demonstrating that exploratory behavior in a novel context was unaffected by elevated TET1 levels (Figure 4A). To measure levels of basal anxiety, we calculated the ratio of time spent in the center of the open field in relation to time spent on the periphery. No differences in anxiety-like behavior were observed (Figure 4B). In addition, all groups tested exhibited similar responses during the shock threshold test, which is critical for the proper interpretation of fear conditioning results (Figure 4C). Next, mice were fear conditioned using a background (novel context plus auditory cue) training paradigm consisting of a single presentation of a mild footshock. Time spent freezing during the training session-either before or after the presentation of the footshock—was similar between groups (Figure 4D). Contextual fear memory was assessed both 1 hr and 24 hr after the training session. At 1 hr after training, all groups exhibited similar levels of freezing behavior, indicating that overexpression of the TET1 catalytic domains did not have a significant effect on short-term memory formation (Figure 4E). However, animals injected with AAV-TET1 or AAV-TET1m displayed an impairment of long-term memory compared to AAV-YFP controls 24 hr after training (Figure 4F). Taken together, these behavioral data suggest that overexpression of TET1 and TET1m in the dorsal hippocampus specifically impairs long-term memory formation, while leaving general baseline behaviors and learning intact. Furthermore, it appears that the catalytic activity of TET1 is not

⁽n = 4–5/group). (G) Quantitative reverse-transcription PCR analysis of genes involved in synaptic plasticity and memory formation 14 d after viral injection in naive animals (*Gusb*, $F_{2,11} = 4.97$; *Arc*, $F_{2,11} = 11.42$; *Egr1*, $F_{2,11} = 5.57$, *Fos*, $F_{2,11} = 4.66$; *Bdnf*, $F_{2,11} = 11.96$; *Nr4a2*, *F2*, *11* = 14.92; *Homer1*, $F_{2,11} = 27.23$; *Tdg*, $F_{2,24} = 10.17$; *Apobec1*, $F_{2,24} = 5.37$; *Smug1*, $F_{2,24} = 13.92$; *Mbd4*, $F_{2,24} = 5.52$). (n = 4/group from one representative experiment). For *Tdg*, *Apobec1*, *Smug1*, *and Mbd4* (n = 8–9 combined from two independent experiments). * p < 0.05, **p < 0.01; **p < 0.001; one-way ANOVA. All data are presented as mean ± SEM.

necessary for this inhibition, as the TET1m blocks memory to a similar degree as observed with the catalytically active TET1; however, it is certainly possible that the two constructs inhibit memory consolidation by parallel and partially overlapping mechanisms (Figure S3).

DISCUSSION

Epigenetic regulation of gene expression through chromatin remodeling and DNA methylation are two important mechanisms required for long-term information storage within the brain. Until recently, the mechanisms underlying active DNA demethylation during memory formation have remained mysterious and contentious (Day and Sweatt, 2010; Dulac, 2010). However, the discovery of 5hmC and its generation by the Tet family of proteins has led to the identification of an active DNA demethylation pathway involved in many biological processes, including those pertaining to nervous system function. In the present study, we took a viral-mediated approach to genetically manipulate the enzymatic activity of TET1 in an attempt to determine whether this 5-methylcytosine dioxygenase might regulate learning and memory. We found endogenous TET1 to be strongly expressed in neurons throughout the hippocampus and that its transcript levels (Figure 1), as well as genes involved in active DNA demethylation (Figure S2), were reduced in response to neuronal activation under physiological conditions. Importantly, we observed similar reductions after fear conditioning, implicating Tet1 in the

Figure 4. Behavioral Characterization of Mice Overexpressing TET1 and TET1m in the Dorsal Hippocampus

(A) Total distance traveled during 15 min in the open field. (B) The ratio of time spent in the center versus time spent in the periphery of the open field, a measure of anxiety. (C) Shock threshold test. (D) Percent of time freezing before and after presentation of the footshock during the 3 min training session. (E) Percent of time freezing during a 5 min context test. 1 hr after training. For experiments (A)-(C) and (E), n = 9 for all groups. (F) Percent of time freezing during a 5 min context test, 24 hr after training ($F_{2, 58} = 7.185$). YFP versus TET1 and TET1m. **p < 0.01, *p < 0.05; one-way ANOVA followed by Bonferroni post hoc test. For experiments (D) and (F), AAV-YFP (n = 17), AAV-TET1 (n = 21), AAV-TET1m (n = 21). All data are presented as mean ± SEM.

epigenetic regulation of gene expression necessary for memory formation.

Development of our HPLC/MS system (Figure 2) allowed for the sensitive, simultaneous measurement of 5mC, 5hmC, and unmodified cytosines in CNS tissue. Using this system, we detected a small, but statistically significant reduction in both 5mC and 5hmC levels in area CA1 24 hr after induction of a generalizedseizure episode, indicative of active

DNA demethylation. In agreement with our results, a genomewide methylation analysis study found evidence of promoter region hypomethylation at >90% of genes that were differentially expressed after status epilepticus (Miller-Delaney et al., 2012). Our findings add further support to the growing number of studies implicating changes in DNA methylation in response to neuronal activation across diverse experimental paradigms (Feng et al., 2010a, 2010b; Guo et al., 2011a, 2011b; Lubin et al., 2008; Ma et al., 2009; Miller et al., 2010; Miller and Sweatt, 2007).

We observed that injection of an AAV virus expressing the TET1 catalytic domain resulted in a dramatic increase in global levels of 5hmC, as was shown previously (Guo et al., 2011b). Moreover, using an accurate and sensitive HPLC/MS method, we also observed a decrease in global 5mC and a significant increase in the fraction of unmodified cytosines compared to either control or TET1m-infected samples (Figures 3D-3F). Together, these data provide evidence for an active DNA demethylation process at the global level, driven by TET1 hydroxylase activity and utilizing 5hmC as an intermediate. In agreement with this general model, we also observed a significant increase in the expression levels of several genes involved in TET-hydroxylase-mediated DNA demethylation, including Tdg, Apobec1, Smug1, and Mbd4, after TET1 manipulation (Figure 3G). These findings suggest that the transcription of these genes may be coupled to changes in 5hmC as part of a transcriptionally coordinated system in neurons.

TET1 expression has been shown to induce increases in the expression of Bdnf and the brain-specific Fgf1B while providing no effect on the developmentally expressed Fgf1G, indicating target specificity (Guo et al., 2011b). Similarly, gene expression analysis of our survey of memory-related genes in this study not only confirmed that Bdnf is positively regulated by TET1 but also revealed significant regulation of many other IEGs, including Arc, Egr1, Fos, Homer1, and Nr4a2 (Figure 3G). Interestingly, TET1 did not have any significant effect on the expression of other genes we examined including reference genes, genes involved in synaptic plasticity, and genes generally thought to negatively regulate memory. Unexpectedly, we found that the same set of genes whose expression was promoted by TET1 were also significantly elevated in response to the catalytically inactive TET1m, suggesting that TET1 regulates the expression of these genes, at least in part, independently of 5mC to 5hmC conversion. These findings are contradictory to those previously reported by Guo et al., where TET1m had no effect on the expression of Bdnf or Fgf1B in the dentate gyrus (Guo et al., 2011b). One distinct possibility for this difference may include our targeting of pyramidal cells in area CA1 in comparison to the previous study's focus on granule cells in the dentate gyrus, which exhibit different gene expression profiles and, thus, differences in the regulation of their transcriptomes (Datson et al., 2004).

Interestingly, data generated in an earlier study investigating TET1 and its role in embryonic stem (ES) cells lends support for our findings that TET1m regulates gene expression despite its lack of catalytic activity. Specifically, it was reported that shRNA-mediated knockdown (KD) of *Tet1* in *Dnmt* triple knockout ES cells led to similar changes in gene expression as those observed in *Tet1*-depleted wild-type cells (Williams et al., 2011). These findings suggest that in the absence of its 5mC substrate, TET1 retains the ability to both positively and negatively influence the expression of its gene targets. The mechanism through which the TET1m peptide, encompassing only 718 amino acids and lacking the TET1 CXXC DNA binding domain, positively regulates the expression of the genes examined in our study remains an open question. Presumably it is through an allosteric, as opposed to catalytic, mechanism.

In line with our finding that both TET1 and TET1m dysregulate the expression of the same group of memory-related genes, they similarly disrupted the formation of long-term memory formation after context fear conditioning (Figure 4F). The impairment of this process could be the result of several possibilities that are not mutually exclusive (see Figure S3). Our preferred hypothesis is that the constitutive increases observed for IEG mRNAs in mice selectively expressing TET1 and TET1m could result in memory dysfunction. Specifically, the increased expression of the transcription factors Fos (both constructs) and Egr1 (TET1 catalytic domain) and the subsequent activation of their downstream gene targets in the absence of the appropriate neuronal stimulus context may impair their ability to facilitate the correct response (James et al., 2005). Likewise, Bdnf (mutant construct) and Arc (catalytic domain) could lead to inappropriate signaling cascades and structural changes. Most importantly, it has been shown that the selective overexpression of Homer1 in the dorsal hippocampus of mice disrupts both LTP and spatial working memory (Celikel et al., 2007), offering direct evidence for how memory could be disrupted by expression of either construct.

In conclusion, this study revealed that the 5-methylcytosine dioxygenase Tet1 is regulated by neuronal activity, that TET1 hydroxylase activity drives active demethylation in the CNS and positively regulates several genes implicated in learning and memory, and that its overexpression impairs hippocampus-dependent long-term associative memory. Surprisingly, expression of both the TET1 catalytic domain and a catalytically inactive mutant affected gene expression and memory formation similarly, prompting future studies into the roles of both hydroxylase-dependent and hydroxylase-independent functions of TET1 in transcription and memory.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures can be found in Supplemental Experimental Procedures online.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, three figures, and one table and can be found with this article online at http://dx.doi.org/10.1016/j.neuron.2013.08.032.

ACKNOWLEDGMENTS

The authors thank Stephen Moore, Alison Margolies, and Faraz Sultan for experimental assistance and Adam Petterson at Zymo Research for technical support regarding measurement of 5mC and 5hmC. This work was supported by NIH grants MH091122, MH57014, and NR012686 to J.D.S. and the McKnight Brain Research Foundation. Further support was provided by NIH grants NS07344, ES021957, and SFARI to H.S.

Accepted: August 26, 2013 Published: September 18, 2013

REFERENCES

Bekinschtein, P., Cammarota, M., Katche, C., Slipczuk, L., Rossato, J.I., Goldin, A., Izquierdo, I., and Medina, J.H. (2008). BDNF is essential to promote persistence of long-term memory storage. Proc. Natl. Acad. Sci. USA *105*, 2711–2716.

Bhutani, N., Burns, D.M., and Blau, H.M. (2011). DNA demethylation dynamics. Cell *146*, 866–872.

Bonasio, R., Tu, S., and Reinberg, D. (2010). Molecular signals of epigenetic states. Science 330, 612–616.

Branco, M.R., Ficz, G., and Reik, W. (2012). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. *13*, 7–13.

Celikel, T., Marx, V., Freudenberg, F., Zivkovic, A., Resnik, E., Hasan, M.T., Licznerski, P., Osten, P., Rozov, A., Seeburg, P.H., and Schwarz, M.K. (2007). Select overexpression of homer1a in dorsal hippocampus impairs spatial working memory. Front Neurosci *1*, 97–110.

Cortellino, S., Xu, J., Sannai, M., Moore, R., Caretti, E., Cigliano, A., Le Coz, M., Devarajan, K., Wessels, A., Soprano, D., et al. (2011). Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell *146*, 67–79.

Datson, N.A., Meijer, L., Steenbergen, P.J., Morsink, M.C., van der Laan, S., Meijer, O.C., and de Kloet, E.R. (2004). Expression profiling in laser-microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expression. Eur. J. Neurosci. *20*, 2541–2554.

Day, J.J., and Sweatt, J.D. (2010). DNA methylation and memory formation. Nat. Neurosci. *13*, 1319–1323.

Dulac, C. (2010). Brain function and chromatin plasticity. Nature 465, 728–735. Feng, J., Zhou, Y., Campbell, S.L., Le, T., Li, E., Sweatt, J.D., Silva, A.J., and

Fan, G. (2010a). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. *13*, 423–430.

Feng, S., Jacobsen, S.E., and Reik, W. (2010b). Epigenetic reprogramming in plant and animal development. Science 330, 622–627.

Globisch, D., Münzel, M., Müller, M., Michalakis, S., Wagner, M., Koch, S., Brückl, T., Biel, M., and Carell, T. (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE *5*, e15367.

Guo, J.U., Ma, D.K., Mo, H., Ball, M.P., Jang, M.H., Bonaguidi, M.A., Balazer, J.A., Eaves, H.L., Xie, B., Ford, E., et al. (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. *14*, 1345–1351.

Guo, J.U., Su, Y., Zhong, C., Ming, G.L., and Song, H. (2011b). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell *145*, 423–434.

Hahn, M.A., Qiu, R., Wu, X., Li, A.X., Zhang, H., Wang, J., Jui, J., Jin, S.G., Jiang, Y., Pfeifer, G.P., and Lu, Q. (2013). Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep 3, 291–300.

He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307.

Ito, S., D'Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature *466*, 1129–1133.

Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science *333*, 1300–1303.

James, A.B., Conway, A.M., and Morris, B.J. (2005). Genomic profiling of the neuronal target genes of the plasticity-related transcription factor — Zif268. J. Neurochem. *95*, 796–810.

Kemmerich, K., Dingler, F.A., Rada, C., and Neuberger, M.S. (2012). Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluraciland UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice. Nucleic Acids Res. 40, 6016–6025.

Kriaucionis, S., and Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science *324*, 929–930.

Lubin, F.D., Roth, T.L., and Sweatt, J.D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 28, 10576–10586.

Ma, D.K., Jang, M.H., Guo, J.U., Kitabatake, Y., Chang, M.L., Pow-Anpongkul, N., Flavell, R.A., Lu, B., Ming, G.L., and Song, H. (2009). Neuronal activityinduced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science *323*, 1074–1077. Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S., and Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell *151*, 1417–1430.

Miller, C.A., and Sweatt, J.D. (2007). Covalent modification of DNA regulates memory formation. Neuron 53, 857–869.

Miller, C.A., Gavin, C.F., White, J.A., Parrish, R.R., Honasoge, A., Yancey, C.R., Rivera, I.M., Rubio, M.D., Rumbaugh, G., and Sweatt, J.D. (2010). Cortical DNA methylation maintains remote memory. Nat. Neurosci. *13*, 664–666.

Miller-Delaney, S.F., Das, S., Sano, T., Jimenez-Mateos, E.M., Bryan, K., Buckley, P.G., Stallings, R.L., and Henshall, D.C. (2012). Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J. Neurosci. *32*, 1577–1588.

Mizuno, M., Yamada, K., Olariu, A., Nawa, H., and Nabeshima, T. (2000). Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20, 7116–7121.

Monsey, M.S., Ota, K.T., Akingbade, I.F., Hong, E.S., and Schafe, G.E. (2011). Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS ONE *6*, e19958.

Oliveira, A.M., Hemstedt, T.J., and Bading, H. (2012). Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nat. Neurosci. *15*, 1111–1113.

Popp, C., Dean, W., Feng, S., Cokus, S.J., Andrews, S., Pellegrini, M., Jacobsen, S.E., and Reik, W. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature *463*, 1101–1105.

Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., Jones, D.A., and Cairns, B.R. (2008). DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell *135*, 1201–1212.

Sultan, F.A., and Day, J.J. (2011). Epigenetic mechanisms in memory and synaptic function. Epigenomics 3, 157–181.

Szulwach, K.E., Li, X., Li, Y., Song, C.X., Han, J.W., Kim, S., Namburi, S., Hermetz, K., Kim, J.J., Rudd, M.K., et al. (2011). Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7, e1002154.

Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L., and Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science *324*, 930–935.

Williams, K., Christensen, J., Pedersen, M.T., Johansen, J.V., Cloos, P.A., Rappsilber, J., and Helin, K. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature *473*, 343–348.

Zhang, R.R., Cui, Q.Y., Murai, K., Lim, Y.C., Smith, Z.D., Jin, S., Ye, P., Rosa, L., Lee, Y.K., Wu, H.P., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell *13*, 237–245.