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A B S T R A C T   

The aldo-keto reductase (AKR) superfamily is a large family of proteins found across the kingdoms of life. Shared 
features of the family include 1) structural similarities such as an (α/β)8-barrel structure, disordered loop 
structure, cofactor binding site, and a catalytic tetrad, and 2) the ability to catalyze the nicotinamide adenine 
dinucleotide (phosphate) reduced (NAD(P)H)-dependent reduction of a carbonyl group. A criteria of family 
membership is that the protein must have a measured function, and thus, genomic sequences suggesting the 
transcription of potential AKR proteins are considered pseudo-members until evidence of a functionally 
expressed protein is available. Currently, over 200 confirmed AKR superfamily members are reported to exist. A 
systematic nomenclature for the AKR superfamily exists to facilitate family and subfamily designations of the 
member to be communicated easily. Specifically, protein names include the root “AKR”, followed by the family 
represented by an Arabic number, the subfamily-if one exists-represented by a letter, and finally, the individual 
member represented by an Arabic number. The AKR superfamily database has been dedicated to tracking and 
reporting the current knowledge of the AKRs since 1997, and the website was last updated in 2003. Here, we 
present an updated version of the website and database that were released in 2023. The database contains ge-
netic, functional, and structural data drawn from various sources, while the website provides alignment infor-
mation and family tree structure derived from bioinformatics analyses.   

1. Introduction 

The aldo-keto reductase (AKR) superfamily consists of proteins 
found across all forms of life, archebacteria, prokaryotes and eukar-
oyotes. These proteins form a group based on their enzyme function to 
catalyze the reduction of carbonyl groups and their similar three- 
dimensional structure [1]. The superfamily is distinct from related 
functional proteins that belong to the short-chain dehydrogen-
ase/reductase family and the medium chain alcohol dehydrogenase 
family [2]. The AKR superfamily contains over 200 confirmed members 
and over 30 potential members as of writing. 

AKRs are phase I enzymes that catalyze the reduction of carbonyl 
groups of various substrates. This function enables the resulting alcohol 
to undergo conjugation reactions for elimination. AKRs conduct oxi-
doreduction by using the cofactor nicotinamide adenine dinucleotide 
(phosphate) reduced (NAD(P)(H)) [3]. The protein structure of AKRs is 

characterized by an (α/β)8-barrel structure, three additional large loops, 
a cofactor binding site, and a catalytic tetrad [1,4,5]. 

Despite their similarities, some members of the AKR superfamily 
have additional functions such as the reduction of nitro-groups in nitro 
containing xenobiotics (AKR1C1-AKR1C4) [6–10], the reduction of 
steroid double bonds (AKR1D) [11–13], the oxidation of proximate 
carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons [14,15], 
and the activation of β-subunits of potassium gated ion channels (AKR6 
family) [16,17]. 

Given the diverse roles AKRs have in many important and distinct 
biological processes, they have been the subject of much research for 
decades. In the five-year period from 2019 to 2023, over 900 AKR- 
related research articles accessible via PubMed from its underlying 
database Medline were published. Among these contributions were 
publications in high impact journals [18,19], as well as discoveries 
regarding the role of AKRs in oncology [20–24], chemotherapeutic drug 
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resistance [25–27], endocrinology [28–31], toxicology [32–37], prog-
nostic and diagnostic biomarker identification [38–49], the inactivation 
of glyphosate [50], and the presence of substrate cooperativity and 
allosteric sites that may extend across multiple family members [51]. 

Due to the size of, and interest in the superfamily, the need for a 
centralized database regarding the AKRs was evident and began in 1997, 
and an AKR superfamily webpage was created in 2003 to provide access 
to the database [1]. Since then, the database has been updated contin-
uously via investigator-initiated submission. As many new family 
members have become available and tools for their analysis have 
improved, a newly configured website was released in 2023 (https://a 
krsuperfamily.org//). The database acts as a central location to access 
information regarding the AKR superfamily. Information gathered 
elsewhere such as protein database (PDB) structures and genetic se-
quences (NCBI) are directly linked from the website. New information 
that is generated by compiling all the members to provide multiple 
sequence alignments and family dendrograms is also provided. The AKR 
Superfamily webpage is publicly available and maintained by the Center 
of Excellence in Environmental Toxicology at the University of 
Pennsylvania. 

2. Material and methods 

2.1. Multiple sequence alignment 

MAFFT [52] was used to perform multiple sequence alignment. 
Protein sequences of the AKR superfamily were aligned via the L–INS–i 
algorithm, an iterative refinement method that employs a local pairwise 

alignment with the affine gap cost [53]. The aligned sequences were 
visualized using the msaR R package [54] that provides an interface to 
MSAViewer [55] for web visualization. 

2.2. Percent identity 

Percent identity, which measures the number of matches in relation 
to the length of the alignment, was calculated using the seqinr R package 
[56]. Gapped positions were excluded from the identity calculations. 
Identity measures were used to delineate AKR subfamilies. 

2.3. Phylogenetic tree 

IQ-TREE [57] was used to infer maximum-likelihood phylogenies, 
incorporating ModelFinder [58] to improve the accuracy of phyloge-
netic estimates by identifying the best-fitting model of sequence evolu-
tion. The resulting phylogenies were visualized using the ggtree R 
package [59]. 

2.4. Shiny web application 

The revamped AKR website uses the Shiny web framework [60] to 
enable real-time user interaction with data, including filtering, selec-
tion, and manipulation of tables and visuals. The website’s tables are 
rendered using the DT R package [61] that leverages the JavaScript 
DataTables library to deliver a responsive user experience. A new 
sequence submission form was created with the help of the shinyjs R 
package [62] that provides common JavaScript operations within Shiny 

Fig. 1. A. Architecture of the AKR Superfamily website. B. Screenshot of the AKR Superfamily website landing page (https://akrsuperfamily.org//).  
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web applications. 

3. Results 

The website is organized through five major tabs: ‘About AKR’, ‘AKR 
Members’, ‘Phylogenies’, ‘Multiple Sequence Alignment’, and ‘Submit 
AKR Sequences’. Fig. 1 provides an overview of the website organization 
and a screenshot of its homepage. 

3.1. About AKR 

The about AKR tab has a section on nomenclature, protein structure 
and function, families. 

Nomenclature 
The AKR superfamily naming conventions follow a specific nomen-

clature adopted by the 8th international Workshop on Enzymology and 
Molecular Biology of Carbonyl Metabolism in 1997 [63]. All members of 
the superfamily start with the root “AKR,” followed by an Arabic number 
denoting the family. In families where a subfamily is present, the sub-
family is represented by a letter. Lastly, the final Arabic number denotes 
the enzyme identity, which is numbered chronologically in order of 
discovery. An example of this nomenclature can be seen in Fig. 2. For 
genes encoding the AKR proteins, the gene name is identical to the 
protein name, but denoted in italics. Each AKR protein has its own 
unique name to avoid misclassifying proteins from other species as 
orthologs when this is not known with certainty. The use of lower case 
AKR names italicized or unitalicized to denote genes and proteins, 
respectively, is discouraged since this assumes that the homology that 
exists predicts conservation of function. 

Families are defined by its members having 40 % amino acid 
sequence identity, meaning two members of the family should be at least 
40 % identical. Currently, there are 17 AKR families according to 
phylogenetic tree analysis. Within families exist subfamilies that are 
defined by their members having 60 %–97 % amino acid sequence 
identity [63]. Members of the same subfamily with over 97 % amino 
acid sequence identity are considered alleles of the same gene unless 
they have distinct activities, are encoded by different mRNA transcripts, 
and come from structurally different genes. An example of this exception 
is seen with AKR1C1 and AKR1C2, two AKR 1C members with 96 % 
sequence identity which differ by only seven amino acids but are still 
considered two different members since they are coded by different 
genes and have distinct functions [64–67]. 

Most AKRs exist as monomeric proteins, however, some members of 
the superfamily have been observed to form multimers. In this case, the 
naming should contain the composition of proteins, and stoichiometry. 
A tetramer containing one AKR7A1 monomer and three AKR7A4 
monomers should be denoted as AKR7A1: AKR7A4 (1:3) [1]. 

We note that with the updated AKR database, the nomenclature of 
some members appears out of sequence, and that is largely due to the 
fact that as new members are discovered, some of the relationships 
among existing members have changed. Previously named AKR pro-
teins’ names have been kept to preserve consistency with the published 
record. 

3.1.1. Protein structure and function 
AKRs function as phase I enzymes, catalyzing the carbonyl reduction 

on a variety of endogenous and xenobiotic substrates. Thus, aldehydes 
are reduced to primary alcohols and ketones are reduced to secondary 
alcohols. The alcohol functional group is then available for conjugation 
reactions so that the reactive carbonyl containing compound can be 
eliminated. All AKRs catalyze a sequential ordered bi reaction in which 
the cofactor binds first and leaves last [68,69]. AKRs catalyze the 
nicotinamide adenine dinucleotide (phosphate) reduced (NAD(P) 
H)-dependent reduction of carbonyl groups and the reverse oxidation 
reaction, thus classifying AKRs as oxidoreductases [3]. However, in vivo, 
these enzymes act as reductases due to their high affinity for NADPH and 
favorable Keq. [70,71]. 

Due to the similar reaction catalyzed, members of the AKR super-
family possess structural similarities [72]. These features include an 
(α/β)8-barrel fold (Fig. 3A), also known as a triose-phosphate isomerase 
TIM barrel with two additional helices and loop structures at the back of 
the barrel. A novel NADP(H)-binding motif is located in the elliptical 
pocket at the C-terminal end of the β-sheet [68,72–74]. Interestingly, 
AKRs have stereoselectivity for 4-pro-R hydride transfer from NADPH to 
the acceptor carbonyl group [68]. The animo acids that bind NADPH are 
highly conserved [5,68,75] (T24, D50, S166, N167, Q190, Y216, L219, 
S221, R270, S271, F272, R276, E279, and N280 in AKR1C9 numbering) 
(Fig. 4). Interaction with S166, N167 and D50 ensure that the carbox-
amide side-chain is tethered so that the nicotinamide head group is in 
the anti-configuration and the nicotinamide ring pi-stacks with Y216. 

To define substrate specificity, three large loops exist behind the 
barrel motif [4] depicted in Fig. 3B. The binding of the NADPH coen-
zyme causes a conformational change that reorients the loops [76]. 
Tight binding of the cofactor is due to anchoring the 2′ phosphate of 
AMP by R276 or equivalent residue [77]. In some AKRs, the tight 
binding is enhanced by a clamping loop which acts as a "safety-belt" 
across the pyrophosphate bridge of the cofactor. The 
carbonyl-containing substrate binds perpendicularly to the cofactor. The 
preference for NADP(H) over NAD(H), can be reversed if R276 is 
replaced with an acidic group to repel the 2′-phopsphate of AMP [78]. 

Another structural motif that exists in the AKRs is the conserved 
catalytic tetrad that includes the residues Y55, L84, H117, and D50 [5] 
(AKR1C9 numbering convention) which catalyze a "push-pull" mecha-
nism for hydride transfer [79]. In some AKRs H117 is replaced by a 
glutamic acid to increase the acidity of the active site to promote 
carbonyl group enolization for double bond reduction as seen in 
AKR1D1 [80]. In general, AKRs have a molecular mass between 34 and 
37 kDa and are monomeric and soluble [1,5,68]. 

3.1.2. Families 
The AKR superfamily has 17 separate families, denoted by their first 

Fig. 2. Naming nomenclature for the AKR superfamily for AKR1C3. The root 
AKR, followed by family 1, then the subfamily C, finally the individual mem-
ber 3. 

Fig. 3. A. Crystal structure of AKR1C9 (PDB: 1AFS) highlighting the (α/β)8- 
barrel structure, α-helix in purple, β-sheets in orange. B. AKR1C9 crystal 
structure with distinct loops A, B, and C colored in purple, blue, and magenta 
respectively. 
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Arabic number (Table 1). 

3.2. AKR members 

The AKR members tab lists existing and potential members that are 
grouped by PDB structures. 

3.2.1. Existing members 
There are 207 AKR member entries in our current database. Each 

entry contains the nomenclature name, National Center of Biotech-
nology Information (NCBI) accession number, species expressed, 
enzyme name, link to protein database (PDB) entry, and alternative 
splicing transcripts. The NCBI accession number is an identifier for the 
protein in the GenBank database and links to the protein’s NCBI entry, 
containing alternative names, FASTA file, source organisms, amino acid 
sequence, and references [81]. The species expressed column reports the 
species where the protein was found to be present. The enzyme name 

column reports the type of protein (e.g., oxidoreductase, dehydroge-
nase) and common or alternative names for the protein. The PBD column 
contains a link to the structure of the AKR member in the PDB database 
when available. Information contained in the PBD includes the 3D 
structure, the depositing authors, the expression system, and experi-
mental data and validation of the structure [82]. When multiple struc-
tures are available in the PDB, the chronologically first published 
structure is used. The other structures are available through the Grouped 
by PDB Structure section. The alt splicing column links to the Ensembl 
database for the AKR member. Ensembl contains genetic information, 
including the summary of the gene name, location, and its transcripts 
[83]. Physiological functions of human AKR members are described in 
Table 2. 

Fig. 4. Schematic of NADP+ binding residues, with residues following AKR1C9 
numbering. Reproduced from Jez et al. Comparative anatomy of the aldo-keto 
reductase superfamily. Biochem. J., (1997) (Pt 3) 625–26 [5] with permission 
form Portland Press. 

Table 1 
Brief description of the 17 AKR families including the presence of subfamilies.  

Family Subfamilies Description Citationa 

AKR1 Yes; AKR1A- 
AKR1I 

The largest family contains enzymes 
involved in aldehyde reduction 
(AKR1A), aldose and retinal reduction 
(AKR1B). They are also involved in 
regulating ligand access to nuclear 
receptors (AKR1C), steroid hormone 
metabolism (AKR1C) and bile acid 
synthesis (AKR1D) among other 
processes. 

[4,87] 

AKR2 Yes; AKR2A- 
AKR2E 

Enzymes that consist of xylose and 
mannose reductases. 

[88–90] 

AKR3 Yes; AKR3A- 
AKR3G 

Enzymes found in yeast [91,92] 

AKR4 Yes; AKR4A- 
AKR4C 

AKR enzymes found in plants. Involved 
in various functions such as stress 
defense, production of metabolites, and 
plant microbe interactions. 

[93] 

AKR5 Yes; AKR5A- 
AKR5G 

Enzymes that act as gluconic acid 
reductases 

[94] 

AKR6 Yes; AKR6A- 
AKR6D 

Human AKRs containing β-subunits of 
the potassium gated voltage channels. 
Structurally distinct than most AKRs due 
to its ability to form tetramers. 

[16,95] 

AKR7 No Function as aflatoxin dialdehyde 
reductases. Members typically reduce an 
aldehyde to an alcohol. 

[96] 

AKR8 No Microbial enzymes found in yeast. 
Catalyze the NADPH-mediated 
reduction of pyridoxal to pyridoxine 

[97–99] 

AKR9 Yes; AKR9A- 
AKR9C 

Microbial enzymes found in 
archaebacteria, yeast, and fungi with 
varied functions. 

[100,101] 

AKR10 No; only 
AKR10A 

Bacterial AKRs found in Streptomyces. [102,103] 

AKR11 Yes; AKR11A- 
AKR11E 

Bacterial AKRs involved in the reduction 
of DL-glyceraldehyde, d-erythrose and 
methylglyoxal 

[104,105] 

AKR12 Yes; AKR12A- 
AKR12D 

Streptomyces sugar aldehyde reductases [106–108] 

AKR13 Yes, AKR13A- 
AKR13E 

Bacterial AKRs found in 
hyperthermophiles. Involved in protein 
thermostabilizing. 

[109] 

AKR14 No: only 
AKR14A 

Bacterial AKRs found in Escherichia coli 
and Salmonella enterica 

[110] 

AKR15 No; only one 
member 

AKR found in Microbacterium luteolum, 
functions as a pyridoxal 4- 
adehydrogenase 

[111] 

AKR16 Yes; AKR16A- 
AKR16B 

AKRs found in Vibro cholera and 
Agrobacterium fabrum, involved in the 
reduction of 6-oxo-gluclose 

[112,113] 

AKR17 No, 
Only one 
member 

Aldehyde and Ketone reductase found in 
Cyanobacteria anabaena 

[114]  

a Citation for discovery of family or otherwise relevant review of entire family 
is provided. 
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Table 2 
The 15 human aldo-keto reuctases.  

aGene aEnzyme aTissue 
expression 

aPhysiological function aAssociated pathology bCitation 

AKR1A1 Aldehyde reductase CNS; 
Kidney; 
Liver; 
Duodenum; 
Small intestine 

Reduction of biogenic and xenobiotic aldehydes, including 
glyceraldehyde to glycerol; and melvadate reductase 

Alcohol associated liver 
disease; 
Diabetic kidney disease; 
Schizophrenia 

[115–118] 

AKR1B1 Aldose reductase Adrenal kidney; 
Placenta 

Reduction of aldehydes, including glucose to sorbitol Diabetic complications: 
Cataract genesis; 
retinopathy; neuropathy 
nephropathy 

[119–123] 

AKR1B10 Aldose reductase Duodenum; 
Gall bladder; 
Small intestine; 
Stomach; 
Esophagus; 
Colon 

Reduction of aliphatic and aromatic aldehydes, including all trans- 
retinaldehyde 

Non-small cell lung cancer; 
Hepatocarcinogenesis 
Cell proliferation 

[124–132] 

AKR1B15 Aldose reductase Prostate; 
Testis; 
Uterus; 
Ovaries; 
Stomach 

Predicted to be involved in estrogen biosynthetic process; 9-cis- 
retinaldehyde reductase; keto-acyl-CoA reductase  

[133,134] 

AKR1C1 3α(20α)-hydroxysteroid 
dehydrogenase 

CNS; 
Prostate; 
Testis; 
Lung; 
Liver; 
Breast; 
Endometrium; 
Uterus; 
Ovaries; 
Adipose 

Elimination of progesterone by catalyzing progesterone to the 
inactive form 20α-hydroxy-progesterone. 

Parturition 
Endometrial cancer 
Endometriosis 

[135–138] 

AKR1C2 Type 3 3α- 
hydroxysteroid 
dehydrogenase 

CNS; 
Prostate; 
Testis; 
Lung; 
Liver; 
Breast; 
Endometrium; 
Uterus; 
Adipose 

Elimination of dihydrotestosterone by reduction to the inactive 
form 3α-androstanediol; conversion of 5α-dihydroprogesterone to 
allopregnanolone GABAa receptor modulator 

Androgen insufficiency; 
Premenstural syndrome 

[67, 
139–143] 

AKR1C3 Type 5 17β- 
hydroxysteroid 
dehydrogenase; 
Type 2 3α- 
hydroxysteroid 
dehydrogenase 

CNS; 
Prostate; 
Testis; 
Lung; 
Adrenal kidney; 
Liver; 
Breast; 
Endometrium; 
Uterus; 
Adipose 

Formation of testosterone and 17β -estrodial by reduction of 17 
ketosteroids; 
Prostaglandin F synthesis; 
Androgen receptor coregulator 

Advanced prostate cancer; 
Breast cancer; 
Polycystic overy syndrome 
Acute myeloid 
Leukemia 

[23,29,136, 
144–150] 

AKR1C4 Type 1 3α- 
hydroxysteroid 
dehydrogenase 

Liver; 
Gall bladder 

Hepatic elimination of steroids and xenobiotics; 
Bile acid synthesis 

Androgen insufficiency 
Bile acid homeostasis 
disruption 

[140,151] 

AKR1D1 Steroid 5β-reductase Liver Reduction of Δ4-3-ketosteroids to 5β-dihydrosteroids; 
Bile acid synthesis 

Bile acid deficiency [152–154] 

AKR1E2 1,5-Anhydro-d-fructose 
reductase 

Testis; 
Thyroid; 
Adipose 

Reduction of 1,5 anhydro-d-fructose, part of the anhydrofrutose 
pathway of glycan catabolism  

[155–158] 

AKR6A3 Potassium voltage gated 
channel, β-subunit-1 

Thyroid; 
Prostate; 
Adipose; 
CNS; 
Cardiovascular; 
Endometrium 

Neurotransmitter release; 
Heart rate; 
Insulin secretion; 
Neuronal excitability; 
Epithelial electrolyte transport; 
Smooth muscle contraction; 
Cell volume 

Aberrant redox regulation of 
Kev channels; 
Cardiovascular disease 

[17,159,160] 

AKR6A5 Potassium voltage gated 
channel, β-subunit-2 

CNS; 
Bone marrow; 
Appendix; 
Lymph node; 
Spleen; 
Kidney 

Neurotransmitter release; 
Heart rate; 
Insulin secretion; 
Neuronal excitability; 
Epithelial electrolyte transport; 
Smooth muscle contraction; 
Cell volume 

Aberrant redox regulation of 
Kev channels; 
Cardiovascular disease 

[17,159,160] 

AKR6A9 Potassium voltage gated 
channel, β-subunit-3 

Endometrium; 
CNS; 

Neurotransmitter release; 
Heart rate;  

[17, 
159–161] 

(continued on next page) 
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3.2.2. Potential members 
To have full status as an AKR superfamily member, the member must 

be a functional protein associated with the gene. If the member is 
derived from a partial cDNA sequence or genomics project then it is not 
included in the database, but some are listed as potential members to be 
included pending functional analyses. There are currently 34 potential 
members listed in the database. Each entry contains species expressed, 
name, and NCBI accession number. Unlike the existing members, po-
tential members are grouped together by the species in which they were 
detected. The actual number of potential AKR members is much larger 
than the ones submitted to the AKR database as evidenced by the large 
number of AKR genetic sequences observed across all species, many of 
which do not have a known function. 

3.2.3. Groupings according to PDB structure 
Multiple PDB entries can exist for a single AKR member, often 

because structures reflect diverse conformational states that occur under 
differing conditions or upon binding to different ligands. The purpose of 
the Grouped by PDB Structure section is to provide all available PBD 
structures and provide relevant comments regarding the structure. Our 
table contains the AKR family member name, the taxonomy, resolution, 
complex, and PDB link. In the AKR column, the AKR nomenclature name 
is reported alongside any common names. If multiple protein names 
exist, all are listed. The taxonomy column lists the species in which the 
AKR protein or complex was purified from to obtain the structure. The 
column Res. (Å) lists the resolution of the structure reported by the PDB 
entry. In simple terms, the resolution of a protein structure is the dis-
tance of the smallest observable feature, thus a smaller value indicates 
higher resolution. Resolutions are reported in angstroms (Å), equal to 
10− 10 m [84]. The complex column provides a description of the contents 
of the structure in more detail. Finally, the PBD column is a direct link to 
the PBD entry. Most structures contain a bound cofactor, and apoen-
zyme structures are scarcely available, likely due to the intrinsic disor-
der of the loops when NAD(P)H is not bound [73,74,85]. 

3.3. Phylogenies 

The phylogeny tab provides information on the evolutionary re-
lationships among AKRs. The AKR superfamily is thought to be a 
product of divergent evolution due to its members having common 3D 
structures and a highly conserved NADPH binding pocket to accom-
modate diverse substrates. There is also evidence of convergent evolu-
tion because AKRs are distinct from other oxidoreductase superfamilies 

such as long chain alcohol dehydrogenase and short chain dehydroge-
nase/reductase [5]. That is, genetic alignment studies have not found 
significant similarities between these oxidoreductase superfamilies [3, 
86]. Furthermore, the presence of AKRs across diverse life domains 
suggests that AKRs are an ancient protein superfamily [1]. 

To examine evolutionary relationships within the AKR superfamily, 
phylogenic trees were created using the multialign program, to provide 
an update to the previous versions constructed with the GCG program 
[1]. AKR phylogeny dendrograms provide an overview of the entire AKR 
superfamily (Fig. 5A), for each AKR family with at least three members 
(Fig. 5B contains an example), and for each of the following taxonomic 
groups: Animalia, Bacteria, Fungi, Plantae, Insecta, Mammalia, Lango-
morpha, Rodentia, and Homo sapiens. 

3.4. Multiple sequence alignment 

Multiple sequence alignment (MSA) is a bioinformatics technique 
used to align biological sequences, such as DNA, RNA, or amino acid 
sequences, in order to compare similarities and differences. Visualiza-
tion of such data is paramount to MSA. We provide users the ability to 
visualize aligned AKR protein sequences from various families and 
taxonomic groups in our database. The alignments are generated using 
MSAViewer, offering an interactive JavaScript-based representation of 
multiple sequence alignment [55]. To use the tool, first the group of 
AKRs a user would like to compare are selected. The groups include all, 
by family, and by taxonomic group, consistent with the phylogenies 
available. All families are present regardless of the number of members. 
For families with multiple subfamilies, each entry is listed alphabetically 
and numerically (e.g., AKR1C2 is listed before AKR1C3, and both are 
listed before AKR1D1). The default visualization can be adjusted ac-
cording to options for Importing, Sorting, Filter, Selection, Visual elements, 
Color scheme, Extras, Exporting, and More as listed in Table 3. As an 
example, the alignment of the catalytic tetrad residues for AKR1C1 
members 1–35 using the MSAviewer available on the website is depicted 
in Fig. 6. 

3.5. Submission of AKR sequences 

Sharing the discovery of new members to the AKR superfamily is 
highly encouraged. To facilitate this process, a section of the website is 
dedicated to this activity. Submitted AKRs should have a functionally 
expressed protein and an amino acid sequence determined by cDNA or 
other direct methods. The protein must be purified or overexpressed 

Table 2 (continued ) 
aGene aEnzyme aTissue 

expression 

aPhysiological function aAssociated pathology bCitation 

Lymph node; 
Bone marrow; 
Appendix 

Insulin secretion; 
Neuronal excitability; 
Epithelial electrolyte transport; 
Smooth muscle contraction; 
Cell volume 

AKR7A2 Aflatoxin aldehyde 
reductase; 
Succinic semialdehyde 
reductase 

Kidney; 
Duodenum; 
Small intestine; 
Ovaries; 
Colon; 
Adrenal kidney 

Reduction of succinic semialdehyde to the endogenous 
neuromodulator, γ-hydroxybutyrate; 
Reduction of aflatoxin 

Alzheimer’s; 
Hepatocellular carcinoma 

[162–165] 

AKR7A3 Aflatoxin aldehyde 
reductase 

Duodenum; 
Kidney; 
Liver; 
Small intestine; 
Gall bladder; 
Pancreas; 
Stomach; 
Colon 

Reduction of aflatoxin Hepatocarcinogenesis; 
Breast cancer; 
Gastric cancer 

[96, 
164–167]  

a Gene and enzyme names given, tissue expression data from NCBI reported, physiological function and associated pathologies described. 
b Citations for physiological function and associated pathologies provided. 
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from either its natural source or recombinantly. Mutant AKRs are not 
represented in this database. 

The submission should include the following information.  

• Protein sequence from cDNA or direct methods  
• Trivial name  
• Species of origin  
• Expression system  
• Enzyme activity substrate  
• Accession number (GenBank, Swiss-Prot, PIR)  
• Status of publication  
• Citations  
• Contact information of submitter 

Once submitted, the proposed member will be matched against the 
current AKRs and placed within the evolutionary tree. The location 
within the superfamily cluster will determine the nomenclature desig-
nation. If needed, new families and subfamilies will be created. 

Upon completion of the cluster analysis, the assigned designation 
and location in the AKR superfamily are communicated to the submitter. 
The new AKR will be made available on the website once the submission 
has been published. 

4. Discussion 

The AKR superfamily is an extensive family with much interest 
regarding its over 200 members. The superfamily benefits from having a 
centralized portal of information, a function that the website has per-
formed for over 20 years. Since this time, the scientific research land-
scape has undergone many changes, and the new website has been 
updated accordingly. The updated cluster analysis to designate the AKR 
families and subfamilies, resulted in some families needing to be 
restructured by the analysis designation. However, our analysis is also 
regularly updated and upon the discovery of other members, the families 
might undergo other changes, representing the most updated knowl-
edge. A new feature of the current AKR superfamily website includes the 
retention of past iterations, allowing for outdated information to be 
clearly documented. The AKR superfamily database also links to other 
databases such as GenBank, Ensembl, and the PDB, facilitating access to 
carefully curated and up-to-date information regarding the members. 

CRediT authorship contribution statement 

Andrea Andress Huacachino: Writing – original draft, Visualiza-
tion, Conceptualization. Jaehyun Joo: Visualization, Software, Formal 
analysis. Nisha Narayanan: Validation, Software, Formal analysis, Data 

Fig. 5. AKR dendrograms available; A. entire superfamily and B. AKR1 family.  

Table 3 
Description for viewing multiple alignment sequences on akrsuperfamily.org.  

aFeature Description Options 

Import Allows input file upload URL; From file; Drag & Drop 
Sorting Alignment sorting by unique sequence identifiers, ascending or 

descending 
ID; Label; Sequence; Identity; Gaps; Consensus to top 

Filter Hide or show sequences and/or columns Columns by threshold; columns by selection; columns by gaps; seqs by identity; seqs by selection; 
seqs by gaps; Reset 

Selection Search an alignment for a motif or invert the selection of column 
and/or rows 

Find Motif; Invert columns; Invert rows; Reset 

Vis. 
Elements 

Chose to hide or show. You can use your ctrl Key or meta Key to 
select multiple residues, column, or sequences 

Residues indices; ID/Label; meta info; overview panel; sequence logo; gap weights; conservation 
weights; scale slider; label; ID; gap %; identity score; Reset 

Color 
scheme 

Chose one of the 15 pre-defined color schemes or select to use 
none 

Taylor; buried; cinema; clustal; clustal 2; helix; hydrophobicity; lesk; MAE; nucleotide; purine; 
PID; strand; turn; zappo; no color 

Extras Allows extra additions and/or navigations Add consensus seq; Jump to a column 
Export Export the URL of the visualization for other uses Share view (URL); View in Jalview; export alignment (FASTA); export alignment (URL); selected 

sequences (FASTA); export features (GFF); export MSA image (PNG) 
Help Gives more information about the MSAviewer project About the project; Report issues; User manual  

a Adapted from the original MSAviewer github manual [55]. 
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