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A B S T R A C T   

Radial glial cells (RGCs) as primary neural stem cells in the developing mammalian cortex give rise to diverse 
types of neurons and glial cells according to sophisticated developmental programs with remarkable spatio
temporal precision. Recent studies suggest that regulation of the temporal competence of RGCs is a key mech
anism for the highly conserved and predictable development of the cerebral cortex. Various types of epigenetic 
regulations, such as DNA methylation, histone modifications, and 3D chromatin architecture, play a key role in 
shaping the gene expression pattern of RGCs. In addition, epitranscriptomic modifications regulate temporal pre- 
patterning of RGCs by affecting the turnover rate and function of cell-type-specific transcripts. In this review, we 
summarize epigenetic and epitranscriptomic regulatory mechanisms that control the temporal competence of 
RGCs during mammalian corticogenesis. Furthermore, we discuss various developmental elements that also 
dynamically regulate the temporal competence of RGCs, including biochemical reaction speed, local environ
mental changes, and subcellular organelle remodeling. Finally, we discuss the underlying mechanisms that 
regulate the interspecies developmental tempo contributing to human-specific features of brain development.   

1. Introduction 

One of the biggest challenges in neuroscience is to understand how 
developmental programs instruct the generation of enormously diverse 
cell types, which are assembled into complex neural circuits in the brain 
with temporal, spatial, and numerical precision. During mammalian 
embryonic cortical development, neural stem/progenitor cells (NPCs) 
sequentially give rise to different types of neurons and glia through 
highly organized processes. In the earliest stages, the cerebral cortex is 
composed of pseudostratified neuroepithelial cells that mostly divide 
symmetrically to expand NPC pools. In turn, neuroepithelial cells 
transform into radial glial cells (RGCs), which serve as the major NPCs in 
the developing cortex until the early postnatal period [1]. In the 
developing mouse cortex, most RGCs attach to the ventricular surface 
with their apical endfeet and thus are named ventricular RGCs (vRGCs). 

However, the majority of human RGCs are located in the outer sub
ventricular zone (OSVZ), named outer radial glial cells (oRGCs), which 
retain basal processes without apical attachment and display distinct 
mitotic behavior [2]. An increased number of oRGCs, which generate 
the majority of cortical neurons [3], is thought to contribute to the 
increased complexity and the evolutionary expansion of the human 
brain compared to other mammals [4]. 

The temporal competence of RGCs to produce different types of 
progenies changes over time (Fig. 1). To accomplish the orderly gener
ation of distinct progenies, RGCs go through multi-step transitions of 
their developmental competence to produce diverse types of daughter 
cells. These temporal changes of developmental competence are regu
lated by the stage-specific transcriptome of RGCs controlled by multi
factorial gene regulatory networks [5,6]. The timing of the onset/offset 
and duration of each step are finely controlled by a highly coordinated 
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genetic program in a precise and predictable way with some stochastic 
events [7,8]. Thus, subtle alterations in the timing of these biological 
processes can lead to individual variability or interspecies differences 
during development. A remarkable example is the expansion of the 
human cerebral cortex generated through notably protracted neuro
genic processes compared to other primate species [9]. The molecular 
mechanisms driving the precise temporal coordination of biological 
processes and ensuring the reproducible generation of neuronal di
versity are just starting to be revealed. 

Classical and recent studies have shed light on the role of intrinsic 
and extrinsic factors in determining the temporal competence of NPCs in 
the various stages of cortical development. Classic heterochronic 
transplantation experiments in ferrets showed that when NPCs from the 
young donor cortex were transplanted into an older recipient cortex, the 
donor NPCs have the capability to generate late-born upper layer (UL) 
neurons. However, when NPCs from the old donor cortex were trans
planted into the younger recipient cortex, the donor NPCs failed to 
generate early-born deep layer (DL) neurons [10], suggesting the 
competence of NPCs is gradually restricted and fixed over time. How
ever, it was recently shown that the competence of RGCs is more flexible 
than previously believed. By rigorously birth-dating vRGCs of the donor 
cortex, old vRGCs can restore the competence of younger progenitors to 
generate early-born DL neurons after transplantation into the younger 
recipient cortex, whereas intermediate progenitor cells (IPCs) cannot, 
highlighting the progenitor type-specific differences in the fate plasticity 
[11]. In addition, dynamic Wnt signaling is required for the 
re-specification of late vRGCs by early cortical environment, suggesting 
that extrinsic factors and intrinsic receptiveness interplay to modulate 
the temporal competence of NPCs in vivo [8]. 

The existence of an intrinsic timing program of NPC competence is 
well supported by in vitro experiments. For example, the sequence and 

timing of the production of diverse cell types were maintained in 
cultured NPCs from embryonic mouse cortex [12] or differentiated from 
mouse or human embryonic stem cells (ESCs) or induced pluripotent 
stem cells (iPSCs) [13,14]. However, human NPCs exhibit a longer 
expansion period and a slower pace of neuronal maturation than 
chimpanzee NPCs in iPSC-derived 2-dimensional (2D) culture and 
3-dimensional (3D) cerebral organoid models [15–17]. Single-cell 
RNA-seq (scRNA-seq) analysis using cerebral organoids derived from 
human, chimpanzee and macaque iPSCs revealed that human neural 
development proceeds at a relatively slower pace than in apes. There 
was a higher level of expression of neuronal maturation genes and more 
glial cells in chimpanzee cerebral organoids compared to human cere
bral organoids during the same developmental period [18]. Moreover, 
when cultured human NPCs were transplanted into the mouse neonatal 
cortex, human NPCs still exhibited a protracted temporal transition of 
competence and the subsequent neuronal maturation followed the 
tempo of human neurogenesis in the mouse extrinsic environment in vivo 
[19]. On the other hand, in the co-culture system of human and mouse 
cells, gene sets associated with neurogenesis, neuronal differentiation, 
and maturation, and synaptic signaling were upregulated earlier, and 
peak gene expression profiles were rapidly altered compared to human 
cell cultures alone [20]. These results suggest that the orchestration of 
intrinsic and extrinsic pacemakers control the fate specification of RGCs 
during mammalian corticogenesis. Here we review the recent progress 
in our understanding of molecular and cellular mechanisms that guide 
sequential lineage specification of NPCs with a focus mainly on the 
developing mouse cortex. We also discuss the potential mechanisms that 
govern the unique protracted neurogenesis of the human brain. 

Fig. 1. Overview of the temporal sequence of murine corticogenesis. During cortical development, multipotent NPCs generate neurons in the cortical layers and glial 
cells, such as astrocytes and oligodendrocytes, sequentially in a time-dependent manner. Corticogenesis begins with the amplification of neuroepithelial cells (NECs) 
through symmetric divisions. Next, NECs transform into radial glial cells (RGCs), which act as primary neural stem cells. RGCs change their temporal competence 
during corticogenesis (early RGCs, pale yellow; late RGCs, orange) and sequentially give rise to different neurons and glia cells through asymmetric division. RGCs 
first produce deep layer neurons (layer VI/V), and subsequently superficial layer neurons (layer IV/III/II) mostly through intermediate progenitor cells. In later 
stages, RGCs transition from neurogenesis to gliogenesis and give rise to astrocytes, oligodendrocytes, olfactory bulb interneurons, and ependymal cells. In the 
postnatal stage, most of the RGCs are differentiated, and some of them remain as adult neural stem cells. MZ, the marginal zone. CP, the cortical plate. IZ/SP, the 
intermediate zone/subplate. SVZ, the subventricular zone. VZ, the ventricular zone. 
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2. Temporal progression of the stage-specific transcriptome in 
NPCs 

Non-biased scRNA-seq analysis of the embryonic mouse brain 
revealed characteristic gene expression of spatiotemporally diverse 
RGCs. A total of 87 subtypes of RGCs can be categorized as early and late 
RGCs [21]. Early RGCs express a higher level of Nestin, Lin28a, and Hes5, 
while late RGCs express Ednrb, Neurog2, and Pou3f2 [22]. In addition, 
Fluorescence-activated Cell Sorting (FACS)-isolated RGCs or pulse la
beling of isochronic cohorts of cells enabled fine comparison of the 
temporal transcriptome between early-stage and late-stage RGCs [5,6, 
23]. RGCs exhibit temporal progression of gene expression from an 
internally directed “introverted” status to a more exteroceptive “extra
verted” status (Fig. 1). Cell cycle-related and chromatin-related pro
cesses are prominent in early RGCs, whereas signaling molecules (e.g. 
Shh) and molecules critical for responding to external stimuli (e.g. 
membrane receptors and excitability-related proteins) are elevated in 
late RGCs [6]. 

Recent scRNA-seq results suggest even more diverse subpopulations 
of RGCs [24,25]. These subpopulations are categorized by an orchestral 
combination of spatiotemporal gene sets, such as early RGC marker 
HMGA2 and late RGC marker CLU. Moreover, mitotic RGCs exhibit not 
only an RGC-specific transcriptome but also a daughter cell-type-specific 
transcriptome before their neurogenic division, potentially affecting 
subsequent asymmetric division and cell fate decisions of daughter cells 
[26]. For example, neuronal lineage genes, such as Tbr2 and Neurod4 
mRNAs, are transcriptionally pre-patterned, but those proteins are not 
expressed in vRGCs [27]. Similarly, UL neuron-specific mRNAs, such as 
Cux2 and Satb2, or DL neuron-specific mRNAs, such as Fezf2 and Otx1, 
are also found in a subset of RGCs [28,29]. These results suggest that a 
subset of RGCs is lineage-biased toward specific neuronal subtypes 
through transcriptional pre-patterning [30]. Since it is known that 
mRNAs encoding cell fate determinants are unequally segregated within 
asymmetrically dividing RGCs [31–33], it will be interesting to inves
tigate whether these pre-patterned transcripts are also regulated during 
asymmetric division. 

In addition, single-cell ATAC-seq revealed dynamic changes of 
chromatin status during the temporal progression of RGC competence. 
RGCs and other cell types show a strong connection between tran
scriptome and chromatin accessibility [34]. This synchronization regu
lates stage-specific transcription factors, such as DMRTA2 and CUX1. 
Moreover, the expression of specific transcription factors, such as 
POU2F2 or NEUROD2, enhances chromatin accessibility and cell fate 
decisions between corticofugal and callosal neurons during cortico
genesis [35]. 

In summary, single-cell level analyses showed that RGCs are much 
more heterogeneous than previously thought, and dynamically shape 
their transcriptome and chromatin status to achieve sequential pro
gression of their temporal competence, which in turn allows for orderly 
generation of multiple cell types during corticogenesis. 

3. Dynamic epigenetic landscape changes regulating the 
temporal competence of NPCs 

A fundamental question in development is how the same genomic 
information of stem cells can be interpreted to generate vastly different 
cell types. Multiple epigenetic regulations, such as DNA methylation and 
histone modifications, play key roles to shape unique transcriptional 
profiles to define cell identity [36–38]. Temporal changes in the 
patterning of various histone modifications in RGCs aid in the transition 
of these cells through developmentally-regulated competence states 
during corticogenesis. In particular, stage-specific actions of histone 
modifiers are critical for precise spatial and temporal gene expression, 
which determines the competence of NPCs to produce proper cell types 
at specific time points of development. Although epigenetic mechanisms 
govern broad aspects of neurodevelopment, which have been 

comprehensively reviewed elsewhere [38,39], here we focus on recent 
findings of epigenetic histone modifications in RGCs to determine their 
temporal competence (Fig. 2). 

Epigenome profiling of RGCs at different stages suggested global 
changes of histone modification during corticogenesis. Chromatin 
immunoprecipitation sequencing (ChIP-seq) showed that RGCs exhibit 
dynamic changes in the epigenetic landscape, including active histone 
marker H3K4me3 and repressive histone marker H3K27me3, during 
cortical development [40–42]. H3K27me3 on proliferative and cell fate 
commitment gene sets, including Tbr2 and Pou3f2, rapidly decrease in 
neurogenic RGCs [43]. H3K9ac also decreases in mouse Tbr2+ IPCs, 
leading to downregulated Trnp1 expression, which previously was 
shown to regulate the tangential expansion of cortical NPCs [44]. 
Elevated H3K9ac by treatment of an HDAC inhibitor preferentially in
creases IPC proliferation and Trnp1 expression, increasing the size and 
folding of the normally smooth mouse neocortex. In addition, specific 
epigenome editing on the Trnp1 locus by a CRISPR-dCas9-based system 
is sufficient to activate Trnp1 expression and expand IPC pools [45]. 
These results show the importance of specific epigenetic programs to 
regulate key developmental genes that contribute to unique properties 
of the developing cortex. 

General epigenetic machinery, such as polycomb repression com
plexes (PRCs) or histone acetyltransferases (HATs) are also involved in 
corticogenesis. For example, ablation of PRC1 component Ring1B in
creases DL neurons, and the deletion of PRC2 component Ezh2 extends 
the duration of the neurogenic period [46,47]. Recent scRNA-seq studies 
suggested that early RGCs strongly express chromatin organizing factors 
EZH2 and SUZ12 and a core component of PRC2 named Eed, which 
delays cell cycle exit [6] (Fig. 2A). 

During corticogenesis, RGCs change their epigenetic landscape at the 
local level by recruiting master regulators with stage-specific factors 
(Fig. 2C). In the early stage of corticogenesis, extrinsic signaling path
ways, including Wnt, Notch, Fgf, and Shh, promote self-renewal of 
RGCs. Neuronal differentiation is promoted by enhancing intrinsic 
neurogenic programs and turning down the extrinsic proliferative 
pathway. BCL6 represses multiple extrinsic signaling pathways, 
including the Notch, Shh, Fgf and Wnt pathways, by recruiting histone 
deacetylase SIRT1 to target gene promoters, leading to their transcrip
tional silencing [48]. Similarly, the Notch signaling pathway inhibits the 
differentiation of RGCs through the expression of downstream effectors, 
such as HES1 proteins. HES1 represses proneuronal factors like ASCL1. 
Neuron-specific transcription factor MYTL1 recruits histone deacetylase 
component SIN3B to promoter regions of Notch signaling regulators, 
including HES1, leading to the reduction of Notch signaling and 
neuronal differentiation [49]. On the other hand, PHF21B recruits both 
histone deacetylase HDA2 and lysine-specific demethylase LSD1 to the 
promoters of cell cycle-related genes and mediates the loss of H3K4me1 
and H3K27ac, accelerating cell cycle exit and neuronal differentiation 
[50]. In addition, the number and the proper positioning of cortical 
neurons is also regulated by temporal epigenetic factors in RGCs. His
tone methyltransferase PRDM16 regulates the epigenetic state of tran
scriptional enhancers in RGCs to instruct the production of IPCs and 
superficial layer (SL) neurons and neuronal migration [51]. Mechanis
tically, PRDM16 suppresses target gene expression related to neuronal 
specification, cell cycle regulators, and neuronal migration by limiting 
chromatin accessibility of the permissive enhancers [52]. These studies 
provide examples of how epigenetic regulation shifts the temporal gene 
expression program of RGCs to achieve neuronal diversity during 
corticogenesis. 

In addition to histone modifications, DNA methylation regulated by 
the nuclear factor I (NFI) family [53], and noncoding RNAs, including 
Lnc-Brn1a/b and miR-17–92 [54,55], also epigenetically regulate the 
properties of RGCs. More details of epigenetic regulation beyond histone 
modifications have been extensively reviewed elsewhere [38,56,57]. 

In the near future, more advanced technologies to resolve the 
connection between the transcriptome and diverse aspects of the 
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epigenome, such as single-cell multi-omics tools, can reveal precise 
regulatory mechanisms mediated by epigenome dynamics in stage- 
specific RGCs. Although the latest research showed that transcriptome 
profiles and chromatin accessibility changes are highly correlated, 
detailed epigenetic regulatory mechanisms are not clear [58]. Advanced 
methods to investigate dynamic epigenomes, such as SNARE-seq [59], 
scNMT-seq [60], and scMT-seq [61], may expand our understanding of 
the crosstalk between the transcriptome and epigenome in the devel
oping brain. 

4. Posttranscriptional regulations mediated by 
epitranscriptomic modifications 

The transcriptome of NPCs gradually changes according to the 
developmental stage, which defines the temporal competence of NPCs to 
generate diverse types of daughter cells. This global alteration in the 
transcriptome causes proteomic changes in cells and induces a change in 
cell functions and fates. Therefore, the transcriptomic changes in NPCs 
can be considered a pre-patterning system to guide the differentiation of 
NPCs with precise timing [6]. It has been shown that RGCs produce 
neuronal specification mRNAs prior to differentiation into neurons, 
suggesting that the neurogenic program is designed to determine the 
direction of cell differentiation in advance [30,62,63]. However, the 
molecular mechanisms that shape this pre-patterned transcriptome of 

RGCs are still not fully understood. 
Nascent mRNAs are subject to extensive processing such as 5′

capping, splicing, and poly-A tailing, which alters the final outcome of 
gene expression. In addition, similar to posttranslational modification of 
histone proteins, RNA is also subject to various types of post
transcriptional chemical modifications regulating the fate of the RNA 
transcript, named epitranscriptomic modifications, which play impor
tant roles in the nervous system [64]. Over 170 types of RNA modifi
cations that control the fate of transcripts in various mechanisms have 
been identified [65]. N6-methyladenosine (m6A) is the most abundant 
internal mRNA methylation in eukaryotes, which has recently been 
investigated as a major regulator of cell fate decisions in various neu
rodevelopmental contexts [38,66]. m6A is a reversible modification 
installed by a methyltransferase complex and erased by demethylases 
and recognized by reader proteins [65,67]. The metabolism of mRNA 
changes dynamically depending on the site of m6A modification and the 
type of reader proteins that recognize m6A, directly leading to changes 
in the transcriptome [68]. 

m6A methylation is co-transcriptionally installed to pre-mRNA and 
non-coding RNA by the methyltransferase complex consisting of 
METTL3 and METTL14 subunits, together with other accessary com
ponents, including WTAP, VIRMA and ZC3H13 [65]. Epitranscriptomic 
regulation via m6A RNA modification is known to influence multiple 
steps during cortical development [36]. For example, the absence of 

Fig. 2. The regulatory mechanisms for dynamic temporal competence of RGCs during corticogenesis. The temporal competence of RGCs is determined by various 
intrinsic factors. (A) The expression level of histone modifiers and chromatin remodelers dynamically changes, which affects the stage-specific epigenome profiles of 
RGCs. (B) The expression pattern of cell type specific transcription factors is a major determinant of RGC fate and differentiation timing. (C) Changes in the 
topographically associating domain (TAD) boundary of RGCs affect the 3D chromatin architecture and gene expression patterns. (D) The turnover rates of mRNA of 
cell-type-specific transcription factors can be regulated by epitranscriptomic modifications, which trim the pre-patterned transcriptome of RGCs, enabling the precise 
timing of corticogenesis. (E) Additionally, species-specific regulation of proteostasis, such as the differential rate of protein degradation, can be an underlying 
mechanism of interspecies developmental tempo control. (F) The translation efficiency of cell fate regulators, including histone modifiers such as EZH2 and KDM6B, 
is gradually changed during corticogenesis. This change induces an epigenetic change in RGCs, causing RGCs to differentiate into different types of neurons. (G) The 
cell fates of daughter cells are determined by mitochondria metabolism and dynamics after mitosis of RGCs. 

B. Koo et al.                                                                                                                                                                                                                                     



Seminars in Cell and Developmental Biology xxx (xxxx) xxx

5

m6A induces the accumulation of m6A-tagged mRNAs related to tem
poral and cell-type-specific transcription factors, leading to delayed 
transitions in developmental competency, including the DL-UL neuron 
transition and the neurogenic-gliogenic transition [62]. These results 
suggest that selective rapid degradation of m6A-tagged mRNAs is 
essential to maintain the proper temporal progression and transcrip
tional pre-patterning of RGCs [30]. Interestingly, histone modifications 
such as H3K27ac, H3K27me3, and H3K4me3 are significantly altered by 
the loss of m6A RNA modification, suggesting potential interactions 
between epigenetic and epitranscriptomic regulation [69]. On the other 
hand, m6A methylation is mainly recognized by reader proteins con
taining a YTH domain, and the YTH domain-containing protein family 
modulates the fate of RNA by regulating the localization and processing 
of m6A-tagged RNA [67]. The YTHDC1/2 reader protein distributed in 
the nucleus mainly regulates transcription, splicing and nuclear export, 
whereas the YTHDF1/2/3 reader proteins control m6A-tagged mRNA 
metabolism in the cytoplasm [65]. In particular, YTHDF2 promotes the 
decay of m6A-tagged mRNA by recruiting the CCR4-NOT complex 
through direct interaction with the CNOT1 subunit [70] (Fig. 2D). 
Ablation of Ythdf2 in the mouse developing brain causes accumulation 
of YTHDF2 target mRNA and defects in the self-renewal and differen
tiation capability of RGCs. The loss of the proliferative capacity of RGCs 
results in a dramatic loss of IPCs, which is the primary cause of impaired 
neurodevelopment [71]. Fragile X mental retardation protein (FMRP) is 
another m6A reader, which promotes nuclear export of m6A-tagged 
mRNA targets during cortical neurogenesis [72]. Fmr1 knockout mice 
exhibit delayed neural progenitor cell cycle progression and extended 
maintenance of proliferating neural progenitors into postnatal stages, 
similar to Mettl14 knockout mice. 

Within the nucleus, a recent study showed that m6A signaling reg
ulates alternative splicing in cortical NPCs [73]. In addition, m6A also 
regulates transcription and chromatin status [74]. Co-transcriptionally 
installed m6A on mRNAs recruits histone-modifying enzymes, such as 
KDM3B histone demethylase, to local chromatin locations and causes 
chromatin remodeling [75]. m6A also labels non-coding RNA species, 
including chromosome-associated regulatory RNA (carRNA), such as 
enhancer RNA (eRNA) and promoter-associated RNA (paRNA), which 
affects their stability [76]. In Mettl3 KO mESCs, the abundance of 
m6A-tagged carRNAs is significantly increased compared to that of 
non-m6A carRNAs, suggesting m6A methylation destabilizes the 
m6A-tagged carRNAs to regulate transcription levels. On the other hand, 
eRNA can induce promoter-enhancer interactions by DNA loop forma
tion and eRNA increases the localization of transcription coactivators, 
such as CREB-binding protein (CBP), to target gene alleles [77]. A recent 
study suggested that m6A-eRNA has a broad role in enhancer activation 
and transcriptional control by recruiting YTHDC1 to form a transcrip
tional condensate through phase separation [78]. By altering the profile 
of the epigenome and transcriptome, epitranscriptomic modification 
may directly contribute to the transcriptional regulation of NPCs, which 
will be an important topic for future investigation. 

Other RNA modifications have been also examined for their roles in 
neurodevelopment [64,79]. m5C occurs in a variety of RNA species, 
including tRNA, rRNA, and mRNA, and is a critical regulator of RNA 
function and fate in different contexts [80]. mRNA m5C labeled by 
NSUN methyltransferase is mainly present in the 5′UTR and 3′UTR, and 
it selectively induces mRNA export and regulates the translation process 
to control the biochemical reaction speed of mRNA [81]. An m5C 
methyltransferase NSUN2 mutation is associated with neuro
developmental disorders in humans [82]. NSUN2 depletion also causes 
neurodevelopmental defects in mice, such as delayed neuronal differ
entiation and synapse formation [83]. Changes in the distribution of 
m5C methylation are thought to be a key component in determining cell 
identity and function during the developmental progression from ESCs 
to the brain [84]. These results suggest that epitranscriptomic modifi
cations are actively involved in the regulation of cellular functions and 
cell fate decisions. It will be exciting to explore roles and mechanisms of 

various epitranscriptomic modifications in regulating NPC competence 
and neurogenesis in the future. 

5. Timing mechanisms among different species: biochemical 
reaction speed 

Diversification of various cell types with the same genomic infor
mation is enabled by the temporal-spatial regulation of the expression of 
cell-type-specific transcription factors. The composition of the key reg
ulatory networks including cell-type-specific transcription factors in 
RGCs becomes a temporal measure to define cell identity and differen
tiation capacity [85]. Therefore, biochemical reaction speeds, such as 
the synthesis and degradation kinetics of key proteins, are a critical 
factor to determine cell identity and developmental timing. 

In the developmental process of various species of mammals, events 
of embryonic development are processed through a precisely predictable 
sequence [86]. Although a highly conserved program, the develop
mental tempo of cellular differentiation is different for each species 
during corticogenesis [87]. A recent study on neurodevelopment in 
humans and mice suggested that developmental tempo regulation is 
related to the stability of cell-type-specific transcription factors [88] 
(Fig. 2E). The turnover of cell-type-specific transcription factors was 
slower in human neural tube development compared to mice. When 
mouse and human ESCs were differentiated toward motor neurons in 
vitro, the differentiation tempo of human cells was 2.5 times slower than 
that of the mouse cells, and this difference was correlated to the dif
ference in stability of cell-type-specific transcription factors, such OLIG2 
and SOX2 [88]. Furthermore, a recent study showed that the segmen
tation clock is determined by the rate of degradation and expression of 
HES7, a key protein of the segmentation clock. This result suggests that 
the difference in the oscillation period of segmentation is caused by 
species-specific intracellular biochemical reaction speeds [89]. 
Together, these findings suggest that the differential speed of the 
biochemical reaction, including protein stability, can have a role in 
regulating the developmental tempo of the mammalian brain, and 
global differences in the key metabolic processes might be the pivotal 
mechanism to understand the interspecies differences in developmental 
processes. 

Protein synthesis metabolism has recently been proposed as an 
important regulatory factor for the temporal progression of RGCs in 
brain development [63,90]. During the temporal progression from early 
RGCs to late RGCs, the rRNA methyltransferase FBL accelerates the 
translation efficiency of mRNA, which is poly U-enriched at the 5′UTR 
[90,91]. Protein species with increased translation efficiency include 
epigenetic regulators, such as KDM6B and EZH2 (Fig. 2 F). The global 
pattern of H3K27me3 was modified by these histone modifiers, inducing 
changes in the chromatin status and gene expression within RGCs sub
types. Collectively, it is suggested that time-specific translational ac
celeration causes epigenetic modifications and transcriptome 
pre-patterning in RGCs, influencing the timing of cell fate decisions 
and differentiation. 

6. Mitochondrial dynamics and membrane potential of RGCs 

Whether vRGCs differentiate into neurons or glial cells or have the 
ability to continuously divide can be determined by the asymmetric 
inheritance of the cellular structure and organelles [92]. For example, 
mitochondrial dynamics regulate stem cell identity, self-renewal, and 
fate decisions by orchestrating a transcriptional program [93] (Fig. 2 G). 
Stem cells can delay the accumulation of damage in a way that avoids 
transferring damaged subcellular components to daughter cells. Human 
stem-like cells (SLCs) maintain daughter cell identity by differentially 
apportioning senescent mitochondria when they undergo asymmetric 
division. Daughter cells harboring fewer old mitochondria tend to 
maintain stemness properties after asymmetric division [94]. In addi
tion, a recent study investigated the relationship between mitochondria 
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structure and daughter cell type during asymmetric division of RGCs 
using photoconvertible mitochondria sensors [95]. A high level of 
mitochondria fission after mitosis causes daughter cells to differentiate 
into neurons, whereas mitochondria fusion redirects daughter cells to
ward self-renewal. When mitochondrial fusion was chemically pro
moted, the proportion of daughter RGCs/IPCs over neurons was 
significantly increased after mitosis. These results suggest that alteration 
of mitochondria dynamics determines daughter cell fates after asym
metric division. 

Differences in extracellular ROS distribution also affect the cell fate 
decisions of RGCs [96]. Previous studies have found that endogenous 
ROS levels are critical for sustaining the proliferation of RGCs, sug
gesting that ROS is a key factor that controls cell fate [97]. As mouse 
corticogenesis progresses, the oxidative stress of RGCs gradually in
creases in a time-dependent manner. Furthermore, each RGC subtype 
has a different level of ROS-related gene expression, raising the possi
bility that oxidative stress can be a key indicator of developmental 
timing [96]. Conditional deletion of ROS regulator PRDM16 during 
early corticogenesis causes developmental defects, such as acceleration 
of RGC proliferation and mis-positioning of DL/UL neurons [51,96]. 
These results support that cell fate specification of RGCs can be 
controlled non-autonomously by environmental factors in the devel
oping cortex [11]. 

Bioelectrical processes also regulate the properties of RGCs. For 
example, calcium waves propagate among vRGCs by extracellular ATP 
as cortical development proceeds, which promote vRGC proliferation 
[98]. The membrane potential of RGCs is progressively changing as 
cortical development proceeds, which affects the intracellular signaling 
pathways of RGCs [99]. vRGCs become more hyperpolarized as they 
generate successive subtypes of neurons (Fig. 3). When a membrane 
channel Kir2.1 was overexpressed to induce artificial hyperpolarization 
of the vRGC membrane, the daughter cell fate of vRGCs was altered in 
vivo [100]. This finding showed that the daughter cell fate can be 
determined by differences in membrane potential of RGCs, which affects 
differential sensitivity to the extracellular stimuli, such as Wnt signaling 
[100,101]. It is consistent with previous findings that late RGCs have a 
higher sensitivity to an external signal, demonstrating that extracellular 
and intracellular factors act together to regulate the competence of RGCs 
[6,102]. 

7. Feedback mechanisms controlling the speed of neurogenesis 

As a factor to influence the competence and the cell fate specification 
of RGCs [6,11], the extracellular environment in the developing cortex 
changes depending on a variety of factors, including the local cell 
population, distribution of growth factors, and composition of the 

Fig. 3. Effects of the extrinsic environment and feedback signaling on the temporal competence of RGCs. The environmental factors surrounding RGCs change as 
cortical development proceeds. (A) Early-stage IPCs and postmitotic neurons contribute to the maintenance of the RGCs stemness by activating Notch signaling of 
local RGCs. The enhanced Wnt signal by the local cell population affects the temporal competence of RGCs to stimulate differentiation into DL neurons. (B) Late-stage 
DL neurons promote the neurogenesis of RGCs into SL neurons by producing and secreting neurotrophin-3 (NTF3) to the local environment. The calcium wave of 
RGCs displays a robust increase during temporal progression and sensitivity to the external environment which is also increased in late-stage RGCs. These feedback 
mechanisms contribute to the formation of a superficial layer at the late stage of cortical development. As development progresses, oxidative stress in the VZ 
gradually increases and alters the competence of the RGCs. 
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extracellular matrix. As cortical neurogenesis proceeds, basally-located 
differentiating cells, such as IPCs or newborn neurons, exert feedback 
regulation to apically-located RGCs by providing extrinsic paracrine 
signaling or cell-to-cell interactions (Fig. 3). For example, feedback 
signals from DL neurons are essential to switch the competence of RGCs 
to generate UL neurons. Genetic ablation of DL neurons prolongs the 
production period of DL neurons from RGCs, suggesting that the onset of 
UL neurons generation is controlled by the termination of DL compe
tence promoted by signaling from postmitotic DL neurons [103]. Such 
feedback signaling mechanisms are mediated by secretory factors, such 
as neurotrophin-3 or fibroblast growth factor 9 from postmitotic neu
rons, which control the timing of the cell fate switch of RGCs [104,105]. 
In the developing neocortex, Wnt expression levels and Wnt signaling 
activity also decrease during corticogenesis progression [11]. 
Wnt-related differentiation pathways regulating the generation of 
CTIP2-expressing DL neurons are re-induced when late-stage RGCs are 
stimulated by chemical-based Wnt activation, or co-cultured with 
early-stage cortical dissociates, leading to the restoration of the 
competence of early RGCs [11,106]. Another feedback mechanism is 
Notch ligand expression in migrating neurons or IPCs to stimulate Notch 
signaling in RGCs. The stemness of RGCs is preserved during symmetric 
and asymmetric division by Notch signaling, which is activated locally 

by IPCs and post-mitotic neurons, allowing RGCs to maintain their 
stemness for an extended period [107,108]. In addition, 
NMDAR-mediated synaptic transmission from subplate neurons to 
multipolar neurons promotes migration and multipolar-to-bipolar 
transition [109]. Also, the final identity of migrating neurons can still 
be influenced in postmitotic stages by extrinsic signals [106,110]. These 
findings suggest that the identity and differentiation timing of RGCs in 
the local population are influenced by signals provided from previously 
generated daughter cells. 

8. Human-specific developmental programs to regulate the 
competence of RGCs 

Although humans have a common developmental program with 
other mammalian species in general, our brain exhibits distinct and 
unique structural features, including vastly expanded surface area and 
an overwhelming number of neurons relative to body size compared to 
other species. Recent studies with human and primate organoid models 
have provided insights into human-specific developmental processes 
[17,111,112]. In addition, advanced next generation sequencing tech
nologies have revealed human-specific genetic features, a tran
scriptome, and signaling pathways during human brain development 

Fig. 4. Human-specific mechanisms for protracted neurogenesis and the expansion of the neocortical area in the human brain. Compared to other mammals and 
primates, humans have a large size and surface area of the neocortex promoted by human-specific genetic features and signaling pathways. (A) NOTCH2NL on 1q21.1 
loci is a human-specific gene, enhancing the proliferation of oRGCs by increasing Notch signaling through cis-inhibition of Delta/Notch interactions. (B) ARHGAP11B 
is a human-specific gene containing a unique C-terminal mutated from ARHGAP11A. ARHGAP11B localizes to the mitochondria and inhibits the mPTP complex 
component ANT. As a result, increased glutaminolysis and calcium concentration enhance the proliferation of oRGCs. (C) TMEM14B is a primate-specific gene that 
phosphorylates IQGAP1. Activated IQGAP1 localizes to the nucleus and increases RGC proliferation and eventually cortex size. (D) Human oRGCs express the gene 
sets for multiple signaling pathways, including mTOR, WNT, and NOTCH-related genes, such as INSR and ITGB8. As a result, signaling effectors like rpS6 are 
activated to increase RGC proliferation. 
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[113,114]. 
Human-specific genetic features produce the unique characteristics 

of NPCs during corticogenesis. In particular, the 1q21.1 locus associated 
with neurological symptoms, including microcephaly and macro
cephaly, is one of the human-specific genetic elements. Human-specific 
NOTCH2 derived genes, NOTCH2NLA, NOTCH2NLB, NOTCH2NLC, and 
NOTCH2NLR, at the 1q21.1 locus are active in RGCs (Fig. 4A) [115]. 
Ectopic expression of NOTCH2NL in the mouse cortex increases oRGC 
and IPC proliferation, and delays mouse cortical neuron differentiation 
[115,116]. NOTCH2NL encodes the six epidermal growth factor (EGF) 
repeats, which directly interact with the NOTCH ligand Delta-like 1 
(DLL1), and promotes the Notch pathway through cis-inhibition of 
Delta/Notch interactions [117]. As result, NOTCH2NL enhances NPC 
expansion by increasing NOTCH signaling. 

Another human-specific gene ARHGAP11B is a hominin RGC-specific 
gene both expressed on aRGCs and oRGCs [116] (Fig. 4B). ARHGAP11B 
is duplicated from Rho guanosine triphosphatase activating protein 
ARHGAP11A, however, it loses its RhoGAP activity and has 47 unique 
C-terminal amino acids resulting from a frameshift mutation. Ectopic 
expression of ARHGAP11B in several model organisms results in 
increased basal progenitor proliferation in the OSVZ, increased pro
duction of UL neurons, and overall expansion of the cortex size with 
gyrification [116,118,119]. A recent study suggests that the N-terminal 
of ARHGAP11B targets the protein to mitochondria and interacts with 
the inner mitochondrial membrane protein ANT through the GAP 
domain (Fig. 4B). Human-specific C-terminal amino acids modulate the 
mitochondrial permeability transition pore mPTP and increase the cal
cium concentration and glutaminolysis, leading to increased prolifera
tion of oRGCs [120]. Human-specific flexible memories and high 
intelligence are thought to be involved with ARHGAP11B-dependent 
corticogenesis [121]. In addition, human RGCs have a much longer 
fate plasticity period for mitochondrial remodeling, which potentially 
contributes to the increased self-renewal capacities of RGCs [95]. These 
results suggest that the unique properties of mitochondria metabolism 
and dynamics may confer human-specific features of neocortex 
expansion. 

TMEM14B is a primate-specific gene that is specifically expressed in 
oRGCs. TMEM14B expression in mouse progenitor cells results in 
increased neural progenitor cells and cortical gyrification [122] 
(Fig. 4C). TMEM14B interacts with Ras GTPase activating-like protein 
IQGAP1. TMEM14B phosphorylates IQGAP1 and induces nuclear 
localization (Fig. 4). As a result, phosphorylation of IQGAP1 promotes 
G1/S transition of RGCs enabling cortical expansion. Human-specific 
cis-regulatory elements also contribute to the unique features of 
human brain development. For example, human G protein-coupled re
ceptor 56 (GPR56) has 15 promoters that enhance NPC proliferation in 
the human cortex [113]. Even short base-pair mutations of this non
coding region change the GPR56 expression pattern on the cortex and 
selectively disrupt the Sylvian fissure bilaterally and the primary lan
guage area. 

Human cortical development is regulated by a characteristic 
signaling pattern, including the Notch, Jak-Stat, and Shh pathway in 
RGCs (Fig. 4D). scRNA-seq results of the human fetal cortex and cerebral 
organoids showed higher expression of PI3K/AKT/mTOR pathway 
genes such as INSR and ITGB8 specifically in oRGCs [23,112,123]. As 
result, phosphorylation of the mTOR effector ribosomal protein S6 
(rpS6) increased, which enhances the proliferation of oRGCs. The Shh 
signaling pathway, which promotes proliferation of IPCs and oRGCs to 
induce cortical folding, is also strongly activated in human oRGCs 
compared to that of mice [124]. In addition, Notch signaling drives in
direct neurogenesis through the expansion of IPC pools, contributing to 
the expansion and complexity of the human brain [125]. Human Notch 
signaling is also precisely regulated by human-specific genes including 
the aforementioned NOTCH2NL and human-specific expression of 
Notch target genes, such as FOS or EGR1 to enhance the proliferation of 
RGCs [115,126]. 

In summary, human-specific genetic features, gene expression pat
terns, and signaling pathways maintain self-renewal of RGCs and pro
tracted neurogenesis, which orchestrate the expansion and the 
gyrification of the human cortex. 

9. Conclusion 

Recent progress has suggested multiple regulatory mechanisms to 
accurately control the developmental competency of RGCs in a time- 
dependent manner. Advanced sequencing techniques are opening a 
new avenue for comprehensive understanding of the transcriptome, 
epigenome, and epitranscriptome during corticogenesis. For example, 
scRNA-seq [21,22,25] and ATAC-seq [34] analysis using the human fetal 
brain samples showed heterogeneity and pre-patterning of RGC sub
types. Moreover, scRNA-seq from the mouse cortex [6] suggested this 
heterogeneity is the result of orchestral regulation at multiple levels, 
including transcriptional and epigenetic mechanisms. Time-dependent 
gene expression of RGCs can be regulated by global and local epige
netic changes [6,43,48] with reorganization of cell-type-specific 3D 
chromatin architectures [127,128]. Posttranscriptional processes 
including epitranscriptomic RNA modification and protein stability also 
modulate the temporal competence of NPCs and developmental timing 
[36]. Furthermore, external factors such as mitochondrial ROS, mem
brane potential, and feedback signaling from postmitotic neurons 
regulate the temporal transition of the RGC status [96,100,103,106, 
109]. 

Beyond coordinating temporal events within an individual, the dif
ferences in the relative timing of developmental events contribute to 
species-specific features of brain development. Recent large-scale 
human fetal cortex [25,26] and brain organoid [18,112] studies have 
pointed out the differential temporal transcriptome in the brain of 
humans compared to that of other mammalian species. Likewise, un
derstanding the human-specific regulatory mechanism of the epigenome 
and epitranscriptome bring out the hidden secrets that construct the 
complex human brain architecture and cause neurodevelopmental dis
eases. One example is m6A RNA modification, which is known to be 
highly associated with neurodevelopmental genes and shows a distinct 
pattern in the human brain [62,129]. Although the human-specific 
contribution of m6A on the temporal regulation of NPCs is not yet 
clear, advanced m6A mapping tools with high sensitivity [130,131] and 
single-cell resolution [132] may provide a comprehensive understand
ing of the temporal-spatial dynamics of m6A RNA modification in the 
developing brain. 

In conclusion, our understanding of the temporal progression in NPC 
competence has advanced through studies of unique temporal codes in 
the epigenome, transcriptome, and epitranscriptome regulating multiple 
aspects of NPC behaviors. Future investigations to decipher these codes 
and manipulate them in animal models and brain organoids will provide 
mechanistic insights into the principles of temporal organization of the 
complex cytoarchitecture in the developing brain, and contribute to 
therapeutic treatments to overcome neurodevelopmental disorders. 
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R. Long, S. Vaid, J. Lauer, A. Bogdanova, Human-specific ARHGAP11B acts in 
mitochondria to expand neocortical progenitors by glutaminolysis, Neuron 105 
(5) (2020) 867–881. . e9. 

[121] L. Xing, A. Kubik-Zahorodna, T. Namba, A. Pinson, M. Florio, J. Prochazka, 
M. Sarov, R. Sedlacek, W.B. Huttner, Expression of human-specific ARHGAP11B 
in mice leads to neocortex expansion and increased memory flexibility, EMBO J. 
40 (13) (2021), e107093. 

[122] J. Liu, W. Liu, L. Yang, Q. Wu, H. Zhang, A. Fang, L. Li, X. Xu, L. Sun, J. Zhang, 
The primate-specific gene TMEM14B marks outer radial glia cells and promotes 
cortical expansion and folding, Cell Stem Cell 21 (5) (2017) 635–649. . e8. 

[123] T.J. Nowakowski, A. Bhaduri, A.A. Pollen, B. Alvarado, M.A. Mostajo-Radji, E. Di 
Lullo, M. Haeussler, C. Sandoval-Espinosa, S.J. Liu, D. Velmeshev, Spatiotemporal 
gene expression trajectories reveal developmental hierarchies of the human 
cortex, Science 358 (6368) (2017) 1318–1323. 

[124] L. Wang, S. Hou, Y.-G. Han, Hedgehog signaling promotes basal progenitor 
expansion and the growth and folding of the neocortex, Nat. Neurosci. 19 (7) 
(2016) 888–896. 

[125] A. Cárdenas, A. Villalba, C. de Juan Romero, E. Picó, C. Kyrousi, A.C. Tzika, 
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