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Chapter 16 

Stereotaxic Surgery as a Method to Deliver Epigenetic 
Editing Constructs in Rodent Brain 

Elizabeth A. Helle r and Peter J. Hamilton 

Abstract 

Modern neuroscience research is increasingly discovering that alterations in epigenetic states within key 
brain cells is correlated with brain diseases. These epigenetic alterations may include changes in histone 
post-translational modifications and/or DNA modifications, all of which affect transcription and other 
gene expression programs within the brain cells that comprise central brain regions. However, the exact 
causal contribution of these epigenome changes to brain disease cannot be elucidated in the absence of 
direct in vivo manipulations in the implicated brain areas. Combining the design and creation of epigenetic 
editing constructs, gene delivery strategies, and stereotaxic surgery enables neuroscience researchers to 
target and manipulate the epigenetic state of the brain cells of laboratory rodents in a locus-specific manner 
and test its causal contribution to disease-related pathology and behaviors. Here, we describe the surgical 
protocol utilized by our group and others, which is optimized for herpes simplex virus delivery into the 
mouse brain, although the protocol outlined herein could be applied for delivery of adeno-associated 
viruses, lentiviruses, or nonviral gene-delivery methods in both mice and rats. The method allows for the 
overexpression of engineered DNA-binding proteins for direct and targeted epigenome editing in rodent 
brain with excellent spatiotemporal control. Nearly any brain region of interest can be targeted in rodents at 
every stage of postnatal life. Owing to the versatility, reproducibility, and utility of this technique, it is an 
important method for any laboratory interested in studying the cellular, circuit, and behavioral conse-
quences of manipulating the brain epigenome in laboratory rodents. 

Key words Viral-mediated gene transfer, Synthetic biology, Neuroepigenetic editing, Stereotaxic 
surgery, Rodent brain 

1 Introduction 

Stereotaxic surgery is a powerful method used to manipulate the 
brain of living animals. This technique allows researchers to consis-
tently and accurately target deep structures of the rodent brain 
through the use of a stereotaxic brain atlas, which provides the 
coordinates of a given brain area relative to Bregma, an anatomical 
landmark on the rodent’s skull. Stereotaxic coordinates for rodent 
brain regions of interest can be determined from The Mouse Brain
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in Stereotaxic Coordinates [1] and The Rat Brain in Stereotaxic 
Coordinates [2]. In anesthetized animals, and facilitated through 
the use of a stereotaxic instrument, one can perform this surgery on 
large numbers of animals to reliably and accurately access structures 
within the rodent brain.
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Combining this approach with viral-mediated gene transfer 
[3, 4], or even nonviral methods for delivering constructs of inter-
est [5, 6], we and others have been successful in delivering engi-
neered neuroepigenetic editing tools to deposit gene-locus-specific 
epigenome modifications in vivo to alter brain function and animal 
behaviors [7–14]. Epigenetic editing tools, which can exogenously 
catalyze epigenetic modifications at a single or multiplexed targeted 
genomic loci within neurons or even in a single type of neuron in an 
injected brain region, are necessary to establish the causal connec-
tion of such mechanisms to gene expression and neural function 
[15]. Given the fact that regulation of epigenetic landscapes is 
central to neuropsychiatric health and disease, it is crucial to com-
bine epigenetic editing techniques with in vivo inquiry in the brains 
of awake and behaving animals. The technique of viral expression of 
epigenetic editing tools in rodent brain using stereotaxic surgery 
techniques facilitates the exploration of the causal impact of these 
targeted epigenetic modifications in these neurobiological 
contexts. 

Here, we describe the laboratory methodology to utilize ste-
reotaxic surgery to deliver epigenetic editing constructs in rodent 
brain. 

2 Materials 

2.1 Reagents 1. Ketamine and xylazine; or isoflurane. 

2. 70% ethanol. 

3. 100% acetone. 

4. 10% bleach solution. 

5. 70% ethanol wipes. 

6. Sterile ocular lubricant. 

7. Sterile PBS. 

8. Sterile saline. 

9. Purified virus (e.g., herpes simplex virus (HSV), adeno-
associated virus (AAV), Lentivirus (LV)) or nonviral reagent 
(e.g., jetPEI® ). 

10. Betadine antiseptic. 

11. Bupivacaine HCl local anesthetic.
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2.2 Instruments and 
Materials 

1. Dual small animal stereotaxic instrument (such as Kopf 
Model 902). 

2. Small animal far infrared warming pad (such as Kent Scientific 
Model RT-0520). 

3. Fine Science Surgical Tools, including but not necessarily lim-
ited to scalpel, scissors, forceps. 

4. Laboratory scale. 

5. Bead sterilizer. 

6. Electric hair shaver. 

7. Sterile tip cotton swabs. 

8. Biohazard bags. 

9. Low binding, 0.65 mL microcentrifuge tube. 

10. Needles and syringes for IP injection of anesthetics and 
analgesics. 

11. Absorbent lab bench diapers. 

12. Hand-held dental drill and 0.6 mm burr. 

13. Hamilton syringes (5 uL Catalog #84851) with Hamilton 
small-gauge RN needles (33-gauge Catalog #7762-06). 

14. Tissue adhesive, surgical clips, or surgical sutures. 

15. Temperature-regulated heating pads and/or heat lamp. 

3 Methods 

3.1 Neuroepigenetic 
Editing 

1. Position the stereotaxic instrument in a well-lit workspace (see 
Note 1). Make sure the surgical area is cleaned with 70% 
ethanol and surgical instruments are cleaned and properly ster-
ilized. We find that a bead sterilizer works well for this purpose. 
Place a small animal warming pad, set to 37 !C, in the surgical 
area of the stereotaxic instrument. Care should be taken to 
ensure the animal maintains body temperature for the duration 
of the surgical procedure, and many warming pads come with 
probes to monitor the temperature of the animal over the 
course of surgery. Cover the surgical area with sterile absorbent 
lab bench diapers. All procedures should be performed in 
accordance with your institution’s biosafety and animal use 
guidelines. 

2. Place Hamilton syringes in arms of the stereotaxic instrument 
and clear any blockages by drawing and expelling 100% acetone 
five times. Subsequently draw and expel sterile PBS five times 
to remove any residual acetone. Draw the maximum volume of 
sterile PBS into the Hamilton syringe, taking care to include no 
bubbles. Swing the stereotaxic arms to move the Hamilton
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Fig. 1 Correct placement of rodent’s head within stereotaxic instrument and 
surgical procedure for viral delivery. (a) Cartoon depicting the fixation of animal’s 
head within the stereotaxic instrument. The ear bars are securely in place, 
preventing lateral movement of the skull. The incisor adapter restricts vertical 
movement, with the nose clamp is gently tightened into place. (b) Upon surgi-
cally exposing the stereotaxic landmarks on the skull, the stereotaxic coordi-
nates are measured relative to bregma. Hamilton syringes are used to deliver the 
viral solution to desired regions within the animal’s brain via small burr holes in 
the animal’s skull 

Fig. 2 Anatomical landmarks on the skull. The cartoon above depicts the 
stereotaxic landmarks bregma and lambda on the exposed surface of the 
rodent’s skull



syringes out of the way of the workspace in the center of the
instrument.

Stereotaxic Surgery for Brain-Targeted Epigenetic Editing 313

Fig. 3 Stereotaxic delivery of viral neuroepigenetic editing construct with GFP reporter to the nucleus 
accumbens. HSV delivered CRISPR/dCas9 fusion construct with a GFP reporter was stereotaxically injected 
into the nucleus accumbens (NAc) of a mouse to demonstrate the transduction efficiency and spread of the 
HSV viral vectors. Arrow points to targeted brain region. The injection was performed at a 10! lateral angle at 
+1.6 anterior/posterior, +1.5 mediolateral, and " 4.4 dorsal/ventral coordinate relative to bregma. Coronal 
section of manipulated mouse brain is shown on the left, the corresponding section of the mouse brain atlas is 
shown on the right 

3. Anesthetize the animal with a ketamine/xylazine mixture 
(100 mg/kg ketamine and 5 mg/kg xylazine in sterile normal 
saline) delivered via intraperitoneal injection. The animal 
should reach surgical anesthesia within 5–10 min, and should 
not respond to a light pinch to the hind paw. See Notes 2 and 
3 for more details on assessing anesthesia. If electing to anes-
thetize the animal with inhaled isoflurane, see Note 4. 

4. Cover the anesthetized animal’s eyes with sterile ocular lubri-
cant to keep them moist during the surgery. 

5. Shave the fur off of the top of the animal’s skull and clean the 
surface of the skin with alcohol prep wipes. Apply betadine 
antiseptic on sterile tip cotton swabs.
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6. Place the animal upon the heat pad within the stereotaxic 
instrument. Secure the animal in the instrument. To do so, 
carefully place one ear bar in the ear canal, secure the bar and 
hold the animal in place as the other ear bar is placed and 
secured. The animal should not be able to move laterally. 
Next, secure the mouth in the incisor adapter of the stereotaxic 
instrument, taking care that the tongue is not pinched in the 
adapter or blocking the airway. The nose clamp can be gently 
tightened to firmly secure the animal’s head in position (see 
Notes 5 and 6). Visually inspect the head and make adjust-
ments to the pitch of the incisor adapter to make sure the head 
is level (Fig. 1a). 

7. Make a midline incision to the top of the animal’s skull with 
small surgical scissors or a scalpel. Use small surgical clips to 
gently keep the incision open, providing access to the skull. 
Optionally, sterile saline can be used with sterile swabs to clean 
the skull to aid in visualization of stereotaxic landmarks on the 
skull (Fig. 2). 

8. Measure the z coordinates of Bregma and Lambda on the 
animal’s skull and adjust the position of the head with the 
incisor adapter until they become equal. This serves to level 
the skull. Adjust the pitch of the ear bar to ensure that the skull 
is completely flat. 

9. Position the tip of the Hamilton syringes to Bregma and record 
the x, y, and z coordinates on the Vernier scale located on the 
arms of the stereotaxic instrument. Subtract the coordinates of 
the targeted brain region to calculate the site of targeted viral 
injection. These coordinates can be determined from a stereo-
taxic brain atlas (see Introduction and Note 7). Note that the 
angle of the stereotaxic arm is an important consideration when 
determining the coordinates for targeting a desired brain 
region. 

10. Position the tip of the Hamilton syringes according to the 
calculated x and y coordinates. Using a dental drill with a 
0.6 mm burr, thin the area of the skull directly under the 
Hamilton syringe tip. Do not apply much downward force, as 
it may result in drilling through the skull and damaging the 
surface of the brain. Lower the Hamilton syringe on the 
z coordinate until it slides through the thinned skull, and 
raise the Hamilton syringe above the surface of the skull. 

11. Proper safety attire and handling techniques should be applied 
based on the biosafety level of the virus being used (see Note 
8). Defer to your institutional biosafety requirements for 
proper safety attire and handling techniques. The use of HSV 
vectors for our epigenome engineering experiments necessi-
tates the use of a lab coat, gloves, and goggles when handling



the virus. Place a viral aliquot in a low binding, 0.65 mL
microcentrifuge tube on wet ice, allowing it to thaw. If electing
to use nonviral gene delivery methods, seeNote 9. An abridged
consideration of the relative strengths and weaknesses of each
gene delivery method is included in Note 10.
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12. Taking care not to alter the x or y coordinates, expel 2.5 μL of  
sterile PBS from the Hamilton syringe. This volume will accu-
mulate on the tip of the syringe, indicating unobstructed flow 
through the syringe tip (see Note 11). This volume can be 
removed with a sterile tip cotton swab. Draw the plunger up 
by an increment of 0.5 μL to introduce a small air bubble into 
the barrel of the syringe. This serves to separate the viral 
solution from the sterile PBS. Finally, pull up the desired 
volume of virus to inject (typically 0.2–1 μL of a viral solution 
diluted to an appropriate concentration based on the type of 
virus being used) and place the microcentrifuge tube back on 
wet ice. 

13. Slowly lower the Hamilton syringe through the burr hole in 
the animal’s skull to the calculated z coordinate to the desired 
injection site within the brain (Fig. 1b). 

14. Deliver the viral solution by lowering the plunger of the 
Hamilton syringe at a rate of 0.1 μL per min or less. Once 
the full volume of the viral solution has been dispensed, wait 
5 min for the virus to diffuse through the tissue (see Note 12). 

15. To avoid backflow of the virus to the surface of the brain, slowly 
raise the Hamilton syringe out of the skull. 

16. Expel the remaining contents of the Hamilton syringe into a 
flask containing a 10% bleach solution and use an alcohol prep 
wipe to remove any material that may have accumulated on the 
syringe tip. 

17. Remove the animal from the stereotaxic instrument and close 
the incision via surgical suture or tissue adhesive. Small burr 
holes (less than 1 mm in diameter) do not need to be covered 
with bone wax. Apply antibiotic ointment to the wound and 
inject the local anesthetic bupivacaine subcutaneously near the 
wound, to reduce discomfort during the recovery period. 

18. Place the animal in a clean cage that is warmed by a 
temperature-regulated heating pad until the animal fully 
recovers. This should take approximately 20 min, depending 
on the duration of the surgery. 

19. Return the animal to a clean age with moistened food pellets 
for easy access to food. Monitor the animal’s recovery, looking 
for any signs of distress, which can include a lack of grooming, 
wound scratching, inflammation, altered locomotion, or
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reduced weight gain. Monitor the animals daily for these signs 
(see Note 13). 

20. Clean the Hamilton syringes with 100% acetone and sterile 
PBS and according to manufacturer’s instructions (see Note 
14). Discard the lab bench diapers into a biohazard receptacle 
and clean the workspace with 70% ethanol. 

21. The time to maximal in vivo expression of our HSV-delivered, 
engineered transcription factors is approximately 2–3 days and 
persists through days 8–10 (Fig. 3). However, the trans-gene 
expression profile, viral spread, and cell tropism depends largely 
on the type of virus being used. Following stereotaxic surgery, 
any number of molecular or behavioral experiments can be 
performed. 

3.2 Validation of 
Neuroepigenetic 
Editing Tools 

It is essential to validate the use of epigenetic editing tools in several 
ways to ensure their effectiveness and selectivity in vivo. The outline 
below provides a general list of suggested validations. Depending 
on your application, the essential validations may vary. 

1. Validate expression of the synthetic construct (e.g., ZFP, 
dCas9, etc.) in the brain in vivo. This includes validating selec-
tive expression in neurons when using a neurotrophic vector 
like HSVs, as well as selective expression within a single type of 
neuron if using a Cre-dependent vector in a mouse line that 
expresses Cre recombinase in a given cell type. 

2. Validate that the epigenetic editing tool produces the desig-
nated epigenetic modification at the targeted locus. For exam-
ple, that the p65 effector domain induces histone acetylation, 
G9a induces H3 Lys9 dimethylation, Tet1 induces DNA 
hydroxymethylcytosine, and Dnmt induces DNA 
methylcytosine, etc. 

3. Determine whether the designated epigenetic modification is 
associated with altered expression of the targeted gene. 

4. Study whether the designated epigenetic modification is asso-
ciated with other forms of epigenetic regulation, transcription 
factor binding, or changes in chromatin architecture. 

5. Validate that the epigenetic editing tool selectively acts at the 
targeted locus. This inquiry can be informed by identifying 
regions of the genome that are most highly homologous to 
the targeted region and demonstrating lack of epigenetic mod-
ification of these other regions and lack of altered expression of 
any nearby genes. Predicted off-target genomic regions can be 
identified on the basis of their DNA sequence similarity to the 
targeted genomic region. The ideal validation is experimenta-
tion to demonstrate direct and selective binding of the epige-
netic editing tool to the targeted locus at levels much greater
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than at off-target genomic loci. This is increasingly achieved by 
in vivo precipitation of the epigenetic editing tool followed by 
sequencing (i.e., ChIP-sequencing). This has been successfully 
performed in cultured cell lines [16, 17], but is not easily 
achieved in brain since every cell only has two specific binding 
locations (alleles) and the quantity of infected tissue can be 
limiting. Alternatively, the deposited epigenetic mark and its 
associated DNA can be precipitated followed by sequencing, 
and enrichment for the epigenetic modification can be demon-
strated at the targeted genomic locus. This has been performed 
in brain following delivery of epigenetic editing 
constructs [18]. 

4 Notes 

1. Ensure that the stereotaxic frame and accessories including the 
ear bars and incisor adaptor are appropriate for the type of 
animal to receive surgery. 

2. If the animal does not reach a sufficient level of surgical anes-
thesia after 10–15 min, inject an additional 20% dose of Keta-
mine/Xylazine. Closely monitor the animal to confirm that the 
anesthesia deepens. 

3. If the animal begins to awaken during surgery, remove the 
animal from the stereotaxic instrument, and reapply the anes-
thesia. The early signs of an animal awakening from anesthesia 
include twitches of the large facial whiskers and twitching of the 
tail. With careful monitoring, this occurrence can be avoided. 

4. Animals may also be anesthetized by inhaled isoflurane. To do 
so, specialized equipment (such as the Kent Scientific Somno-
Flo) is required to vaporize concentrated isoflurane and deliver 
a constant flow of 1–3% isoflurane mixed with air to be inhaled 
by the rodent over the course of surgery. Specialized stereotaxic 
mask adaptors are required to accept the in- and out-flow of the 
isoflurane gas over the nose of the rodent. Care should be taken 
to ensure that these anesthetic gasses are scavenged properly 
either by direct exhaust or an activated charcoal canister. 

5. It is essential that the animal is firmly secured in the ear bars. 
Visually validate that the car bars are in the ear canal and not 
pinching the jaw, neck, or skull. Animals appropriately posi-
tioned in the ear bars will be able to move their snout up and 
down in the incisor adapter but will not be able to move side 
to side. 

6. If the animal is not securely placed in the stereotaxic instru-
ment, then it is possible that the skull’s position will shift when 
drilling burr holes. This invalidates all recorded coordinates. To
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be sure this does not occur, when the animal is first positioned 
in the instrument, apply light pressure to the skull with a sterile 
tip cotton swab. If the animal’s skull shifts in response to the 
pressure, resecure the animal within the stereotaxic instrument. 

7. The stereotaxic coordinates provided in atlases are optimized 
for adult, male animals. If experiments involve varying from 
these average metrics, it becomes important to validate and/or 
alter targeting coordinates through pilot experiments. In short, 
use the stereotaxic atlas coordinates as initial values, perform 
surgeries, and validate viral targeting with fluorescent micros-
copy. Adjust the stereotaxic coordinates as needed. 

8. Selecting the appropriate viral vector for delivery of neuroepi-
genomic editing tools is paramount to the success of these 
experiments. Each viral vector varies in its spread, packaging 
capacity, tropism, transgene expression timing, and duration of 
expression. These variables should be carefully considered, and 
pilot studies should be performed to empirically validate viral 
function. 

9. Increasingly, nonviral plasmid delivery methods are becoming 
available. An example includes charged polymer-based trans-
fection reagents, like jetPEI® , which deliver nucleic acids to the 
central nervous system by forming charged interactions with 
the negatively charged plasmid and negatively charged cell 
surface proteoglycans, and facilitates the intracellular delivery 
of these plasmid constructs via endocytosis [5]. Additional 
considerations when using nonviral delivery strategies include 
validating cell tropism and time course of trans-gene expres-
sion, as these nonviral methods are not limited by viral tropism 
or the time course of viral processing and trans-gene delivery. 
This may present advantages or disadvantages depending on 
the research question of interest, so careful consideration on 
the part of the researcher and thorough in vivo validation is 
required. 

10. There are multiple viral vector and nonviral delivery methods 
for delivering epigenetic editing constructs in rodent brain. 
Briefly, the most commonly applied methods are: (1) Lenti-
viruses (LVs). LVs are RNA retroviruses capable of transducing 
mitotic and post-mitotic cells, can carry gene payloads up to 
8 kb, and randomly integrate their trans-gene into the host 
genome [19]. Strengths of LVs include large packaging capac-
ity, which is a particularly important consideration as epigenetic 
editing constructs tend to be quite large, the ability to trans-
duce a variety of CNS cell types, which can be modified by 
pseudotyping [20], and long-term trans-gene expression of 
greater than 12 months. Weaknesses include potential unin-
tended consequences of insertional mutagenesis, slow onset of
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trans-gene expression, and safety concerns which typically 
necessitate LVs be handled at biosafety level two. (2) Herpes 
simplex viruses (HSVs). HSVs are double-stranded DNA 
viruses that preferentially transduce neurons, can carry gene 
payloads >40 kb, and rapidly, but transiently, express their 
trans-genes in vivo. For these reasons, our group has heavily 
utilized HSVs for neuroepigenetic editing approaches. 
Strengths of HSVs include episomal integration, large packag-
ing capacity, high transduction efficiency in neurons, and rapid 
trans-gene expression occurring within 1–3 days of viral deliv-
ery [3]. Weaknesses include potential for cytotoxicity and 
immune response, inability to transduce nonneuronal cells, 
and transient transduction profile lasting only about 10 days. 
(3) Adeno-associated viruses (AAVs). AAVs are small single-
stranded DNA viruses that can infect many tissue and cell types 
due to the multitude of AAV serotypes, which confer distinct 
cell tropism [21]. AAVs are the most commonly used viral 
vector in neuroscience research. Strengths include episomal 
integration (although instances of genomic integration are 
noted [22]), broad cell tropism that can be tailored via serotype 
selection, long duration of trans-gene expression (up to 
6 months), minimal immune response in vivo, and minimal 
safety concerns that often allow AAVs to be handled at bio-
safety level one. Weaknesses include a small packaging capacity 
of <4.8 kb and slow expression profile of around 3 weeks 
before trans-genes can be detected. The limited packaging 
capacity of AAVs is the primary limitation for using AAVs in 
epigenetic editing, and researchers have been seeking to over-
come this limitation by designing split DNA-binding proteins 
like dCas9 or identifying/designing smaller dCas9 proteins 
that can be packaged in AAVs. (4) Nonviral delivery methods, 
which can include physical methods like electroporation or 
microinjection or chemical methods like lipid, polymer, or 
inorganic delivery [22]. The properties of nonviral delivery 
vectors depend on the method selected. Broadly, and when 
compared to viral delivery strategies, the strengths of nonviral 
delivery strategies include simpler production methods, less 
expense, more flexibility in delivery, less immune response, 
and fewer safety concerns. Weaknesses include shorter trans-
gene expression duration, less gene-transfer efficiency, and no 
cell-targeted tropism. 

11. If the Hamilton syringe clogs, it will prevent dispersion of the 
virus into the brain. Always visually confirm that the flow from 
the syringe is not impeded by expelling a very small volume of 
the viral solution back into the microcentrifuge tube before 
lowering into the rodent brain. If the syringe does not appear 
to work, expel the contents of the syringe into a 10% bleach
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solution, clean with 100% acetone and/or replace the Hamil-
ton needle, and restart the process of loading viral solution into 
the Hamilton syringe. 

12. The Hamilton syringe tip is left in place during the 5-min rest 
after delivering virus in order to prevent backflow of viral 
solution up the needle track. However, we have found it bene-
ficial during this time to slightly retract the Hamilton syringe 
along the z axis (<1 mm) to provide a small space for the more 
even dispersion of the viral solution in the tissue. 

13. If signs of distress emerge over the course of daily monitoring 
post-surgery, then removal from the experiment and humane 
euthanasia may be warranted. Consult with your institution’s 
veterinary staff on how to best care for an animal showing these 
symptoms. If the protocol is performed correctly, nearly all 
animals should recover within 1–3 days post-surgery. 

14. If using surfactant-based cleaning solutions for cleaning and 
maintaining Hamilton syringes (as is often suggested accord-
ing to manufacturer instructions), be extremely vigilant to 
thoroughly remove all traces of soap, as it can be damaging to 
viral function and titers. There should be no formation of soap 
bubbles when pipetting sterile PBS. 
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