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INTRODUCTION: Findings from genome-wide
association studies (GWASs) haveprovided foun-
dational knowledge of the genetic basis of
disease, facilitating precision approaches for
prevention and treatment. Current GWAS
results are limited by underrepresentation of
individuals from diverse populations, leading
to concerns with generalizability regarding
our knowledge of the relationships between
genes, traits, and disease. The Department of
Veterans Affairs (VA) Million Veteran Program
(MVP), one of the largest US-based biobanks,
addresses this need; 29% of MVP comprises
individuals genetically similar to African (AFR),
AdmixedAmerican (AMR), andEast Asian (EAS)
reference populations. With over 635,000 par-
ticipants andmore than 44.3M genotyped var-
iants linked with detailed phenotypic data from
the electronic health record (EHR), theMVPhas
the scale and richness of data to fill in the gaps
in our knowledge of genotype-phenotype asso-
ciations across diverse populations.

RATIONALE: Leveraging denseMVP data, we con-
ducted GWASs across 2068 traits in four popula-
tion groups based on genetic similarity to AFR,
AMR,EAS, andEuropean (EUR) referencepopu-
lations.We employed statistical fine-mapping to
highlight putative causal variants. This effort al-
lowed us to characterize the genetic architecture
of complex traits within diverse populations and
compare genetic predisposition between pop-
ulation groups.We also quantified the benefits of
including individuals fromnon-EURpopulation
groups in the study for variant discovery and
fine-mapping precision. Fine-mapping provided a
foundation for nominating putative effector genes
at associated loci mapping the landscape of gene-
trait associations across populations to highlight
both pleiotropic and heterogeneous associations.

RESULTS: Among 635,969 participants, we iden-
tified 26,049 variant-trait associations across
1270 traits,with3477being significantonlywhen
individuals from non-EUR populations were

included. Fine-mapping revealed 57,601 inde-
pendent signals across 936 traits, with 15,045
of these signalsmappedwith high confidence to
a single variant. Predominantly resulting from
interpopulation allele frequency differences, 2069
high-confidence signals and 549 gene nomina-
tions were unique to non-EUR groups. Nota-
bly, a signal mapped to rs76024540 implicated
SLC22A18/SLC22A18AS as effector genes for
keloid scarring, a conditionvastlymoreprevalent
in theAFR than theEURpopulation. Apart from
the APOE locus’s association with dementia, we
observed fewinstancesof effect sizeheterogeneity
across populations for fine-mapped variants.

CONCLUSION: This study underscores the en-
hanced power of GWASs with increased partic-
ipantdiversity, achievinggreater variantdiscovery
and fine-mapping precision than possible in
the EUR population alone. Our findings reveal
more similarities than differences in genetic
architectures across populations, withmost dif-
ferences attributable to allele frequency varia-
tions between populations.▪
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Comprehensive phenome-wide genetic analysis across multiple populations. Meta-analysis of 4045 GWASs comprising 2068 traits from four population groups
identified 26,049 locus-trait associations, including 9989 previously unreported. Multi-population fine-mapping prioritized high confidence signals, highlighting shared
associations and elucidated pleiotropic genes driving multiple variant-trait associations.
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One of the justifiable criticisms of human genetic studies is the underrepresentation of participants from
diverse populations. Lack of inclusion must be addressed at-scale to identify causal disease factors
and understand the genetic causes of health disparities. We present genome-wide associations for
2068 traits from 635,969 participants in the Department of Veterans Affairs Million Veteran Program,
a longitudinal study of diverse United States Veterans. Systematic analysis revealed 13,672 genomic
risk loci; 1608 were only significant after including non-European populations. Fine-mapping
identified causal variants at 6318 signals across 613 traits. One-third (n = 2069) were identified in
participants from non-European populations. This reveals a broadly similar genetic architecture
across populations, highlights genetic insights gained from underrepresented groups, and presents
an extensive atlas of genetic associations.

A
mong published genome-wide associa-
tion studies (GWASs), 95% of participants
are genetically similar to individuals from
European (EUR) reference populations
(1). This creates fundamental inequal-

ities that exacerbate health care disparities as
much of our knowledge regarding the relation-
ship between genes, traits, and diseasemayhave
limited generalizability to other populations
(2). Accordingly, understanding the degree to
which the genetics of complex traits are similar
remains a fundamental open question in hu-
man genetics.
Although steps have been taken to address

these discrepancies, there remains a substan-
tial unmet need for large-scale, well-powered
analyses across diverse population groups. For
example, although several large biobanks have
been able to address some of this discrepancy
in East Asian populations [China Kadoori (3)
and Biobank Japan (4)], aggregated data for
individuals genetically similar to African, Ad-
mixed American, and Asian reference popula-
tions still lack substantial depth. Large-scale
sequencing projects have generated valuable
resources in characterizing the genetic varia-

tion in a wide array of populations; however,
they lack the breadth of clinical data common
toDNAbiobankswith linked electronic health
records (EHR), thereby limiting the charac-
terization of the genetic architecture of pheno-
types at scale. The Department of Veteran
Affairs (VA) Million Veteran Program (MVP),
a longitudinal health, genomic, and precision
medicine cohort, which was established in 2011
and enrolled its one-millionth Veteran in 2023
(5), has both the population diversity and the
genomic and phenotypic depth to address this
unmet need. These types of studies will grow
as other diverse population-based cohorts, such
as NIH’s All of Us program (6), continue to sup-
port research and mature.
Characterizing the genetic architecture of

complex traits within diverse populations as
well as assessing the similarities and differ-
ences across populations requires large-scale,
population-specific, phenome- and GWASs.
Thus, we conducted a set of population-specific,
phenome-wide GWASs in 635,969 US Veter-
ans, of whom 29%were genetically similar to
African (AFR), AdmixedAmerican (AMR), and
East Asian (EAS) population groups as de-

termined by similarity to the 1000 Genomes
Project reference panel. The results of these
GWASs were then used in experiments to com-
pare and contrast the relationship between ge-
netic variation and health and disease traits
across these population groups.
Throughout this work, we categorize indi-

viduals into groups based on their genetic sim-
ilarity to individuals sampled from populations
across the world. These labels are applied with
the understanding that they represent broad,
genetically similar groups of people. Although
they are not intended to be deterministic of
race or ethnic identities they are inextricably
intertwined with these social constructs. Our
intent in applying categorical population de-
scriptors is to facilitate the study of genetic
variation and its association with traits and
diseases between diverse populations. We rec-
ognize that such categorizations, while neces-
sary for analytical clarity, oversimplify the rich
and complex mosaic of human genetic diver-
sity. Nearly all individuals have a component
of admixed ancestry, indicative of the blending
of genetic lineages from different geographical
regions. Therefore, the geographical descrip-
tors applied here are not absolute markers of
genetic identity. This approach provides a bal-
ance between the need for population-specific
genetic insights using the current standardized
definitions and the recognition of the continu-
ous nature of human genetic variation.
In what follows, we describe large-scale

genomic analysis across diverse populations,
resulting in a collection of >13,000 locus-trait
associations. Application of fine-mapping tech-
niques enabled the construction of a catalog of
putative causal variants across human traits
and population groups, which included the
identification of signals whereby a single var-
iant is credibly implicated. This core analysis
allowed us to interrogate the contribution of
signals from non-EUR populations and facili-
tated a systematic comparison of genetic archi-
tecture across population groups, thereby
identifying signals, variants, genes, and global
genetic architecture that are similar and dif-
ferent between population groups. Findings
from this study aim to expand the current
knowledge base on population genetic archi-
tecture and to underscore the importance of
diversity in genetic research in uncovering the
full spectrum of human genetic variation and
its impact on complex traits.

Results
Study design, population groups, and
phenotypic definitions

The study analyzed data from 635,969 partic-
ipants (MVPGenomicsRelease 4) (7), aggregated
into four population groups based on genetic
similarity to the 1000 Genomes Project (8) AFR
(n = 121,177), AMR (n = 59,048), EAS (n = 6702),
andEUR (n=449,042) superpopulations (Fig. 1).
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The population was 8.8% female according to
clinical records, with mean age 61.9 years and
meanbodymass index (BMI) 30.2 kg/m2; 20.6%
were current smokerswith 68.5%having smoked

100 cigarettes in their lifetime (table S1). After
imputation and quality control (QC) filtering,
> 44.3Mvariants [withminor allele count (MAC)
> 40] were included for analysis (9). The fre-

quency and imputation quality scores of single
nucleotide polymorphisms (SNPs) among the
populationgroupsareprovidedwithin theGWAS
results (see data and materials availability).
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VA Million Veteran Program
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Fig. 1. Overview of the study population, genetic association results, and post-GWAS findings. Top panel depicts the demographic characteristics of the study
population; semicircles represent the mean values for age and body mass index. Bottom panel is organized into three sections: the left section summarizes the study data,
the middle section provides key metrics of GWAS results such as the count of independent loci and lead SNPs, and the right section briefly outlines the post-GWAS findings.
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We extracted phenotypic trait data com-
prising diagnosis codes, laboratory measures,
and vital signs from the VA EHR. Additionally,
we included responses to survey questions on
health and behavior administered at MVP en-
rollment. After QC, 1854 binary and 214 quan-
titative traits were included in the downstream
analysis in at least one population group (n =
2068, Fig. 1) (9). Several traits had increased
prevalence in non-EUR groups compared to
the EUR group (Fig. 2, table S2), highlighting
the importance of including diverse popula-
tions in genetic studies. Within the AFR group,
101 traits (6.3%) exhibited a prevalence at least
twice as high as that observed in theEURgroup,
notably including traits such as hereditary he-
molytic anemias, sarcoidosis, and keloid scar-
ring. While the sample sizes for the AMR and
EAS groups were relatively smaller, there were
18 traits in AMR and 8 traits in EAS with at
least twice the prevalence of EUR. Among these
traits, alopecia areata in AMR and viral hepatitis
B in EAS had notably higher prevalence.

Biobank-scale genomic analysis across
populations identifies tens of thousands of
variant-trait associations

We next turned to the substantial computa-
tional task of calculating the>350 billion variant-
trait associations across population groups. The
existing implementation of the Scalable and
Accurate Implementation of Generalized mix-
ture model (SAIGE) algorithm (10)—ideal for
our design in order to address case/control
imbalances—was not analytically tractable at
this scale of computation and would have re-
quired ~251 compute years to complete. As
such, we enhanced the computational efficiency

of this algorithmwith baseline improvements,
implemented graphics processing unit (GPU)
optimization for performingmatrix operations,
and completed analyses on the US Depart-
ment of Energy (DOE)'s Oak Ridge Leader-
ship Computing Facility Summit and Andes
systems. Using this framework, we conducted
a total of 4045 independent GWASs for traits
that met QC criteria in each population group
(table S2). The actual analysis took 14,286 GPU
hours (14 days of wall time), leading to an
overall 160-fold reduction in the core hours
required.
The relatively large sample size, in particular

among the AFR and AMR population groups
as compared to the published literature, facil-
itated substantial discovery even at the strin-
gent study-wide significance level of P < 4.6 ×
10−11 (table S3). In the AFR group there were
2447 significant loci across 339 traits, includ-
ing 1470 locus-trait associations not previously
reported. Among these, a locus was identified
on chromosome 15 that was associated with
keloid scar formation (P = 2.2 × 10−11), a con-
dition three times more prevalent in the AFR
group compared to the EUR group in theMVP
cohort. In the AMR group there were 1105 sig-
nificant loci across 255 traits, including 341
locus-trait associations. In the EAS group we
found 61 significant locus-trait pairs, including
four previously unreported locus-trait associa-
tions. In the EUR group, the largest popula-
tion, there were 23,628 significant loci across
814 traits. Notably, 36.6% (8651) of these loci
were linked to quantitative traits and 10.9%
(2578) were linked to binary traits, previously
not reported in the NHGRI-EBI GWAS (11) and
Open Target Genetics catalogs (12). We have

made all summary statistics, phenotype defi-
nitions, and optimized code publicly available
to facilitate global research endeavors (see data
and materials availability).

Population-specific heritability and
genetic correlation patterns for complex
traits demonstrate substantial similarity
between groups

To characterize phenotypic variation attrib-
utable to common genetic variants across the
fourmajor population groups, SNPheritability
was calculated using linkage disequilibrium
score regression (LDSC)withpopulation-specific
GWASresults and in-sampleLDreferencepanels
(9). This analysis identified significant (P < 9 ×
10−6) SNP heritability for 233 traits (n = 1525,
mean h2 = 20.5%) in the AFR group, 199
traits (n = 1226, mean h2 = 22.1%) in the AMR
group, three traits (n = 353, mean h2 = 50.9%)
in the EAS group, and 816 traits (n = 1898,
mean h2 = 12.2%) in the EUR group (fig. S1A
and table S4). Height was the most heritable
trait across all four population groups, con-
sistent with a previous report (13). Between-
group differences in the number of significantly
heritable traits were largely due to sample size
and power.
Therewere 287 distinct traitswith significant

heritability in both the EUR group and another
population group (fig. S1B), we analyzed their
cross-population genetic correlation (461 trait-
population pairs) using Popcorn (13). In con-
trast to LDSC (14), which calculates the genetic
correlation between two traits in the same pop-
ulation group, Popcorn calculates the genetic
correlation for a single trait between two pop-
ulation groups. With EUR as the reference

Fig. 2. Prevalence and sample sizes of 2078 traits. The left plot illustrates the number of cases (y-axis) across binary trait categories (x-axis), and the right plot
presents the sample (y-axis) across quantitative trait categories (x-axis). Population groups are represented by distinct colors and shapes. Larger shapes indicate
conditions that are twice as prevalent when compared to EUR (see table S2).
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group, 168 of 236 traits were significantly herit-
able in both the AFR and EUR groups and
exhibited a significant genetic correlation (P <
2.1 × 10−4, 0.05 ÷ 236 traits); 16 of 199 traits
had significant genetic correlation between the
AMR and EUR groups (P < 2.5 × 10−4, 0.05 ÷
199 traits); and two of five traits had significant
genetic correlation between the EAS and EUR
groups (P < 0.006, 0.05 ÷ five traits, table S5).
Specifically, between the AFR and EUR groups,
the trait with the strongest genetic correlation
among quantitative traits was height (rgi =
0.66), whereas among the binary traits it was
type 2 diabetes (rgi = 0.65) (table S5). We also
observed that certain traits exhibited weaker
correlations between these population groups.
For instance, skin cancer showed a correlation
of rgi = 0.05 and anemia from chronic disease
had a slightly higher correlation of rgi = 0.08.
Additionally, iron levels and white blood cell
counts demonstrated correlations of rgi = 0.18
and rgi = 0.20, respectively.

Multipopulation meta analysis improves the
power to detect associations not detected in the
EUR population alone

To better understand the genetic factors in-
fluencing complex traits across population
groups, we carried out amulti-populationmeta
analysis of our GWAS results. This approach
facilitated the identification of genetic risk loci
that were similar or different across the pop-
ulation groups and enhanced our ability to
draw insights from non-EUR populations. We
identified 26,049 associations (13,672 loci for
1270 traits) with a study-wide significance of

P < 4.6 × 10−11 (Methods, Fig. 3, and table S6);
1092 binary traits (on average, 21 mean asso-
ciations per trait, Fig. 3A) and 178 quantitative
traits (on average, 421 mean associations per
trait, Fig. 4A) exhibited significant associa-
tions. Themean genomic inflation factor across
all traits was 1.01 (range from 0.85 to 1.19), in-
dicating that the test statistic error rates were
relatively controlled (fig. S2). We found that
72% (5885) of locus-binary trait associations
(Fig. 3, A and B, and tables S7 and S8) and 23%
(4104) of locus-quantitative trait associations
(Fig. 4, A and B, and tables S7 and S8) were
not previously identified (9) in the NHGRI-EBI
GWAS (11) and Open Target Genetics catalogs
(12). In fact, 11% (432) of the variants asso-
ciated with quantitative traits and 34% (1986)
with binary traits have not previously been
associated with any other trait, likely due to
our ability to interrogate low frequency and
rare alleles as approximately 57% of these risk
variants had MAF < 1% (Figs. 3B and 4B).
To quantify the discoveries made through

expanding representation of understudied pop-
ulations in genetic analysis, we compared the
results of the multipopulation meta analysis
to those of the EUR-only GWAS. Over half of
the variants analyzed in themeta analysis were
not included in the EUR group GWAS as a re-
sult ofMAF or imputation quality and a quarter
(10M) were only present in AFR (9). The in-
clusion of individuals genetically similar toAFR,
AMR, and EAS reference populations identi-
fied 1608 additional genomic loci, which were
not significant (P > 4.6 × 10−11) in the EUR-
only analysis (table S9). This led to a total of

3477 variant-trait associations across 893 traits,
76% of which were with binary traits. Themost
significant of these results was a rare intronic
variant, rs72725854, located near the long non-
coding RNA (lncRNA), PCAT2, associatedwith
prostate cancer (table S9). This SNP is low-
frequency inAfricanpopulationsbut exceedingly
rare in other groups (MAFAFR = 0.06,MAFAMR =
0.0068, MAFEUR = 0.0006) and has been pre-
viously reported to increase the risk of prostate
cancer twofold, aligning with our study find-
ings. We also replicated findings previously
reported from AFR analyses, such as ACKR1
for neutropenia and reducedwhite blood count
levels (15) and a missense variant in APOL1
(rs73885319)withkidney-related conditions such
as end-stage renal disease (table S9) (16).
Moreover, we identified 834 variant-trait as-

sociations primarily driven by the inclusion of
participants fromnon-EUR populations; these
associations were not even nominally signifi-
cant in the EUR group (P > 0.05, table S9). We
identified an AFR-specific noncoding index var-
iant in FAM234A associated with iron defi-
ciency anemias (PAFR = 2.37 × 10−37, PAMR =
0.05, PEUR = 0.42, table S9) and hereditary
hemolytic anemias (PAFR = 5.32 × 10−33, PAMR =
0.28, PEUR = 0.25, table S9) only in the AFR
group. We also observed an association be-
tween rs3104394 in MTCO3P1 with alopecia
areata only in the AMR population (PAFR =
0.01, PAMR = 1.27 × 10−11, PEUR = 7.66 × 10−6).
Although there is no information available
about the relationship between the MTCO3P1
gene and alopecia, a cross sectional analysis of
the NIH All of US cohort found that alopecia

A B

Fig. 3. Multipopulation genetic associations with 1092 binary traits.
Combined multitrait Manhattan plots and bar plots summarizing 8170 locus-trait
associations for quantitative traits (P-value < 4.6 × 10−11). (A) Manhattan plot
for binary traits displays associations across chromosomes (x-axis) and −log10P
values (y-axis). Circles represent previously reported associations and triangles
indicate previously unidentified trait associations. Triangle size corresponds to effect
size, with upward triangles denoting risk associations and downward triangles
signifying protective associations. On the top, gene names are highlighted to indicate
previously reported variant trait associations (in black) and new trait associations

(in pink). (B) Stacked bar plots for quantitative traits showcase the number of
associations with locus-trait pairs across different trait categories. The left panel
presents the count of known associations (green), previously unidentified trait
associations (blue), and previously unidentified SNPs (light blue). Trait categories
are ordered by the number of lead SNPs in descending order. The right panel is
a dodged bar plot highlighting associations with lead SNPs based on their MAF
categories: common variants (lower opacity) and low-frequency variants (higher
opacity). The distribution of known associations (green) and previously
unidentified SNPs (light blue) is shown for each trait category.
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areata is more prevalent in Hispanic/Latinx in-
dividuals, suggesting potential genetic factors
contributing to the development of this condi-
tion (17).

Fine-mapping of multipopulation associations
reveals single-variant credible sets

To create a catalog of putative causal genetic
variants that could be qualitatively and quan-
titatively compared across population groups,
we performed within-population group fine-
mapping using the Sum of Single Effects mod-
el implemented in SuSiE (18, 19) followed by
multipopulation credible set integration. We
defined 25,953 locus-trait pairs, correspond-
ing to 1257 traits with one or more study-wide
significant variants outside the major histo-
compatibility complex (MHC) (fig. S3). We
fine-mapped 99.96% of these pairs within
each population group using exact, in-sample
matched linkage disequilibrium (LD)matrices
for the trait and identified signals at 22,866
(88%) of the pairs (fig. S3) (9). The 0.03% of
locus-trait pairs that failed to map were pri-
marily due to computational constraints (table
S10). The fine-mapped signals included 15,045
distinct variant-trait pairs (6318 variants and
613 traits) thatmapped with high confidence,
meaning a posterior inclusion probability
(PIP) > 0.95 in one or more populations. We
merged signals across populations based on
their Jaccard similarity indices (20) and iden-
tified 57,601 multipopulation signals across
936 phenotypes (fig. S3 and tables S11) (21);
53,669 (93.1%) of the signals were mapped in
a single population including 44,516 (77%)

that were fine-mapped in only the EUR group
(Fig. 5A). However, we note that >75% of the
signals that were fine-mapped in only a single
population turned out to either be modestly
associated (P < 1 × 10−3) with the same allele
implicated as trait increasing in one or more
populations not subjected to fine-mapping,
or the underlying GWAS was simply under-
powered to detect a suggestive association in
the unmapped population (at less than 80%
power). A larger effective overall sample size
and thus greater power was correlated with
a larger number of mapped signals (Fig. 5B),
likely explaining why most signals were seen
in the EUR group. Among the 15,045 high-
confidence pairs, 2069 variant-trait associa-
tions were fine-mapped with high confidence
only in the non-EUR groups (table S12). These
associations correspond to 974 unique var-
iants and 271 traits. To quantify the precision
of fine-mapping for the multipopulation re-
sults, we defined an “approximate” credible
set for each Jaccard-similarity population-
aligned signal as the union of variants in each
population-level credible set. Despite this defi-
nition, we observed that >54% of the merged
signals identified by the fine-mapping pipeline
contained ≤5 variants and 14,405 (25%) con-
tained a single variant (Fig. 5C). Although there
is no gold standard for validating the accuracy
of credible sets we observed notable enrich-
ments in fine-mapped signals for genomic an-
notations with known functional roles, namely
coding variation (Fig. 5D), as well as higher
functional prediction scores fromRegulomeDB
(fig. S4).

To compare the relative precision of fine
mapping between population groups, we deter-
mined whether there was a difference in the
size of our approximate credible sets for sig-
nals that mapped in multiple groups. Signals
identified in both the AFR and EUR groups
generally had slightly but significantly smaller
sets when mapped in the AFR group than that
of the EUR group (Wilcoxon signed-rank P =
2.26 × 10−10; fig. S5). By contrast, our approx-
imate credible sets in the AMR group were
larger than their AFR group (P = 1.30 × 10−84,
fig. S5) and EUR group counterparts (P = 7.36 ×
10−162, fig. S5). Believing that sample size in-
fluenced the ability to detect signals and the
sizes of credible sets, we downsampled the
EUR group to match the AFR group in terms
of age, sex, and the overall numbers of af-
fected and unaffected individuals for the traits
of interest. We then reanalyzed the 2142 trait-
loci pairs where at least one signal was de-
tected in both the AFR and EUR groups.
After downsampling, we were able to detect
only 858 of the original 2236 shared signals.
More importantly, differences in credible set
sizes for the 858 remaining shared signals
also grew, with credible sets from the AFR
group notably smaller than their EUR counter-
parts (Wilcoxon signed-rank P = 3.8 × 10−52;
fig. S6), thus demonstrating that the pres-
ence of smaller LD-blocks in the AFR pop-
ulation, as compared to the EUR population,
permits more accurate fine-mapping at a
given sample size.
We next analyzed the distribution of effect

sizes and allele frequencies for lead variants

A B

Fig. 4. Multipopulation genetic associations with 178 quantitative traits.
Combined multitrait Manhattan plots and bar plots summarizing 17,879 locus-trait
associations for quantitative traits (P-value < 4.6 × 10−11). (A) Manhattan plot
for quantitative traits display associations across chromosomes (x-axis) and −log10P
values (y-axis). Circles represent previously reported associations and triangles
indicate previously unidentified trait associations. Triangle size corresponds to effect
size, with upward triangles denoting risk associations and downward triangles
signifying protective associations. On the top, gene names are highlighted to indicate
previously reported variant trait associations (in black) and new trait associations

(in pink). (B) Stacked bar plot for quantitative traits showcasing the number of
associations with locus-trait pairs across different trait categories. The left panel
presents the count of known associations (green), previously unidentified trait
associations (blue), and previously unidentified SNPs (light blue). Trait categories are
ordered by the number of lead SNPs in descending order. The right panel is a
dodged bar plot highlighting associations with lead SNPs based on their MAF
categories: common variants (lower opacity) and low-frequency variants (higher
opacity). The distribution of known associations (green) and previously unidentified
SNPs (light blue) is shown for each trait category.
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and fine-mapped signals for the 15,822 vari-
ant-trait-population combinations with high
confidence (PIP > 0.95) fine-mapped signals.
Consistent with previous reports (22, 23), we
observed an inverse relationship between the
minor allele frequency of a variant and its ef-
fect size for both lead variants (fig. S7) andhigh-
confidence signals (Fig. 5E) across all four
population groups. For the high-confidence
signals, we examined the relationship between
frequencies and effect sizes for alleles derived
in the human lineage since the last common
ancestor of chimpanzees and bonobos (fig. S7).
As 87% of derived alleles were minor alleles, it
was not surprising that we observed strong
effects for variants with allele frequencies close

to zero. Large effect sizes were also observed for
several variants whose derived allele was high
frequency; some of these map to previously
reported targets of positive selection in human
populations (24–26). We observed this rela-
tionship between allele frequency and effect
size for both newly observed variant-trait asso-
ciations and those previously reported in the
GWAS Catalog (11), with similar relative pro-
portions in the three well-powered population
groups (AFR, AMR, and EUR).
We next observed that the distribution of

effects in binary and quantitative phenotypes
was different. Although it was equally com-
mon for minor and derived alleles at high-
confidence signals to associate with an increase

or decrease in a quantitative trait, such as
higher white blood cell count (WBC) or lower
WBC (49.6% ofminor and derived alleles were
associated with a higher value of the quantita-
tive trait), the majority (71%) of these alleles
conveyed increased risk for binary traits (Fig.
5E). The increased risk effect among minor
alleles was also observed for lead variants; 73%
of lead-SNP minor alleles increased the risk
(fig. S7).
Finally, we screened for heterogeneity of es-

timated effect size across common signals
(MAF > 0.05) at 1888 fine-mapped loci (repre-
senting 1329 separate traits) with overlapping
credible sets in multiple groups. We identified
16 heterogeneous variant-trait associations

Fig. 5. Multipopulation fine-mapped signals. (A) Upset plot of cross-population
signal sharing for the 57,601 fine-mapped signals. Red portions of bars represent
signals that had one or more variants showing suggestive association (P-value <
1×10−3) in an unmapped population and blue portions represent signals where
the unmapped populations were underpowered in the unmapped ancestries to
detect suggestive associations for any of the variants in the merged approximate
credible set. Signal counts are displayed above the bars for intersections in
which fewer than 1000 signals were identified. (B) Scatter plot of the number
of signals detected per phenotype versus the meta analyzed sample size for
the phenotype. Effective sample sizes were used for binary phenotypes and
points are colored by the phenotype category. (C) The distribution of merged
approximate credible set sizes for the fine-mapped signals. (D) Coding
enrichment in precisely mapped signals. Bars are colored by the proportion of

each represented by each grouped Variant Effect Predictor (VEP) annotation and
the black boxes illustrate the proportion of each bar attributable to coding
variation. P-values reflect the results of Fisher exact tests for coding annotation
enrichment. (E) Distribution of effect sizes versus minor allele frequencies for
high-confidence (PIP > 0.95) associations fine-mapped in quantitative (top) and
binary (bottom) phenotypes. Each point represents a unique high-confidence
variant-phenotype-population mapping. Point colors reflect the population in
which they are mapped and their shapes reflect whether they are a phenotype
association previously reported in the GWAS catalog (square), a phenotype
association previously unidentified for a signal already reported in the catalog
(triangle), or a signal and association that were both previously unidentified
(circle). Inset bar plots reflect the proportions of high-confidence associations in
these three categories across the four tested populations.
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when comparing the AFR to the EUR group
and 11 when comparing the AMR to the EUR
group (table S13). Focusing on coding variants
that mapped to the same trait with high con-
fidence (PIP > 0.95) in multiple populations,
we observed six associations with marked het-
erogeneity in effect size between the estimates
in the AFR and the EUR groups, and two
when comparing the AMR group to the EUR
group (table S14). All variant-trait pairs had the
same direction of effect. Most of the differ-
ences across signals mapped to rs429358-C,
the coding variant tag for APOE-e4 associated
with a 30% lower risk of dementia in the AFR
compared to the EUR group (27). There was
alsomarginal heterogeneity between the AMR
and the EUR group while the EAS group was
underpowered for this analysis.

Characterization of fine-mapped associations
specific to non-EUR population groups

Recognizing the power of our study to elu-
cidate biology among population groups tra-
ditionally understudied in human genetics, we
sought to interrogate the fine-mapping re-
sults between populations. Of the 25,953 high-
confidence variant-trait pairs identified by
fine-mapping, 2069 (974 unique variants and
271 phenotypes) were unique to the analyses
of the non-EUR groups (table S12). Although
most of the signals were from low-frequency
or rare variants, 15 previously unreported sig-
nals (10 AFR, 3 AMR, 2 EAS) were located in
coding variants and had aMAF > 0.05. Among
these was a missense variant, rs73382631, as-
sociated with lowerWBC and neutrophil counts
in the AFR group (MAFAFR = 0.10, MAFAMR =
0.01, not present in the EAS or EUR group).
Another example was a missense coding var-
iant in ABCG2 (rs35965584, MAFAFR = 0.002,
not present in AMR, EAS, or EUR groups), for
which our analysis identified an association
with gout not found in previous studies. Pre-
vious reports have identified an association
between ABCG2 and hyperuricemia (28) and
susceptibility to gout (29), with another known
ABCG2 missense variant (rs2231142) (30). In
MVP, the previously identified missense variant
rs2231142 was within the 95% credible set of a
distinct gout signal (n = 8 variants) mapped in
EAS and EUR groups but was not in linkage
disequilibrium with rs35965584 (r2 = 0.0001).
Most of the population group-specific sig-

nals were in noncoding regions. To gather in-
sights into these variants, we used functional
prediction scores from RegulomeDB (table S12),
identifying 43 previously known associations
and 20 previously unreported associationswith
SNPs that had strong evidence of regulatory
activity (RegulomeDB score > 0.9). The previ-
ously reported loci were associated with factors
such as hemoglobin A1c, cholesterol measures,
heart rate, red blood cell count, and type 2
diabetes (31, 32). All other newly identified as-

sociations were related to quantitative traits,
such as rs574674363 and lower high-density
lipoprotein (HDL) cholesterol levels.

Cross-trait genetic architecture identifies
pleiotropic genes

Next, we identified putative causal genes asso-
ciated with fine-mapped variants using a two-
step nomination scheme (fig. S8). First, we
intersected the fine-mapped variantswith exons
of protein-coding genes based on Gencode re-
lease 19 annotations. In the second step, we
utilized the Activity-by-Contact (ABC) (33) mod-
el, which allowed for the nomination of addi-
tional genes associated with synonymous and
non-coding variants. This involved intersect-
ing active promoter and enhancer regions with
the fine-mapped variants. Our approach iden-
tified 31,764 trait-variant-gene combinations
representing 15,596 trait-gene associations.
20% of the nominations were through non-
synonymous coding variants, 52% involved
ABC interactions, and 28% were in ABC pro-
moters (fig. S9 and table S15). Consistent with
the power to detect associations in GWASs and
signals in finemapping, we observed a pattern
where more genes were implicated in traits
with larger sample sizes (fig. S9).
Seeking to demonstrate the plausibility of

our nominated genes, we tested the genes as-
sociated with each trait for overrepresentation
in KEGG pathways. We identified 467 KEGG
pathways that were overrepresented across
142 traits (table S16), which largely reflected
known biology for their respective traits.
2279 genes associated with two or more gen-

etically independent traits, resulting in 6711
pleiotropic associations (table S17). 70 genes
(677 associations) associated with seven or
more independent traits (Fig 6A). In particu-
lar,APOEwas themost pleiotropic gene, linked
to 29 different traits, including previously iden-
tified conditions such as HDL levels, macular
degeneration, abdominal aortic aneurysm, and
Alzheimer's dementia. We also observed previ-
ously unreported associations between this
APOE and chronic liver disease and cirrhosis.
To further investigate the functional role

and pleiotropy of the nominated genes, we
assessed whethermembership in specific gene
ontology (GO) categories was predictive of the
number of genetically independent traits asso-
ciated with each gene. 567 GO terms associ-
ated with gene pleiotropy, each of which had
an increasing effect on the number of inde-
pendent traits identified per gene (table S18).
After clustering these GO terms based on their
semantic similarity, we observed that a small
set of highly pleiotropic genes, including APOE,
PNPLA3, GCKR, and JAK2, were responsible
for the GO clusters with the most correlated
GOterms (Fig. 6C and fig. S10). Recognizing
that all significant GO associations had increas-
ing effects on gene-level pleiotropy, we also

interrogated the relationship between the num-
ber of GO terms annotated per gene and the
number of traits associatedwith the gene using
a Poisson generalized linear model. This analy-
sis yielded a highly significant positive relation-
ship (P = 1.4 × 10−17, Fig. 6D).
At the gene level, 549 of the 15,596 gene-

trait associations were only identified through
variants that are eithermonomorphic or ultra-
rare (MAF < 0.1%) in the EUR group (table
S16). For example, SLC22A18, a known tumor
suppressor (34, 35), and its antisense tran-
script SLC22A18AS were both associated with
keloid scarring through rs76024540, a variant
that was common in the AFR group (MAF
~11%) but monomorphic in the EUR group.
rs76024540 was found in an ABC enhancer
that interacts with the promoter of both genes
in numerous cell types, including several com-
prising skin tissues.
Lastly, we sought to identify genes that were

pleiotropic outliers in the AFR or the AMR
groups, relative to the EUR group. To do this,
we separately considered the genes nomina-
ted by variants mapped in each of the three
population groups. Most genes were associ-
ated with more independent traits in the EUR
group than in either the AFR or AMR groups,
and the relationship between the number of
independent traits per gene in the non-EUR
andEURgroups could bewell-modeled through
a Poisson regression (Fig. 6E and table S19).
However, in comparing the AFR and EUR
variant-gene-traitmappings, a handful of genes
with known AFR-specific variants and roles in
disease etiology were found to deviate subs-
tantially from the observed relationship and
weremore pleiotropic in theAFR than the EUR
group. This list of outliers was led by APOL1,
HBB, andCD36, all hypothesized to confer some
survival advantage to trypanosome ormalarial
infection (36). Because of the limited sample
size in the EAS groupwe only observed 62 trait-
gene nominations prior to pruning traits by
their genetic correlations. This was too few to
confidently conduct the PoissonRegression and
determine outlier genes.

Discussion

In this study we present a series of compre-
hensive phenome-wide GWASs analyses con-
ducted within the VAMillion Veteran Program,
the largest multipopulation biobank to date,
with a diversity that supports large-scale analy-
ses of similarities and differences between
variants and traits across populations. We
studied 44.3 million variants across 2068 traits
among 635,969 US Veterans, of which 613 traits
were fine-mapped with high precision. Cross-
population analyses identified 834 previously
unreported variant-trait associations driven
by the inclusion of individuals not genetically
similar to European reference populations, 15
signals from coding variants that are either
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rare or not observed to be present in these
populations, and numerous genes that had
pleiotropy predominantly among individuals
genetically similar to African reference popu-
lations; this highlights the substantial contrib-
ution conferred by including diverse populations
in genetic research. At the same time, cross-
population heritability analyses, fine mapping,
and heterogeneity analyses demonstrated sub-
stantial similarities in the genetic architecture
between population groups driven by variants
common across populations.
Our analyses of variant-trait associations

detected several signals that would not have
been identified in a GWAS comprising solely
individuals genetically similar to EUR refer-
ence populations. One example is rs72725854
at the PCAT2 locus, which has been associ-
ated with an increased risk of prostate cancer
identified in prior studies (37–39). Prostate
cancer is more common in self-reported Black
men compared to the general population, and
approaches that incorporate this variant and
others into risk scores are under active inves-
tigation as a component of precisionmedicine–

based prostate cancer screening approaches.
Additionally, the previously unidentified sig-
nal for gout among the AFR population group
at rs35965584 may represent an independent
ABCG2 signal for gout risk, in addition to the
known variant rs2231142 (30). As many risk
factors are associated with gout, whether this
signal contributes to the observed higher pre-
valence of gout in self-reported Black compared
to self-reportedWhite populations requires fur-
ther study (40). Finally, the association with
keloid scarring of the variant rs76024540 at
the SLC22A18/SLC22A18AS locus, common
among individuals genetically similar to AFR
reference populations but not in other popu-
lation groups, may point to a genetic etiology
for the increased prevalence of this condition
among individuals genetically similar to AFR
reference populations compared to other pop-
ulation groups. These findings exemplify how
the inclusion of individuals from diverse pop-
ulations in human genetics experiments gen-
erates important insights into health and disease
traits that may disproportionately affect these
groups.

Our analysis expands on previous, large-scale
fine-mapping experiments (20, 41, 42) aimed
at determining candidate causal variant(s), sub-
stantially increasing the number of fine-mapped
traits and signals, particularly among individ-
uals genetically similar to AFR and AMR refer-
ence populations, which have traditionally been
underrepresented in genetic studies. Addition-
ally, the increased representation of diverse
participants in our analysis facilitated improved
precision of fine mapping. Notably, the anal-
ysis among the AFR group yielded the most
precise approximate credible sets of our three
well-powered groups, followed by the EUR and
the AMR groups. This finding was anticipated
because haplotype blocks are smaller in popu-
lations that are genetically similar to African
reference populations (43, 44). Despite the
paired Wilcoxon test showing greater preci-
sion in the credible set sizes for the AFR group,
it did not lead to the expected variation in
median credible set sizes between the AFR
and theEURgroups,with themediandifference
being zero. However, through a downsampling
experiment in which we matched the size of

B

A

C D E

Fig. 6. Putative causal gene and gene-level pleiotropy. (A) Chromosome
ideogram illustrating high-confidence cross-trait associations (PIP > 0.95)
between genetic variants and independent traits. The ideogram highlights
putative causal gene nominated using non-synonymous coding variation and
Activity-by-Contact (ABC) promoters and enhancers to implicate genes for
fine-mapped variants. (B) Histogram of the number of independent traits
identified per gene. (C) GO-Figure plot showing clusters of biological process

GO terms that are significantly predictive of the number of independent
traits associated with each gene. (D) Scatter plot and Poisson regression of
the number of independent traits per gene on the number of GO terms
annotated per gene. (E) Scatter plot and Poisson regression of the number
of independent traits per gene in the AFR and EUR groups (top) and the AMR
and EUR groups (bottom). Genes with the greatest residuals from the
regressions have been labeled.
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the EUR group to that of the AFR group, we
demonstrated that the absence of difference
stems from the larger sample size in the EUR
group, which in turn boosts statistical power.
Thus, we expect that the inclusion of increas-
ing numbers of diverse individuals will con-
tinue to improve the precision of signal fine
mapping efforts, and newer signal fine-mapping
methods which fully leverage LD differences
across populations to identify independent sig-
nals will further refine credible sets.
The fine-mapping analyses also demon-

strated overwhelminglymore similarities than
differences in the genetic associations between
groups. The vast majority of differences ob-
served were largely attributable to variations
in allele frequency or the presence of genetic
variants in one group that were not detectable
in other groups. In fact, among the most com-
mon variantsmappedwith high precision, there
was minimal evidence of heterogeneity in effect
estimates. The APOE locus was a notable ex-
ception, where we observed an association be-
tween the high-confidence fine-mapped signal
rs429358 and increased risk for dementia across
all four population groups examined. How-
ever, the risk was 30% lower in the AFR group
compared to the EUR group, corroborating
prior studies that observed differential risk
between APOE alleles and dementia in non-
EUR compared to EUR populations (27, 45).
Additionally, whileAPOEwas among themost
pleiotropic genes across all populations, among
the AFR group, HBB had associations with
traits beyond sickle cell anemia, including gout.
Analysis of genome-wide architecture through

the genetic correlation of individual traits across
population groups demonstrated largely pre-
served, rather than divergent, genetic archi-
tectures. The weaker correlations are likely
driven by the associationwith variants that had
a higher allele frequency in specific population
groups. The limited correlation observed be-
tween the EUR and the AMR groups is pri-
marily due to the inherent limitation described
in the Popcorn method, which does not ade-
quately account for the long-range linkage dis-
equilibrium (LD) present in admixed populations.
Overall, these findings imply that, with the ex-
ception of population-specific variation in al-
lele frequency, foundational genetic architecture
is more similar than different across diverse
populations.
Our work must be interpreted within the

context of its limitations. First, to efficiently
conduct large-scale GWAS analyses across the
phenome, we used an automated approach for
phenotyping. This approach involved using
Phecodes for collating clinical diagnosis codes;
while efficient, it could be more precise for
most phenotypes. Similarly, our regression
models also had to be standardized, account-
ing only for age, sex, and principal components,
and performing inverse-normal transformations

to quantitative traits prior to analysis. Un-
doubtedly trait-specific bespoke phenotype
definitions and regression modeling would
have improved power for variant discovery.
Second, we applied the widely accepted 50%
probability threshold for population assign-
ment in our study, categorizing genetic diver-
sity into discrete groups. This method led to
the exclusion of 5,953 participants, who consti-
tute less than 1% of our total study population.
While aiming to reduce within group hetero-
geneity for more robust genetic analysis, this
approach introduces a significant limitation
by potentially neglecting the complex admix-
ture present in genetic data. Third, while
applying LD score regression and Popcorn
analysis to evaluate genetic architecture across
various traits, we acknowledge the limitation
of assuming uniform polygenicity and homog-
enous genetic distribution, whichmay not hold
true for all phenotypes. Fourth, despite the
diversity of MVP, the cohort still mostly com-
prises individuals similar to European refer-
ence populations, which, together with varying
disease prevalence across population groups,
leads to differential power to detect and fine-
map causal variants across. Fifth, in order to
perform fine-mapping at this scale, we had to
make a number of compromises in our analy-
tic approach. Our method of defining loci has
potential pitfalls as it is based onmeta analyzed
data, not considering whether the population-
specific GWASpeakwas present. Consequently,
we fine-mapped some regions with no signifi-
cant signals, especially within the EAS group,
which was the smallest population group and
had limited power. Our approach may have
also overlooked group-specific peaks eclipsed
in themeta analysis and certain loci too vast to
be completely mapped under our scheme. Our
conservative approach, adhering to aminimum
threshold of significance and purity for signals
tomaintain precision (positive predictive value),
could result in missing true signals. Similarly,
our preference for precision over recall (sensi-
tivity) meant we limited the fine-mapping to
a maximum of five signals per locus. This ap-
proach can lead to an underestimation of the
number of signals at certain highly significant
loci. We also encountered challenges in de-
ploying the fine-mappingmethod at this scale.
In particular, the LD matrices used did not
ideally synchronize with the SAIGE method-
ology due to our reliance on hard-called geno-
types and not accounting for covariates. This
could have led tominor LDmismatches, which
may influence sensitive loci, resulting in inac-
curacies or spurious results in the fine-mapping
stage. Future researchmay consider these con-
straints and propose alternative approaches to
further enhance the validity and comprehen-
siveness of the results. Lastly, while diverse in
ancestry, the Veteran population is predom-
inantly male and older than the general US

population. Thus, this study is less well-powered
to study conditions more prevalent in females
or younger populations.
Diversity is critical in advancing genomic

studies, providing foundational data for down-
stream implementation ranging from risk pre-
diction to targeted therapeutics. Despite efforts
from large biobanks such as UK Biobank,
FinnGen, and Biobank Japan, lack of diversity
in genomic studies remains a challenge. As of
thiswriting, theMVPhas enrolled its 1millionth
participant, with over 175,000 participants
genetically similar to the African population,
making it the biobank with the greatest re-
presentation of this population group (5). Re-
cently, additional diverse biobanks, such as the
All of Us Study Research Program (6), America
Latino Research Biobank (46), and Human
Hereditary and Health in Africa (H3Africa)
(47), as well as hospital and institutional bio-
banks have been established and continue to
grow. Since its inception, the MVP has aimed
to encompass a population representative of
the diverse United States Veteran community.
Our comprehensive phenome-wideGWASspre-
sented here underscores the increased power
of discovery that comes from including indi-
viduals from diverse populations, enriching
our understanding of the genetics of complex
health and disease traits, while highlighting
the large degree of similarities in genetic ar-
chitecture of these traits across populations.

Methods summary

We conducted GWASs of 2068 traits across
four population groups defined by genetic sim-
ilarity to the 1000 Genomes Project AFR, AMR,
EAS, and EUR reference superpopulations (8).
The 635,969 individuals comprising the four
groups were participants in the VA’s Million
Veterans Program (MVP), and the 2068 traits
were composed of diagnosis codes, laboratory
measures, vital signs extracted from the VA
EHR and trait derived from survey question-
naire at enrollment. We executed the GWASs
with a GPU-optimized version of SAIGE on
the DOE’s Summit supercomputer (48, 49).
Following up on each GWAS, we used LDSC

(50) to identify traits with significant herit-
ability in each of the four separate populations
and Popcorn (13) to identify traits with sig-
nificant genetic correlations across distinct
population groups. Significant loci were then
defined based on a threshold of P < 4.6 × 10−11,
which was set by calculating the number of
independent traits in our study: 1038. We
determined genomic loci and lead variant via
LD clumping in Plink 1.9 (51) using a two-
tiered approach similar to that previously de-
scribed in FUMA (52). Following comparison
of population-specific GWAS results and trait
prevalences, GWASsweremeta analyzed across
populations using the fixed-effect, inverse-
variance weighted method implemented in
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GWAMA (53). We compared themeta analysis
to the EUR-specific results to quantify the ad-
ditional loci identified through the non-EUR
contribution to our study. Moreover, we also
checked lead variants for previous reporting in
the NHGRI-EBI GWAS Catalog (11) and Open
Targets (12) databases.
To identify causal variants, we fine-mapped

the population-specific GWASs using SuSiE
(18, 19) and in-sample LDmatricesmatched to
each trait. We compared signal counts across
populations and across traits. Moreover, we
also compared allele frequencies and the pre-
vious reporting status of high-precision fine-
mapped signals (PIP > 0.95) across populations.
To validate the observed credible sets, we used
VEP (54) and RegulomeDB (55) to annotate
the fine-mapped variants and detect functional
enrichments in precisely mapped signals. We
also compared fine-mapping precision across
populations using signals mapped in multiple
groups. As part of this analysis, we down-
sampled the EUR population tomatch the size
and composition of the AFR group thereby
controlling for the effect of sample-size on
precision. Additionally, we tested for effect size
heterogeneity across common signals (MAF >
0.05) at the 1888 fine-mapped loci with over-
lapping credible sets in multiple groups.
In a final analysis, we leveraged the fine-

mapped signals to nominate effector genes for
traits by leveraging nonsynonymous coding
variation and regulatory connections predicted
by the ABC model (33). We detected over-
represented KEGG pathways (56) for each
trait’s set of putative effector genes and lever-
aged the trait nominations to quantify the
pleiotropy of each gene. To do so, we defined
gene-level pleiotropy as the number of inde-
pendent traits nominated for each gene as
determined by iterative pruning of traits with
a phenotypic correlation > 0.2. Using Poisson
regression, we then identified GO terms sig-
nificantly associated with overall gene-level
pleiotropy (Benjamini-Hochberg adj. P < 0.05)
and genes that are pleiotropic outliers when
comparing AFR or AMR trait nominations
with those made using EUR-mapped variants.
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