
The measles virus (MeV) is a single-stranded, negative- 
sense RNA virus in the genus Morbillivirus of the family 
Paramyxoviridae1. MeV is an airborne pathogen that is 
transmitted by inhalation of respiratory droplets that 
disperse within minutes and smaller aerosols that can 
remain suspended for several hours2,3. The virus can also 
be transmitted through direct contact with infected 
secretions, but MeV does not survive long on fomites 
(that is, any object that can carry pathogens, for example, 
skin, hair, clothing and bedding) as it is inactivated by 
heat and UV radiation within a few hours. The prodromal  
phase of measles involves sneezing and coughing, which 
enhance the transmission of the virus.

The incubation period is approximately 10 days to 
the onset of fever and 14 days to the onset of rash. The 
clinical signs of measles are a generalized maculopapular 
(non-vesicular) skin rash and fever above 38.3 °C (101 °F) 
accompanied by cough, coryza (or rhinitis) and/or con-
junctivitis. The clustered white lesions that can be seen on 
the buccal mucosa lining the cheeks — Koplik spots — 
are considered pathognomonic for measles. People with 
measles are considered infectious from 4 days before to 
4 days after the onset of rash, when the levels of MeV in 
the respiratory tract are highest1. The fact that MeV is 
contagious before the onset of recognizable disease can 
hinder the effectiveness of quarantine measures, although 

isolation of susceptible contacts is recommended. Measles 
is a vaccine-preventable disease, and a safe, effective and 
inexpensive vaccine is widely available.

This Primer summarizes the epidemiology of mea-
sles, describes the global efforts to control and eliminate 
the transmission of MeV, contains a description of the 
pathogenesis of MeV infection and highlights recent 
research that has redefined our understanding of this 
important infectious disease.

Epidemiology
History of measles
Before the introduction of a measles vaccine in 1963, an 
estimated 30 million cases of measles with >2 million  
deaths occurred each year globally4 (FIG. 1). Measles mor-
tality started to decline in industrialized countries in the 
first half of the twentieth century in association with 
economic development, improved nutritional status and 
better supportive care, particularly antibiotic therapy for 
measles-associated bacterial pneumonia5. Despite this 
trend, the most remarkable progress in reducing mea-
sles incidence and mortality resulted from increasing 
cover age with a first dose of a measles-containing vac-
cine (MCV1) in the first year of life. The addition of a 
second dose (MCV2) through routine immunization fur-
ther increased disease protection, as did supplementary 

Correspondence to P.A.R. 
Centers for Disease Control 
and Prevention,  
1600 Clifton Road, Atlanta, 
Georgia 30329, USA. 
prota@cdc.gov

Article number: 16049
doi:10.1038/nrdp.2016.49
Published online 14 July 2016

Measles
Paul A. Rota1, William J. Moss2, Makoto Takeda3, Rik L. de Swart4, 
Kimberly M. Thompson5,6 and James L. Goodson1

Abstract | Measles is an infectious disease in humans caused by the measles virus (MeV). Before  
the introduction of an effective measles vaccine, virtually everyone experienced measles during 
childhood. Symptoms of measles include fever and maculopapular skin rash accompanied by cough, 
coryza and/or conjunctivitis. MeV causes immunosuppression, and severe sequelae of measles include 
pneumonia, gastroenteritis, blindness, measles inclusion body encephalitis and subacute sclerosing 
panencephalitis. Case confirmation depends on clinical presentation and results of laboratory tests, 
including the detection of anti-MeV IgM antibodies and/or viral RNA. All current measles vaccines 
contain a live attenuated strain of MeV, and great progress has been made to increase global 
vaccination coverage to drive down the incidence of measles. However, endemic transmission 
continues in many parts of the world. Measles remains a considerable cause of childhood mortality 
worldwide, with estimates that >100,000 fatal cases occur each year. Case fatality ratio estimates vary 
from <0.01% in industrialized countries to >5% in developing countries. All six WHO regions have set 
goals to eliminate endemic transmission of MeV by achieving and maintaining high levels of 
vaccination coverage accompanied by a sensitive surveillance system. Because of the availability of  
a highly effective and relatively inexpensive vaccine, the monotypic nature of the virus and the lack  
of an animal reservoir, measles is considered a candidate for eradication.
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immunization activities (SIAs) — mass immunization 
campaigns to capture children missed by routine vacci-
nation or without protective immunity. The reason for 
the need of two-dose coverage is that maternally acquired 
IgG antibodies interfere with immune responses to the 
attenuated measles vaccine by inhibiting the replication 
of the vaccine virus. In general, maternally acquired 
antibodies wane over time and are no longer present in 
the majority of children by 9 months of age, which is the 
age of routine measles vaccination in many countries. 
Vitamin A supplementation probably further contrib-
uted to the reduction in measles mortality6. The exact 
mechanism by which vitamin A reduces measles mor-
bidity and mortality remains unknown, but most likely 
involves beneficial effects on epithelial cells and host 
immune responses.

Vaccination and elimination targets
Established in 2001 by five core partners including the 
WHO, United Nations Children’s Fund (UNICEF),  
the American Red Cross, the United Nations Foundation 
and the US Centers for Disease Control and Prevention 
(CDC), initially with a focus only on measles, the 
Measles & Rubella Initiative (M&RI) provided a global 
vision statement for achieving global elimination of 
measles and rubella: the Global Measles and Rubella 
Strategic Plan 2012–2020. The estimated coverage with 

MCV1 increased globally from 70% to 85% during 
2000–2014, and the number of countries with ≥90% 
MCV1 coverage increased from 44% to 63%7 (FIG. 2). In 
addition, the proportion of countries with ≥90% MCV1 
coverage overall that also had ≥80% MCV1 coverage in 
all districts increased from 1% in 2003 to 40% in 2014. 
Measles elimination requires high levels of two-dose 
coverage, and during 2000–2014, the estimated coverage 
with MCV2 increased from 15% to 56% globally and the 
number of countries providing MCV2 through routine 
immunization services increased from 51% to 79%.

In 2010, the World Health Assembly (WHA) estab-
lished three global targets for measles control by 2015: 
a routine measles vaccination coverage of ≥90% nation-
ally and ≥80% in every district; a reported measles inci-
dence of fewer than five cases per 1 million population; 
and a measles mortality reduction of ≥95% compared 
with mortality in 2000 (REF. 8). Subsequently, the WHA 
endorsed the Global Vaccine Action Plan for 2012–2020, 
which established targets for measles and rubella elimina-
tion. This plan called for all six WHO regions to establish 
goals to eliminate measles by 2020 or sooner, with the aim 
for complete elimination of measles in at least five WHO 
regions by 2020 (REF. 9). As of September 2013, WHO 
member states in all six regions have adopted measles 
elimination goals. Elimination is defined as the absence 
of endemic MeV transmission in a defined geographical 
area for ≥12 months in the presence of a well-performing 
surveillance system10. From 2000 to 2014, the number of 
deaths attributed to measles declined by 79%8,11 (FIG. 3). 
Although this is a considerable reduction, it did not meet 
the 2015 global target. Countries with suboptimal MCV2 
coverage  conduct SIAs every 2–4 years, with SIAs con-
ducted in 28 countries in 2014 estimated to have reached 
approximately 221 million children7. In addition to vac-
cination, high-quality measles case-based surveillance 
is essential for elimination efforts. By the end of 2014, 
96% of countries implemented case-based surveillance 
and 98% had access to standardized quality-controlled 
testing through the WHO Global Measles and Rubella 
Laboratory Network (GMRLN)12,13.
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Figure 1 | History of measles virus infection and elimination programmes. 
Closely related to the recently eradicated cattle virus rinderpest170, measles 
virus (MeV) probably evolved from an ancestral virus and emerged as a 
zoonotic infection in communities in which cattle and humans lived in close 
proximity171. MeV most likely became established in humans about 5,000 
years ago when human populations achieved sufficient size in Middle 
Eastern agrarian civilizations to maintain virus transmission172. Measles did 
not always have a global distribution and probably first entered the Americas 
in the fifteenth century with the immigration of Europeans. MeV and 

smallpox infections probably facilitated the European conquest of Native 
American civilizations by causing large numbers of deaths among the fully 
susceptible Native Americans173. The outbreak of measles in the US Army 
from 1917 to 1918 that resulted in >95,000 cases of measles and 3,000 
deaths provided a striking example of the devastating effect of measles and 
associated bacterial co-infections that occurred before the introduction of 
antibiotics or measles vaccines174. Increasing measles vaccine coverage 
prevented an estimated 17.1 million deaths between 2000 and 2014 (REF. 8). 
WHA, World Health Assembly.
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Measles outbreaks
In the pre-vaccine era, measles incidence peaked in yearly 
seasonal epidemics that were superimposed on longer 
epidemic cycles, with large outbreaks occurring every 
few years14. In temperate climates, annual measles out-
breaks typically occur in late winter and early spring and 
are driven by social interactions that facilitate MeV trans-
mission, such as the congregation of children at school14. 
In the tropics, measles outbreaks occur in the dry season, 
driven by high birth rates and shifts in population den-
sity15,16. MeV infection occurs at low incidence during the 
inter-epidemic period in large populations, thus main-
taining continuous chains of transmission in between 
seasonal outbreaks. Every 2–5 years, a large outbreak 
develops because of the accumulation of susceptible indi-
viduals who were missed during the seasonal outbreaks. 
Following a large outbreak, the number of susceptible 
individuals again decreases, which drives the epidemic 
cycles17,18. The inter-epidemic period can be 4–8 years 
or longer when measles vaccine coverage exceeds 80%, 
by reducing the rate of accumulation of susceptible indi-
viduals from each new birth cohort18. In many countries 
with sustained high but heterogeneous measles vaccine 
coverage, relatively small but spatially clustered groups of 
unvaccinated individuals exist19, and measles outbreaks 
occur irregularly and less predictably20.

Population immunity
MeV is one of the most highly contagious infectious 
agents, and outbreaks can occur even in populations in 
which <10% of individuals are susceptible to measles2,21 
(BOX 1). Chains of MeV transmission commonly occur 
among susceptible individuals in closed settings or with 
high contact rates, including within households, schools 
and health care facilities.

The high infectivity of MeV implies that a high level 
of population immunity is required to interrupt MeV 
transmission. However, interruption of MeV trans-
mission does not require immunity in all individuals 
within a population. The probability that a susceptible 

person will be exposed to an infectious individual 
decreases below the level required to sustain trans-
mission when a sufficient proportion of the population 
acquires protective immunity. This reduction in the 
risk of exposure results in herd immunity; the estimated 
level of population immunity that is necessary to stop 
MeV transmission (the herd immunity threshold) is 
89–94%22 (BOX 1). The herd immunity threshold does 
not represent the level of measles vaccination coverage 
but the overall proportion of the population protected 
against measles (that is, effectively immunized or recov-
ered from infection). MCV1 delivered to children at 
9 months of age will not achieve this level of population 
immunity. For this reason, the WHO recommends pro-
viding MCV2 and targeting ≥95% two-dose coverage for 
achieving and maintaining measles elimination.

Case fatality ratio
The case fatality ratio (CFR) estimates for measles vary 
widely from <0.01% to >5% and depend on the average 
age of infection, nutritional status of the population, 
vaccine coverage and access to health care23. Measles is 
a major cause of death in displaced populations (espe-
cially refugee camps), and CFRs in children in major 
humanitarian crises have been estimated to be as high as 
20–30%24. Measles is less severe in vaccinated indi viduals 
with waning immunity and mortality rates in this group 
are lower than for measles cases in unvaccinated indi-
viduals. As vaccination coverage increases in a popula-
tion, the average age of infection increases and shifts the 
burden of disease away from the age groups that have 
severe morbidity and the highest CFRs.

Age for acquiring measles
The average age for acquiring measles depends on epi-
demiological and biological factors, including the rate 
of decay of protective maternal antibodies17. Maternally 
acquired IgG antibodies protect young infants who 
were born to measles-immune mothers. However, the 
rate of decay and mean half-life of maternal antibodies 
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Figure 2 | Global reported measles cases and estimated coverage with the first and second dose of measles-containing 
vaccine by year (1980–2014). MCV, measles-containing vaccine. Figure adapted from data available from the WHO175,176.
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to MeV varies, but in general these antibodies are no 
longer detectable in most children by 9 months of age25. 
Women with vaccine-induced immunity have lower 
levels of anti-MeV antibodies than women with natu-
rally acquired immunity, resulting in a shorter duration 
of protection in their infants26,27. Similarly, children 
born to women with human immunodeficiency virus 
(HIV) infection can become susceptible to measles 
at a younger age, which is independent of their HIV 
 infection status28,29.

The age distribution of measles also reflects the inten-
sity of exposure and patterns of susceptibility. Measles 
is a disease of infants and young children in densely 
populated urban settings with low vaccination cover-
age. The average age of infection increases as measles 
vaccination coverage increases or birth rates decrease, 
reflecting the lower probability that susceptible infants 
and children will encounter an infectious individual. In 
such settings, measles cases can predominate in school-
age children (5–10 years of age), reflecting an increased 
risk of exposure in settings where susceptible children 
congregate. The average age of measles can even shift 
to adolescents and young adults as vaccination coverage 
increases further, requiring targeted measles vaccination 
efforts to immunize older age groups29.

Risk factors
Undernutrition is an important risk factor for devel-
oping more-severe measles complications. Some stud-
ies have suggested that the intensity of exposure (for 
example, transmission within households) is another 
important determinant of mortality. In addition, the 
period in which a person infected with MeV remains 
infectious may be prolonged in individuals who are 
immunocompromised by severe undernutrition or 
HIV infection30,31. The nutritional status of children with 
measles is, in turn, worsened by decreased food intake 
(particularly in children with mouth ulcers), increased 
metabolic demands of infection and gastrointestinal 
loss of nutrients. Malnutrition and vitamin A deficiency 
may be exacerbated by measles and can lead to keratitis, 
corneal scarring and blindness in children with severe 
vitamin A deficiency.

Some studies suggest a 5% higher measles mortality 
in girls than in boys in some settings32, whereas others do 
not support this conclusion33. Geographical differences 
in measles morbidity and mortality reflect variability in 
nutritional factors and access to high-quality health care, 
although host genetic factors, such as genes regulating 
cytokine production, might explain some differences in 
response to MeV infection and vaccination. Studies of 
immune responses to measles vaccine suggest that poly-
morphisms in human leukocyte antigen (HLA) genes 
are associated with different antibody responses33.

Mechanisms/pathophysiology
Measles virus
MeV has a non-segmented, negative-sense, single- 
stranded RNA genome of approximately 16,000 nucleo-
tides in length (FIG. 4a). The genome contains six genes, 
each encoding a single structural protein: the nucleo-
capsid (N) protein, phosphoprotein (P), matrix (M) pro-
tein, fusion (F) protein, haemagglutinin (H) protein and 
large (L) protein. The P gene encodes two  additional, 
non-structural proteins: V protein and C protein1.

Viral life cycle
Both the H and the F transmembrane glycoproteins are 
exposed at the virus surface. Binding of the H protein 
to a host receptor triggers conformational changes in 
the F protein, which induces fusion of the viral envelope 
with the plasma membrane and the release of ribo nucleo-
protein (RNP) complexes in the cytoplasm of target 
cells. Following replication and transcription of the viral 
genome in the cytoplasm, the H protein and the F pro-
tein expressed on the cell surface of MeV-infected cells 
induce fusion between infected cells and neighbouring 
cells, producing multinucleated giant cells or syncytia 
(see Supplementary information S1,S2 (videos)). During 
these processes, the virus assembles and is released from 
the infected cells (FIG. 4b). Although progeny virions 
are assembled at and bud from the plasma membrane, 
the budding of MeV is inefficient and a large amount 
of the infectious progeny viruses remains associated  
with the cell34. Virus dissemination within the host is pri-
marily mediated by direct cell-to-cell transmission of the 
virus via infectious synapses.
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Box 1 | Infectivity of measles virus and herd immunity

The basic reproductive number (R0) represents the mean number of secondary cases 
that are expected to arise if an infectious individual is introduced into a completely 
susceptible population and is an important metric to compare the contagiousness of 
measles virus (MeV) to other viruses. The estimated R0 for MeV is 9–18 (REF. 22), which  
is in contrast to only 5–7 for smallpox virus140 and 4–13 for polioviruses152.

Analytical models of infectious disease dynamics combined with several simplifying 
assumptions, including the unrealistic assumption of homogeneous mixing within a 
closed population, estimate the level of population immunity that is necessary to stop 
transmission, known as the herd or population immunity threshold, using the standard 
approximation of 1 – 1/R0. For measles, the estimated R0 values of 9–18 imply that herd 
immunity thresholds range from 89% to 94%22.
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Host receptors
Signalling lymphocyte activation molecule (SLAM; also 
known as SLAMF1 and CD150) has been identified as a 
cellular receptor for MeV35. Thymocytes, macrophages, 
mature dendritic cells (DCs), Langerhans cells (LCs), 
lymphocytes and platelets express SLAM; its expres-
sion further increases following immune activation36,37. 
Nectin 4 (also known as PVRL4), which is expressed at 
adherens junctions of epithelia, was identified as a sec-
ond major cellular receptor for MeV through studies in 
human epithelial cells in vitro and in non-human pri-
mates in vivo38,39. DC-specific intercellular adhesion mol-
ecule 3-grabbing non-integrin 1 (DC-SIGN; also known 
as CD209) and C-type lectin domain family 4 member K 
(also known as Langerin) promote MeV infection of 
DCs and LCs, respectively, possibly contributing to the 
high transmissibility of MeV40,41. Although MeV shows 
neurovirulence, no cellular receptor for MeV has yet 
been identified in neural cells. However, studies have 
suggested that the substance P receptor supports trans-
synaptic transmission of MeV by interacting with the F 
protein. Vaccine strains and certain laboratory strains of 
MeV also use human membrane cofactor protein (MCP; 

also known as CD46)42, via specific amino acid substitu-
tions, N481Y or S546G, in the H protein43. The ability to 
use CD46 as a receptor is essential for haemagglutination 
by MeV.

MeV infection
SLAM-positive lymphocytes and DCs are the main tar-
gets of MeV in vivo44–46. Tissue-resident DCs in the res-
piratory tract are possible initial targets of MeV (FIG. 5). 
The infection of immune cells with MeV is mediated by 
SLAM, but DC-SIGN also supports the attachment of 
MeV to DCs, promoting SLAM-mediated MeV infec-
tion and the transmission of MeV to T lymphocytes47. 
MeV can also directly infect alveolar macrophages in 
the lungs, which express SLAM46,47. Epithelial cells are 
unlikely to be the initial targets of infection because MeV 
antigens are not detected in epithelial tissues early after 
infection and nectin 4 is not expressed on the apical sur-
face of these cells. MeV infection is amplified in drain-
ing lymphoid tissues and subsequently causes viraemia 
mediated by circulating MeV-infected lymphocytes48. 
Analyses in non-human primates using recombinant 
MeVs lacking SLAM-binding or nectin 4-binding ability 
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Figure 4 | Measles virus and the viral life cycle. a | Structure of measles 
virus (MeV). The RNA genome of MeV is encapsulated by the N protein, 
forming a helical ribonucleoprotein (RNP) complex that is associated with 
viral RNA-dependent RNA polymerase (L protein) and polymerase 
cofactor (P). Two types of transmembrane glycoproteins, the H protein 
and the F protein, are incorporated into the lipid envelope that is derived 
from the host cell membrane. The H protein is responsible for receptor 
binding with the host cell, whereas the F protein mediates membrane 
fusion177. The M protein interacts with both the RNP complex and the 
cytoplasmic tails of the glycoprotein spikes, and promotes virion 
assembly. The non-structural V protein and C protein are involved in  
the evasion of host innate immune responses in infected cells. 

b | MeV infection. Following the binding of the H protein to the host 
receptor, membrane fusion occurs, which releases the viral RNA into the 
host cytoplasm. Replication and transcription of the viral genome takes 
place entirely in the cytoplasm. De novo-synthesized RNP complexes are 
transported by RAS-related protein RAB11a-positive recycling 
endosomes that move along microtubules178. The H protein and the 
F protein are transported to the plasma membrane using a different 
secretory pathway. The M protein interacts with RNP complexes, the 
cytoplasmic tails of the H protein and the F protein, the cell membrane 
and actin filaments in the host cells179. These interactions promote virus 
assembly and regulate cell-to-cell fusion of MeV180. SLAM, signalling 
lymphocytic activation molecule.
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(SLAM-blind MeV and nectin 4-blind MeV, respectively) 
further clarified the individual roles of SLAM and nec-
tin 4 (REFS 49,50). Nectin 4-blind MeV efficiently infected 
non-human primates, caused a systemic infection and 
replicated in immune cells to similar levels as wild-type 
MeV, even when administered intranasally50. Conversely, 
infection by SLAM-blind MeV was highly attenuated and 
this virus induced strong adaptive immune responses and 
hardly caused viraemia in non-human primate mod-
els49. Conversely, infection by SLAM-blind MeV was 
highly attenuated and this virus induced strong adap-
tive immune responses and hardly caused viraemia in 
non-human primate models49, suggesting that SLAM is 
primarily important for MeV pathogenesis.

MeV-infected lymphocytes and DCs can migrate into 
subepithelial cell layers of the respiratory tract where 
they can transmit MeV to epithelial cells using nectin 4 
as a receptor46,51,52 (FIG. 5). Experiments using polar-
ized airway epithelial cells in vitro demonstrated that 
MeV can enter cells from the basolateral side and buds 
exclusively from the apical membrane50, replicating 

directional entry and budding of MeV in vivo. The virus 
is efficiently trans mitted between epithelial cells through 
intercellular membrane pores53–55. Nectin 4-blind MeV 
is not shed into the respiratory tract in infected non- 
human primates, but different experimental conditions 
were used for wild-type MeV, prohibiting definitive 
conclusions46,50. Other mechanisms of transmission 
have also been proposed. For example, damage to the 
epithelium of lymphoid tissues in the upper respira-
tory tract may allow shedding of the virus produced by  
MeV-infected immune cells or epithelial cell debris by 
coughing and sneezing56.

Immune response
Host response. After viral entry into host cells, anti-
viral responses are initiated by the host triggered by the 
detection of pathogen-associated molecular patterns, 
such as cytoplasmic single-stranded RNA bearing 
5ʹ-triphosphate and double-stranded RNA. The reti-
noic acid-inducible gene I protein (RIG-I; also known 
as DDX58)-like receptors, melanoma differentiation- 
associated protein 5 (MDA5; also known as IFIH1) and 
laboratory of genetics and physiology 2 (LGP2; also 
known as DHX58) function as intracellular sensors for 
virus-specific RNAs. MeV RNAs are mainly detected 
by RIG-I and to a lesser extent by MDA5 (REFS 57,58). 
RIG-I-like receptors activate specific kinases, which 
phosphorylate interferon (IFN)-regulatory factors, 
leading to the production of IFNs. Secreted IFNs acti-
vate the Janus kinase (JAK)–signal transducer and 
activator of transcription (STAT) signalling pathway in 
adjacent cells, stimulating the transcription of various 
antiviral genes59.

Immune evasion by MeV. The viral V protein, C pro-
tein and P protein have roles in evading the host innate 
immune response to infection. For example, the V pro-
tein directly binds to MDA5 and LGP2 and effectively 
inhibits IFN synthesis60. The C protein interferes with 
IFN induction at the transcriptional level61 and might also 
indirectly inhibit IFN induction via its regulatory role in 
viral RNA synthesis. Viral RNAs are accumulated in cells 
infected with C protein-deficient MeV, possibly stimu-
lating host innate immune responses61,62. In addition to 
blocking IFN induction, the V protein actively blocks 
the JAK–STAT signalling pathway by interacting with 
STAT1 and STAT2 (REF. 63). The P protein, which shares 
its amino-terminal domain with the V protein, shows 
similar IFN-antagonizing activities64. Although some 
studies have demonstrated that the C protein can directly 
interfere with the IFN-stimulated signalling pathway65, 
the results are controversial66,67. Nonetheless, both the 
C protein and the V protein are necessary to completely 
circumvent the host IFN responses and to exhibit  
high virulence of MeV in vivo68.

Measles involves suppression of the adaptive immune 
response that can lead to increased susceptibility to 
opportunistic infections and that occurs through vari-
ous mechanisms. Lymphopaenia is noticeable during 
the acute phase of measles, and the numbers of circulat-
ing CD4+ and CD8+ T cells and B cells are decreased69. 
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Figure 5 | Measles virus infection and transmission. Measles virus (MeV) is  
an airborne pathogen. MeV aspirated into the respiratory tract infects alveolar 
macrophages or dendritic cells (DCs) using signalling lymphocytic activation molecule 
(SLAM; also known as CD150) as a receptor. MeV infection is amplified in regional 
lymphoid tissues followed by a systemic infection throughout the body. MeV-infected 
lymphocytes and DCs migrate into the subepithelial cell layer and transmit MeV to 
epithelial cells of various organs or tissues using nectin 4 as a receptor. MeV infection is 
amplified in the epithelia, and a large amount of progeny viruses are released into the 
respiratory tract. RNP, ribonucleoprotein.
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Both MeV-infected and uninfected lymphocytes from 
patients with measles are vulnerable to cell death69. MeV 
infection of cultured human T cells revealed that con-
siderable portions of uninfected T cells undergo apopto-
sis70,71. Altered lymphocyte trafficking and suppression of 
haemato poiesis are also proposed as causes of lympho-
paenia in MeV infection69,72. Although the lymphopaenia 
resolves soon after patient recovery from rash and fever, 
the immunological abnormalities last for at least several 
weeks, months or even years5. In patients who have recov-
ered from measles, the delayed-type hyper sensitivity 
responses are suppressed73 and susceptibility to second-
ary infections is increased for at least several weeks. A 
cytokine imbalance (for example, increased levels of IL-4, 
IL-10 and IL-13 and suppressed levels of IL-12) associ-
ated with a prolonged T helper 2 (TH2)-biased immu-
nity results in the suppression of cellular immunity and  
probably contributes to the immunosuppression74.

DCs are primary targets of MeV in vivo48,75, and DCs 
infected with MeV have an important role in MeV-
induced immunosuppression76. MeV infection impairs 
functional DC maturation and compromises the ability 
of DCs to stimulate T cell proliferation77. CD40 (also 
known as TNFRSF5) signalling is affected by MeV 
infection; IL-12 production is suppressed, whereas IL-10 
expression is increased71,78. Toll-like receptor 4 (TLR4)-
mediated IL-12 synthesis in DCs is also suppressed by 
MeV infection79. Furthermore, when MeV-infected DCs 

are co-cultured with T cells, both the DCs and the T cells 
undergo apoptosis71.

MeV infection also suppresses the proliferation 
of lymphocytes. For example, one study showed that 
lymphocytes isolated from patients or animals infected 
with MeV proliferated poorly upon ex vivo stimulation 
by mitogens80. This unresponsiveness can be caused by 
contact of lymphocytes with the viral H protein and the 
F protein on MeV virions or MeV-infected cells, inde-
pendently of virus replication in lymphocytes and the 
H protein interaction with SLAM on lymphocytes81.

Although MeV infection leads to general immune 
suppression, a robust primary immune response to 
MeV that results in lifelong immunity is induced82. This 
apparent contradiction is known as the ‘measles para-
dox’ and might be explained by preferential infection 
and depletion of CD150+ memory lymphocytes, a pro-
cess referred to as ‘immune amnesia’ (REFS 45,83). Thus, 
immune suppression associated with infection can lead 
to opportunistic infections for a period of several weeks 
to months after MeV infection, and a recent analysis of 
population-level data suggested that measles may cause 
delayed mortality for 2–3 years after infection5.

Genetic and antigenic variation of MeV
Although MeV is considered a monotypic virus, genetic 
and antigenic variation has been described among wild-
type viruses. Sequencing studies have shown that the 
genome of MeV is quite stable, although genomes with 
insertions and deletions have been detected84. Sequence 
variations have been used to assign wild-type MeV into 
one of 24 genotypes85. Antigenic differences between 
different wild-type strains have also been detected 
based on the binding of monoclonal antibodies to viral 
proteins (especially the H protein) and neutralization 
assays with polyclonal antiserum86–90. In addition, the 
genomes of all of the measles vaccine strains have 
been sequenced. Although some sequence variation 
was detected based on the origin and derivation of 
the strain, all of the vaccine strains were derived from 
members of genotype A, which are no longer circulat-
ing36. These findings suggest that antibodies induced 
by vaccination might not recognize all wild-type 
strains. However, some of the epitopes recognized by 
neutralizing antibodies that are induced by vaccination 
target- conserved regions of the H protein, including the 
regions involved in receptor binding or the interaction 
between the H protein and the F protein, which limits 
the possibility for antigenic variation91–93. In support of 
this observation, sequencing studies have not produced 
evidence for the action of selective pressure on the  
H protein of MeV94,95. In addition, measles vaccine 
is highly effective in all countries regardless of the 
 prevailing endemic genotype of MeV96.

Diagnosis, screening and prevention
Clinical signs
The clinical signs of measles and their onset and dur ation 
can be mapped according to the pathophysiology of  
the disease (FIG. 6). MeV infection starts with an incuba-
tion period, during which the virus replicates primarily 
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Figure 6 | Pathogenesis of measles. A schematic representation of the kinetics of 
measles virus (MeV) replication (part a) and measles-associated clinical signs (part b). 
The maculopapular skin rash (part c) can lead to severe desquamation (part d). Koplik 
spots (part e; white arrows) are pathognomonic for measles. Image in part d courtesy  
of S. A. Ibrahim, Khartoum, Sudan.
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in myeloid and lymphoid cells and establishes a systemic 
infection. After 7–14 days, when MeV has spread to the 
peripheral lymphoid tissues, a prodromal phase starts 
with malaise, fever and cough. One or two days later, 
clustered white lesions — known as Koplik spots — can 
be seen on the buccal mucosa, and these are consid-
ered pathognomonic for measles. At that point, infected 
lymphocytes have disseminated the virus to peripheral 
tissues, including the skin and the submucosa of the 
respiratory tract, and have transmitted MeV to epithe-
lial cells and keratinocytes. The maculopapular skin 
rash appears 3–5 days after the prodromal phase and 
coincides with the appearance of MeV-specific humoral 
and cellular immune responses. The rash usually starts 
behind the ears or on the face and spreads to the trunk 
and extremities. Conjunctivitis appears around the 
same time and often results in photo phobia. Both rash 
and conjunctivitis are caused by immune-mediated 
clearance of MeV-infected cells and may be absent in 
immunodeficient patients, making the disease difficult 
to recognize in this patient group53,97,98. As many of the 
typical clinical signs of measles can also be caused by 
other infectious agents, including rubella virus, parvo-
virus B19, human herpes virus type 6 and  dengue virus, 
adequate laboratory diagnosis is crucial99. In uncom-
plicated measles cases, clinical signs usually start to 
fade a few days after the onset of rash and patients 
recover in approximately 1 week. By contrast, mea-
sles-associated immune suppression, which coincides 
with widespread epithelial damage, increases suscepti-
bility to secondary bacterial infections that can result 
in com plications, such as diarrhoea, pneumonia or oti-
tis media83. In addition, severe central nervous system 
com plications can occur, including acute post-infection 
measles encephalitis, measles inclusion body encepha-
litis and subacute sclerosing panencephalitis (SSPE)100. 
In industrialized countries, the frequency of these com-
plications is 10–20%, but this may be much higher in 
developing countries101,102. SSPE occurs in approximately 
1–2 in 10,000 reported measles cases, with a higher 
rate in children <5 years of age, and generally presents 
5–10 years after recovery from the initial primary MeV 
infection. The late and progressive presentation of SSPE 
may not appear causally associated with  measles and 
may be misdiagnosed. Presentation of SSPE depends 
on the stage of detection of symptoms, from symptoms 
of psychological or neurological deterioration (for 
example, changes in personality, seizures, and photo-
sensitivity) through to death with detection on autopsy. 
MeV infection during pregnancy increases the risk of 
maternal, fetal and neonatal complications; it can dam-
age the placenta and/or fetus and lead to spontaneous 
termination, stillborn birth or live birth of infants with 
congenital measles103–105.

Diagnosis
Laboratory confirmation of measles is based on the 
detection of anti-MeV IgM antibodies or the detection 
of MeV RNA by reverse transcription PCR (RT-PCR) 
in clinical samples. The most commonly used method 
for laboratory confirmation is detection of IgM, usually 

by enzyme immunoassay, in serum samples collected at 
first contact with a suspected case106. RT-PCR, which is 
having an increasing role in case confirmation, has the 
highest sensitivity if samples are collected as early as 
possible after the onset of rash. In addition to throat or 
nasal swabs, other clinical specimens that can be used for 
RT-PCR include oral fluid, urine and peripheral blood 
mononuclear cells107,108. Detection of the viral RNA has 
the additional advantage of enabling genotyping, which 
can be used for molecular epidemiology.

The use of highly susceptible and permissive SLAM-
positive B95a cells109, later replaced by Vero cells modi-
fied to express human SLAM (Vero/hSLAM cells)110, 
allow for efficient isolation of MeV in culture. Viral iso-
lation can take several days to several weeks to complete 
and is rarely used for diagnostic purposes.

Clinical specimens that can be used for both IgM 
detection and RT-PCR in diagnosis and surveil-
lance111,112 include dried blood spots collected on fil-
ter paper, which facilitate storage and transport112,113, 
and oral fluid samples, which allow for non-invasive 
sample collection114,115. Although molecular and sero-
logical assays performed on dried blood samples and 
oral fluid samples are highly specific, their sensitivity 
can be slightly lower than assays performed on serum 
or throat swabs.

Prevention
The high transmissibility of MeV can be explained 
by the high viral loads in the upper respiratory tract 
during the prodromal and early phases of rash, in 
combination with the epithelial damage that induces 
a cough reflex. This combination results in the gener-
ation of aerosols that contain MeV, facilitating respir-
atory transmission116,117. Health care facilities can serve 
as amplification points for measles outbreaks. In addi-
tion, mass gatherings and travel hubs, such as airplanes 
and airports, have often been identified as hotspots of 
MeV transmission, making international travel a major 
determinant in global MeV transmission pathways. 
In post-elimination settings, measles importations 
occur from areas with  measles outbreaks or endemic 
MeV transmission118.

All current measles vaccines contain a live attenu-
ated strain of MeV. Most of the vaccine strains derive 
from the prototype Edmonston strain (that is, Moraten, 
Schwarz and Edmonston–Zagreb strains), although 
some vaccines derive from other wild-type viruses (for 
example, CAM-70 and Leningrad-16). According to the 
WHO requirements, a dose of measles vaccine must 
contain at least 1,000 TCID50 (the virus titre required 
to infect 50% of host cells in culture) delivered by sub-
cutaneous injection. Measles vaccine is often delivered 
in combination with live attenuated vaccines for rubella 
(MR vaccine) and mumps (MMR vaccine). After a single  
vaccine dose, 85% of 9-month-old children and 95% 
of 12-month-old children are presumed immune to 
measles, and, in most cases, the duration of protection 
is several decades and probably lifelong. Adverse reac-
tions following measles vaccination are usually mild. 
Approximately 5–15% of individuals who have had a 
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vaccine experience fever of >39 ºC between day 7 and 
day 12 post-vaccination. Rash lasting 1–3 days occurs in 
approximately 5% of vaccine recipients approximately 
7–10 days after vaccination. Although vaccine virus can 
be detected in respiratory secretions from vaccinated 
people118, there is no evidence of person-to-person 
transmission of vaccine viruses119. Although currently 
available measles vaccines are very safe and effective, the 
disadvantages for elimination efforts include suscepti-
bility to interference by maternal antibodies in young 
infants, strict cold-chain dependence and the require-
ment of hypodermic needles for administration. Despite 
many attempts to develop new vaccination delivery 
methods (BOX 2), measles containing vaccines are still 
being delivered by subcutaneous injection.

Surveillance
Case-based surveillance. Case-based surveillance for 
measles is required as all the WHO regions have moved 
to implementation of measles elimination strategies, 
and surveillance must be sensitive enough to rapidly 
detect and confirm measles cases and all chains of MeV 
transmission. Case-based surveillance requires that all 
suspected cases (BOX 3) have a timely and adequate case 
investigation, including the collection of clinical samples  
for laboratory confirmation.

In countries moving toward elimination, cases are 
further classified based on the source of the infection 
as endemic, imported, import-related or unknown. 
A chain of MeV transmission that is continuous for 
≥12 months is defined as endemic transmission. An 
internationally imported case had an exposure during 
international travel occurring 7–21 days before the onset 
of rash. In the United States, an imported virus case is 
a case without an identified epidemiological link to an 
imported case, but with the viral genotype indicative 

of imported measles. For unknown source cases, the 
epi demiological or virological link to importation or 
endemic  transmission cannot be established120.

WHO GMRLN. As measles incidence falls, medical 
personnel become less experienced in recognizing the 
clinical presentation of measles. Thus, laboratory con-
firmation of infection is a crucial component of surveil-
lance. Laboratory support for global measles surveillance 
is provided by the GMRLN13 (BOX 4). The GMRLN con-
firms suspected cases of measles by the detection of 
anti-MeV IgM antibodies or viral RNA.

Virological surveillance. MeV genetic heterogeneity 
forms the basis for molecular epidemiological studies 
of the transmission pathways of MeV118. The WHO cur-
rently recognizes 24 genotypes of MeV based on the 
sequence variation of the 450 nucleotides that code for 
the carboxyl terminal of 150 amino acids of the N pro-
tein (N-450) and the complete coding sequences of the 
H gene. Of these 24 genotypes, only seven have been 
detected since 2011: B2, B3, D4, D8, D9, G3 and H1. 
The GMRLN has been responsible for standardization 
of the nomenclature and laboratory procedures that are 
used for viral genotyping118,121 and tracking the global 
distribution of MeV genotypes (FIG. 7).

The recognized genotypes contain multiple lin eages; 
each lineage presumably represents a single chain of 
transmission. The GMRLN has recently developed an 
improved protocol to monitor MeV transmission, which 
involves naming lineages within a genotype. Viruses 
belonging to a named lineage have identical N-450 
sequences, but are designated based on epidemio logical 
and virological criteria121. The ability to track named 
lineages has been especially useful for mapping MeV 
transmission in regions with multiple, ongoing chains 
of transmission, such as in Europe122–124. Named linages 
can also be used for documenting the rapid global spread 
of genotypes associated with large outbreaks, such as the 
transmission of genotype B3 viruses following a large 
outbreak in the Philippines in 2014 (REF. 125). In addi-
tion to using named strains based on the N gene, larger 
regions of the viral genome, including the H gene, the 

Box 2 | Attempts to improve the live attenuated measles vaccine

In parallel with the development of live attenuated measles virus (MeV) vaccines, 
formalin- inactivated MeV vaccines were developed. Unfortunately, these  
vaccines were associated with enhanced disease upon subsequent natural MeV 
infection — referred to as atypical measles — mediated by an immunopathological 
mechanism153. In the 1980s, live attenuated MeV vaccines of increased titre (>105 
TCID50 (that is, the virus titre required to infect 50% of host cells in culture) per dose) 
were tested as an approach to overcome the presence of maternal antibodies, but 
this was discontinued after reports of excess and delayed mortality of girls who had 
received these high titre vaccines as compared with those immunized with standard 
titre vaccines. In the 1990s, the availability of novel adjuvants and vaccination 
platforms led to several new vaccines, which showed promising results in non-human 
primates154,155. None of these vaccines have reached the clinic owing to high costs of 
clinical trials and the limited possibilities to achieve returns on investment. More 
recently, several studies have evaluated alternative methods of administration of the 
existing live attenuated MeV vaccines, which would have the potential to reduce 
cold-chain dependency and problems associated with injection safety. The most 
promising routes seemed to be aerosol inhalation, either as a liquid or a dry powder 
aerosol, or microneedle vaccination147,156,157. However, in a large-scale clinical trial,  
the aerosolized vaccine proved to be inferior to the subcutaneous vaccine with 
respect to immunogenicity158. Whether alternative routes of measles vaccination will 
be licensed in the near future remains uncertain. In the future, live attenuated MeV 
vaccines might be modified to express immunogenic proteins of other pathogens  
to protect against emerging infections159–161.

Box 3 | Case definitions

• A clinical case of measles is any person with fever  
and maculopapular skin rash and cough, coryza or 
conjunctivitis, or any person in whom a clinician 
suspects measles162

• Clinically confirmed cases are those that meet the 
clinical case definition, but ones in which adequate 
samples for laboratory confirmation were not obtained

• Laboratory-confirmed cases are those that meet the 
clinical case definition and are confirmed by positive 
laboratory test results

• Epidemiologically confirmed cases are those that  
meet the clinical case definition and are linked to a 
laboratory- confirmed case

• A suspected case that does not meet the clinical  
or the laboratory definition should be discarded
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P gene and the non-coding regions between the M gene 
and the F gene, are now being sequenced126,127. More 
recently, whole-genome sequencing has provided addi-
tional insights into the variability of the MeV genomes 
and supported mapping of MeV transmission during 
outbreaks127,128.

Analysis of molecular epidemiological data in con-
junction with epidemiological data from standard case 
classification and reporting facilitates accurate mapping 
of transmission pathways of MeV and are thus a valuable 
tool for measuring the effectiveness of measles control 
programmes118. In countries approaching elimination, it 
will be necessary to obtain sequence information from as 
many chains of MeV transmission as possible. However, 
baseline virological surveillance needs to be established 
or improved in many countries.

Management
Treatment of uncomplicated measles cases typically 
involves supportive care, including antipyretics, anti-
tussives, hydration and/or environmental controls (for 
example, humidification)129. Currently, no antiviral ther-
apies with demonstrated clinical effectiveness exist for 
treating measles, although limited case reports suggest 
that intravenous or aerosolized ribavirin might provide 
some benefit in severe disease130,131.

Proper nutrition and vitamin A supplementation 
protect against developing more-severe symptoms 
associated with measles132. Owing to its effectiveness in 
reducing measles-related morbidity and mortality, the 
WHO recommends that children who are infected with 
MeV should receive vitamin A treatment132. Although 
less frequent in developed countries, clinicians should 
consider the administration of vitamin  A to indi-
viduals with measles who present with impaired intes-
tinal absorption, malnutrition and ophthalmological 

evidence that is suggestive of vitamin A deficiency, as 
well as immunocompromised patients and those who 
require hospitalization for complications. The immuno-
modulatory effects of vitamin A may account for the 
protection from severe measles133.

Secondary bacterial infections (for example, pneumo-
nia or otitis media) can occur in some cases and require 
efficient and effective antibiotic treatment, with poten-
tial hospitalization for severe infections134. Pneumonia 
remains one of the leading causes of morbidity and mor-
tality associated with MeV infections134. Children who 
have been immunized against Haemophilus influenzae 
type b and Streptococcus pneumoniae can experience 
less-severe sequelae of measles owing to their pro tection 
from these common causes of bacterial pneumonia  
secondary to measles135.

Severe measles complications can occur and include 
life-threatening outcomes that are associated with pneu-
monia, thrombocytopaenia and encephalitis in all indi-
viduals and severe malnutrition, including kwashiorkor 
and marasmus, in undernourished children134,136. Measles 
can also lead to permanent disabilities, for example, 
blindness in vitamin A-deficient children or deafness, and 
intellectual disabilities associated with encephalitis134,136 
and central nervous system complication, including SSPE 
5–10 years after infection. SSPE leads to premature mor-
tality preceded by deterioration of the central nervous 
system and degeneration to a vegetative state, with death 
generally occurring 1–3 years after diagnosis of SSPE. 
Early diagnosis of SSPE and supportive care, including 
anticonvulsant and antispasmodic drugs, may prolong 
life, although premature mortality will occur owing to 
the lack of a cure. As long as MeV continues to circulate 
and cause infections, SSPE mortality will occur. However, 
patients with SSPE do not shed MeV into the respiratory 
tract and are therefore not infectious.

Quality of life
Before the introduction of a measles vaccine, mea-
sles was considered an inevitable, one-time malady 
that led to short-term disability and disruption for 
most indi viduals, and permanent disability or death 
for individuals with severe complications. Widespread 
global adoption of measles immunization dramati-
cally improved quality of life and prevented millions 
of deaths8,11. National efforts to eliminate MeV trans-
mission by achieving and maintaining high population 
immunity using vaccines and the apparent absence of 
cases can lead to the mis perception that measles no 
longer poses a serious threat to health and quality of 
life. However, the importation of MeV remains a real 
and constant threat as long as MeV circulates any-
where in the world, and the absence of cases reflects the 
continued high coverage with measles vaccine in  
the population. Given the threat of importation, coun-
tries should maintain a capacity for aggressive public 
health efforts to trace contacts, provide immunization  
and/or guidance for self- quarantine and symptom identi-
fication, communication and preventive immunization 
campaigns that target susceptible indi viduals when 
even a single case occurs in a country that previously  

Box 4 | Structure of the WHO Global Measles and Rubella Laboratory Network

As of June 2016, the Global Measles and Rubella Laboratory Network (GMRLN) consists 
of 703 laboratories, all of which follow a standardized set of testing protocols and 
reporting procedures with a strong focus on quality assurance. The multi-tiered 
structure of the GMRLN was based on the model of the Global Polio Laboratory 
Network (GPLN)13 and includes subnational, national, regional reference and global 
specialized laboratories. National laboratories perform most of the diagnostic 
laboratory testing and are closely linked with the national vaccination and disease 
control programmes. The regional reference laboratories support genetic 
characterization of circulating wild-type viruses and support capacity building of the 
national laboratories. An annual accreditation and proficiency testing programme 
ensures high-quality serological and molecular testing within the GMRLN. The global 
specialized laboratories located in Japan, the United Kingdom and the United States 
develop and standardize laboratory procedures and protocols and support capacity 
building through training13. As all the WHO regions now have elimination or enhanced 
control goals for rubella and congenital rubella syndrome, the GMRLN provides 
integrated surveillance for rubella.

Public Health England and the WHO jointly developed a global sequence database 
for measles, known as the Measles Nucleotide Surveillance (MeaNS (http://www.
who-measles.org))107. Members of the GMRLN submit most of the sequence 
information, but sequences are also downloaded from GenBank. As of 1 July 2015, 
MeaNS contained 24,571 N-450 sequences (that is, the 450 nucleotides that encode  
the carboxy-terminal region of the nucleocapsid protein), reflecting submissions from 
56 laboratories in all six WHO regions121.
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eliminated indigenous measles. Despite global imple-
mentation of vac cination, measles remains a lead-
ing cause of mortality for children <5 years of age137. 
However, the considerable reductions in measles mor-
tality associated with the increased use of measles vac-
cines have contributed to the Millennium Development 
Goal 4, which aimed to reduce child mortality137.

Measles immunization saves profound costs for the 
individuals affected, their families and the national 
health care system. A recent study estimated expected 
treatment cost per MeV infection of US$1,000–$2,000 
in 2013 in high-income countries, with lower values 
estimated for relatively lower-income countries136. The 
expected treatment costs reflect a high probability of 
low costs for most cases (that is, mild or moderate 
cases) and the remaining probability of high costs for 
more-severe cases. Measles also leads to lower average 
life expectancy, increased disability and considerable 
productivity losses. Prevention of measles means fewer 

days of school missed, fewer days of lost work time 
spent caring for sick or disabled individuals, increased 
worker productivity and less utilization of health care 
system resources for treatment. Compared to MeV 
infection, the expected sequelae and treatment costs of 
receiving a dose of measles vaccine are much less severe 
and significantly less costly ($1–2 in 2013 in expected 
treatment costs per dose of measles vaccine received 
in high- income countries), with very small expected 
productivity losses136. Although not currently recom-
mended during pregnancy, measles vaccination inci-
dentally received during pregnancy does not seem to 
adversely affect the pregnancy, fetus or infant138.

Outlook
Eradication as a goal
MeV has caused human devastation and death, infecting 
nearly everyone for more than a millennium. Measles 
is an eradicable disease139 and could join smallpox  
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Figure 7 | Detection of the global distribution of measles virus genotypes and incidence in 2015. During 2014–2015, 
the most frequently reported measles virus (MeV) genotype was genotype H1, which is endemic in China, a country with a 
high reporting efficiency for molecular surveillance. The most widely distributed MeV genotypes globally were genotypes 
B3 and D8. In the past, genotype B3 viruses were only endemic in sub-Saharan Africa countries; but recently, genotype B3 
viruses were associated with cases and outbreaks in all six WHO regions, including a large measles outbreak in the 
Philippines in 2014–2015 (REF. 125). Likewise, genotype D8 had been primarily detected historically in South-East Asia,  
but more recently genotype D8 has caused reported outbreaks in all the WHO regions except the African region. The  
size of the pie sectors reflect the number of sequences reported for each genotype13. Adapted with permission from 
REF. 13, WHO/CDC.
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and, soon, polio on the list of eradicated human viral 
diseases (TABLE 1). The success of the smallpox eradica-
tion programme, which resulted in global eradi cation 
of smallpox in 1977, energized global vaccination 
efforts and led to the establishment of the global 
Expanded Program on Immunization (EPI) in 1974 
(REF. 140). In 1988, the WHA officially adopted the polio 
eradication goal, and the WHO and partners estab-
lished the Global Polio Eradication Initiative (GPEI). 
In July 2010, an expert advisory panel convened by 
the WHO concluded that measles can and should 
be eradicated141,142, conclusions that were endorsed 
by the WHO Strategic Advisory Group of Experts  
and the WHA143.

Challenges
There has been tremendous progress towards measles 
elimination globally; however, MeV continues to cause 
infections, severe morbidity and mortality. Even though 
the WHO recommended two doses of a measles- 
containing vaccine for all children in 2009, nearly 40 
countries continue to use a one-dose immunization 
schedule, and other missed opportunities to vac-
cinate have not been addressed144. As MCV1 coverage 
improves, establishing a visit during the second year of 
life to integrate MCV2, if recommended, as well as other 
child health interventions can help to further reduce the 
measles burden. In countries that do not routinely pro-
vide MCV2, measles SIAs are an essential component of 
the elimination strategy. Implemention of high-quality 
SIAs can be logistically challenging; however, they are a 
proven strategy for achieving high (≥95%) and homo-
geneous two-dose coverage that is needed to interrupt 
MeV transmission. To maximize impact, SIA-target age 
groups should be determined based on surveillance and 
immunization data.

Competing priorities among key global partners 
and funding shortfalls have hampered global efforts to  
fully implement elimination strategies and develop 
innovations. Long-term stable financial investments and  
commitments are needed to galvanize partnerships 
and accelerate progress. Funding and leadership from 
the M&RI and partners, including Gavi, are needed to 
support the implementation of elimination strategies. 
To complement the funding from global partners to 
achieve measles elimination goals, country ownership 
and investments are encouraged to mobilize adequate 
additional resources. High-level advocacy is ongoing 
to strengthen national immunization programmes 
and to ensure effective programme management and 
strategy implementation.

Opportunities
A small number of human infectious diseases currently 
are considered to be eradicable, including polio, measles, 
mumps, rubella, lymphatic filariasis, cysticercosis, yaws 
and dracunculiasis. The historical window of opportu-
nity to eradicate these diseases and the value of having a 
globally focused eradication programme should not be 
taken for granted or underestimated. Previous vaccina-
tion programmes have fostered public health partner-
ships and instilled a data-driven approach within the EPI 
that uses vaccination coverage and disease surveillance 
to guide efforts to increase coverage and equity in popu-
lations. The identification of susceptible subpopulations 
and an emphasis on mapping and reaching all commu-
nities with immunizations are necessary for the elimi-
nation of vaccine-preventable diseases by interrupting 
chains of transmission from all reservoirs. This elimi-
nation or eradication approach has led to the identific-
ation and mapping of areas that need EPI strengthening 
and other public health interventions.

Table 1 | Parameters to consider for virus eradication

Parameters Smallpox Polio Measles

Eradication status Eradicated Wild polio virus type 2 eradicated, 
type 3 potentially eradicated as of 
publication of this paper and type 1 
nearly eradicated

Candidate for 
eradication

Clinical presentation Fever and rash Acute flaccid paralysis Fever and rash

Asymptomatic infections or carriers No Yes No

Primary mode of transmission Respiratory 
droplets

Fecal–oral route or oral–oral route Aerosolized 
respiratory secretions

Period of contagiousness 25 days 4–6 weeks 9 days

Basic reproductive number (R0) 5–7 4–13 9–18

Herd or population immunity threshold 80−85% 75−92% 89−94%

Serotypes 1 3 1

Vaccine delivery Intradermal 
injection

Oral drops (oral polio vaccine) 
or intradermal or intramuscular 
injection (inactivated polio vaccine) 

Subcutaneous 
injection

Number of vaccine doses needed to 
stop transmission

1 ≥3 1–2

Vaccine-derived virus transmission No Yes No
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Owing to the highly infectious nature of  measles 
and the high efficacy of the vaccine, measles epidemio-
logy in particular reflects susceptibility in the popu-
lation. When weaknesses in immunization service 
delivery occur, measles is frequently the first vaccine- 
preventable disease detected, identifying areas of low 
vaccination coverage. Thus, measles is often referred 
to as the ‘canary in the coalmine’ for EPI and has 
been used as a signal and driver for strengthening 
immuniza tion programme strategies and policies 
(BOX 5). For example, school entry vaccination laws 
introduced in the United States and other countries 
have improved vaccine cover age. In China, following 
the launch of measles elimination strategies, a school 
entry vaccination check law was established in 2005, 
but without universal enforcement yet. In Korea, efforts 
that resulted in  measles elimination also led to vacci-
nation requirements for school entry and enhanced 
 vaccine-preventable disease surveillance145.

The success of elimination and eradication pro-
grammes depends on improved surveillance. Analysis 
of measles surveillance data not only guides strength-
ening of routine immunization efforts by identifying 
popu lations and areas in which immunization cover-
age is suboptimal but can also indicate areas with likely 
underperforming disease surveillance. Laboratory 
systems that were built to support eradication or elimi-
nation, such as the Global Polio Laboratory Network 

and the GMRLN, provide platforms for monitoring 
surveillance performance and detecting other vac-
cine-preventable diseases, such as yellow fever, Japanese 
encephalitis and emerging pathogens that cause health 
emergencies. For instance, the recent global response 
for the West African Ebola outbreak relied on the exist-
ing polio eradication infrastructure for rapid case detec-
tion, investigation, confirmation and contact tracing. 
Measles-driven policies and measles elimination strat-
egies can provide opportunities for improving over-
all immunization service delivery performance and 
strengthening health systems, a concept of  increasing 
importance as the polio end game unfolds.

Research and emerging technologies
Research is crucial for developing evidence-based poli-
cies and strategies and innovations for disease eradi-
cation146. The research priorities for measles eradication 
have been identified by a group of experts convened by 
the WHO and the CDC and are periodically updated 
to reflect changing epidemiology, shifts in measles- 
susceptible groups, new vaccine development and  
laboratory techniques that improve on existing tools.

Innovations are needed to overcome the logistic 
challenges associated with the current vaccine, and 
alternative delivery methods are being developed. 
For example, advancements in nanotechnology have 
led to the development of a prototype measles micro-
needle patch that has been shown to be immunogenic 
for skin vaccination in non-human primates147. The 
patch, which can be easily administered by minimally 
trained volunteers, would be a potential game-changer 
for strategies to achieve high vaccination coverage, 
particularly in resource-limited settings147. In some 
settings, vaccine hesitancy and low demand for vacci-
nation has contributed to suboptimal vaccination cov-
erage causing sustained virus transmission; research is 
needed to identify novel strategies that can overcome 
these and other barriers to vaccination and to reach 
specific subpopulations or age groups148. Innovative 
outreach strategies are needed to improve parents’ 
knowledge of and confidence in vaccination benefits 
for their children in order to increase the uptake of 
measles vaccine. Immunization programmes should 
be tailored to improve access, demand and use of 
immunization services, using tools to identify sus-
ceptible populations, strategies designed to improve 
immunization among hard-to-reach populations, and 
communication plans that increase understanding of 
the importance of vaccination and reduce uninformed 
vaccine refusals.

New laboratory techniques have led to the develop-
ment of high-throughput, multiplex serological assays149 
and prototype point-of-care assays for the detection of 
IgM and IgG150, as well as advanced molecular tech-
niques for whole-genome sequencing. New informa-
tion systems, programmatic dashboards and measles 
risk assessment tools have been developed to use the 
existing data more effectively, and these tools are cur-
rently being used to improve programme monitoring 
and performance151.

Box 5 | History of the measles elimination programme in the United States

In 1967, measles elimination strategies were implemented, including routine 
vaccination of infants, vaccination of all susceptible children at school entry, 
surveillance and epidemic control. Although measles cases decreased by 95% in 1968, 
vaccination coverage of preschool children (1–4 years of age) remained approximately 
60% in 1970 and outbreaks were occurring in middle schools and high schools163. 
School entry checks on vaccination resulted in further decreases in cases during the 
late 1970s and 1980s, but measles vaccination in preschool children remained <70% 
and measles occurred mainly among unvaccinated preschool and school students164. 
In the United States, starting in the 1950s, the capacity for high-quality epidemiological 
investigations was developed and maintained at the federal, state and local level to 
rapidly detect and aggressively respond to outbreaks. Measles outbreaks in highly 
vaccinated school populations suggested that a routine second dose of a measles 
vaccine was needed, which was introduced in 1989. During 1989–1991, a measles 
resurgence occurred, with 53,685 reported cases resulting in an estimated 11,000 
hospitalizations and 123 reported measles-related deaths165. The resurgence started 
with school-based outbreaks mostly among vaccinated students, but the primary group 
affected was unvaccinated preschool-aged children living in poor urban areas in large 
cities. The changing measles epidemiology exposed an economic disparity in the 
burden of disease and inequity of vaccination coverage among communities. These 
findings led to legislation and sustained funding commitments to establish the national 
Vaccines for Children Program. By the mid-1990s, coverage with a first dose of a 
measles-containing vaccine (MCV1) among children 19–35 months of age reached 90%, 
and states enforced school requirements for vaccination. During 1990–1996, measles 
cases decreased from 27,786 to 508. Since 2000, measles is no longer endemic in the 
United States166,167 and was eliminated from the entire western hemisphere in 2002.

Following the elimination of endemic measles, measles virus (MeV) introduced into 
the United States by importation, primarily by unvaccinated US citizens returning from 
international travel, led to subsequent MeV transmission among clusters of 
under-vaccinated people living in the United States168. Estimated national coverage 
with the first dose of measles, mumps and rubella vaccine is 92%, but considerable 
variability in coverage exists among the 50 US states, in part owing to the increasing 
rates of vaccine exemption at school entry in some states169.
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