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INTRODUCTION
Building on the seminal two-process model of sleep regu-

lation,1,2 biomathematical models for the prediction of fatigue, 
behavioral alertness and performance during periods of sleep 
deprivation and/or circadian misalignment instantiate a homeo-
static process seeking to balance time asleep with time awake, 
and a circadian process seeking to place wakefulness during 
the day and sleep during the night.3 Such fatigue models 
have become useful tools in modern fatigue risk management 
systems.4 To capture the temporal dynamics of waking neurobe-
havioral performance across a wide range of sleep/wake sched-
ules, we recently introduced a new class of fatigue models, 
formulated in terms of coupled first-order ordinary differen-
tial equations (ODEs).5 A specific implementation of the new 
model class, using scheduled time in bed (TIB) as input, was 
calibrated and validated5 with large datasets of neurobehavioral 
performance from laboratory-based dose-response studies of 
sleep loss.6,7

The dynamics of this new fatigue model5 indicated that prior 
sleep history modulates the homeostatic equilibrium state 
for sleep/wake regulation,8,9 and therefore the magnitude of 
the effect of subsequent sleep restriction on neurobehavioral 
performance.10 This prediction has since been corroborated 
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experimentally.11,12 The dependence on sleep history of the 
effects of sleep loss implies that sleep homeostatic effects 
on performance show integration of both chronic and acute 
sleep loss over time and should be modeled with (at least) two 
state variables. In our model,5 the state variables are p repre-
senting performance impairment over time (hours to days), 
and u modulating the sleep homeostatic equilibrium over time 
(days to weeks). The interplay of these two state variables in 
the model exhibits a bifurcation: for daily scheduled amounts 
of wakefulness less than a critical threshold estimated to be 
20.2 h (i.e., more than 3.8 h TIB per day), performance defi-
cits are predicted to converge across days to an asymptotically 
stable state of equilibrium; whereas for daily wakefulness 
extended beyond this critical threshold, performance deficits 
are predicted to escalate through divergence from an unstable 
state of equilibrium.5 This provides a unified explanation 
for the experimentally observed, differential dynamics of 
neurobehavioral performance under conditions of total sleep 
deprivation versus sustained nocturnal sleep restriction.7,13

The general mathematical framework of our published 
model5 focused primarily on the temporal dynamics between 
sleep/wake cycles (i.e., across days). The dynamics of waking 
neurobehavioral performance within sleep/wake cycles are 
driven by an emergent property involving nonlinear interac-
tion between the homeostatic process described by the homo-
geneous part of the differential equations and the circadian 
process encompassed in the non-homogeneous part.14-16 It was 
shown that as long as the non-homogeneous part contains only 
oscillatory functions such as circadian rhythm, the dynamics 
across sleep/wake cycles do not depend on it. Recognizing 
this property, a detailed examination of the non-homoge-
neous part was left to be addressed in follow-up research.5
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Inspired by the significant contributions of other groups to 
fatigue modeling,2,17-23 we present the results of this follow-up 
research. Dropping the constraint for the non-homogeneous 
part to contain only oscillatory functions, we generalized the 
applicability of our model to also include night shift sched-
ules and nap sleep scenarios. This was accomplished without 
increasing the net number of model parameters, by introducing 
time-dependence in the amplitude of the circadian modulation 
of neurobehavioral performance.

METHODS

Model Reformulation
The ODE system modeling neurobehavioral perfor-

mance during wakefulness and (notionally) during sleep 
is given by Eqs. (1) in Table 1 (cf. Eqs. (9), (21) and (26) 
in ref. 5). These equations describe the two state variables 
p and u. The first state variable, p, represents the primary 
outcome variable, which denotes predicted performance 
impairment. This variable rises in a saturating exponen-
tial manner towards an upper asymptote during wakeful-
ness and falls exponentially towards a lower asymptote 
during sleep, while being modulated continuously by 
circadian rhythm. The second state variable, u, represents 
a slow dynamic process that causes allostatic modula-
tion of p over time (days to weeks). Specifically, during 
wakefulness u produces a slow exponential increase of 
the asymptote towards which p rises, and during sleep u 
produces a slow exponential decrease of the asymptote 
towards which p falls.

In Eqs. (1) in Table 1, the parameters α and σ in 
the homogeneous part of the ODE system govern the 
homeostatic changes in p and u and their interaction 
during wakefulness and sleep, respectively. The func-
tion c is a skewed sinusoidal (i.e., 5-harmonic oscilla-
tory) function representing the circadian process of the 
two-process model.24 In the model formulation of Eqs. 
(1), c is scaled by κ, offset by µ, and shifted in time by 
φ (see footnote of Table 1). Also, note that u is offset by 
a constant δ (not explicitly shown) during wakefulness 
compared to sleep5 to distinguish the upper and lower 
asymptotes to which p rises and falls, resulting in a 
discontinuity in the model at each sleep/wake and wake/
sleep transition.

Without changing any aspect of the model, Eqs. (1) 
can be written as a coupled non-homogeneous first-order 
ODE system for p (see supplemental material, section 1), 
which is given in Eqs. (2) and (3) in Table 1 (where the 
subscripts “w” and “s” stand for wakefulness and sleep, 
respectively). The parameters in this model formulation 
are described in Table 2. The functions gw and gs are 
bounded, and are described in more detail in the next 
section. In the formulation of Eqs. (2) and (3), both p and 
u are continuous over time across wake/sleep and sleep/
wake transitions, removing the discontinuity embedded 
in Eqs. (1). Note that Eqs. (2) in Table 1 can be reduced 
to the original homeostatic process of the two-process 
model24 by setting αw = −1/τr, αs = −1/τd, βw = 0, βs = 0, 
gw = −αw, and gs = 0.

As briefly discussed above, the model exhibits a 
bifurcation when comparing daily scheduled wakefulness 
greater versus smaller than a critical threshold. This critical 
threshold is given by Ac = Wc / T = ηs / (ηs – ηw). The published 
value for Wc is 20.2 h for a day length T of 24 h,5 such that 
Ac = 0.84. Postulating that this bifurcation is a generalizable 
neurobiological property with constant value of Ac, it follows 
that ηs can be derived from ηw through Eq. (4) in Table 1. 
This reduces the number of free parameters by one without 
changing the model.

Table 1—Biomathematical model equations. Eqs. (1) represent the earlier model 
version,5 and Eqs. (2)-(7) represent the present reformulation and update of the 
model
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where time is represented by t (expressed in hours); τ = 24 h; the values of A and 
a1 through a5 are given in ref. 24; θ = 12.7 h is taken from ref. 5; and t0 = 8.6 h is 
taken from ref. 24.



SLEEP, Vol. 36, No. 12, 2013 1989 Mathematical Model of Fatigue and Performance—McCauley et al

Improved Circadian Dynamics
The functions gw and gs in Eqs. (2) in Table 1 are the main 

focus of this paper. They represent the non-homogeneous part 
of the ODE system, which includes circadian rhythm. Recent 
laboratory studies, in particular from simulated shift work 
schedules,25 suggested that improvement was needed in the 
dynamics of the non-homogeneous part to better track circadian 
influences on performance.

In Eqs. (5) in Table 1 we introduce minor, yet important, 
changes in the mathematical form for the non-homogeneous 
part. Here the circadian process is represented by the function c(t) 
given in Eq. (6), with τ = 24 h representing the circadian period 
and time being denoted by t (expressed in hours). By including 
the term αs βs / ηs, Eq. (5b) is formulated such that performance 
impairment p in Eq. (2b) tends to zero for increasing sleep dura-
tion (see supplemental material, section 2). This constrains the 
model to converge to zero PVT lapses under the hypothetical 
condition of infinite sleep duration, as should theoretically be 
the case, and helps to improve the estimation of initial values 
for studies with different amounts of baseline sleep.

To capture findings that sleep/wake state moderates the elec-
trophysiological activity level of the circadian pacemaker26 and 
that the circadian modulation of neurobehavioral performance 
is small in well-rested individuals and larger in sleep-deprived 
individuals,16,27 the time-dependent function κ in Eqs. (5) modu-
lates the amplitude of the circadian process as a function of 
sleep/wake state. The function is specified in Eqs. (7) in Table 
1, and produces a sigmoidal rise in circadian amplitude during 
wakefulness and an exponential fall during sleep. In future 
work, this dynamic behavior may be further refined to include 
a limit-cycle oscillator, in agreement with published biomath-
ematical models of the human circadian pacemaker,28 but this is 
not needed for the present purposes.

Datasets
Using data from previously published studies, we compiled 

two large datasets. The first, comprised of studies A1-A3, was 
used for estimation of the model parameters (i.e., for model 
calibration). The second, comprised of studies B1-B3, was used 
for model validation.

Study A1
47 healthy young adults were subjected to 1 of 4 different 

laboratory sleep deprivation protocols.7 Each protocol began 
with several baseline days involving 8 h TIB. Subsequently, 
13 subjects were kept awake for 3 days continuously (i.e., 0 h 
TIB), for a total of 88 h of total sleep deprivation. Afterwards, 
they received varied amounts of recovery sleep (not consid-
ered here). The other 34 subjects underwent 1 of 3 doses of 
sustained sleep restriction for 14 consecutive days, followed by 
2 recovery days with 8 h TIB. The sleep restriction schedule 
involved 4 h TIB per day for 13 subjects; 6 h TIB per day for 
another 13 subjects; and 8 h TIB per day for the remaining 
8 subjects (control condition). Awakening was scheduled at 
07:30 for every sleep period.

Performance on a 10-minute psychomotor vigilance test 
(PVT)29,30 was tested every 2 h, starting at 07:30, during sched-
uled waking periods. The first 2 test bouts of each waking period 
were omitted in order to avoid confounds from sleep inertia.31

Study A2
27 healthy young adults participated in a laboratory study of 

simulated shift work.25 Thirteen subjects were randomized to a 
night shift schedule, which began with a baseline day with 10 h 
TIB (22:00-08:00) and a subsequent prophylactic nap of 5 h 
TIB (15:00-20:00). Subjects were then on a night shift schedule 
for 5 days, with diurnal sleep of 10 h TIB (10:00-20:00) after 
the first 4 shifts and a transition nap of 5 h TIB (10:00-15:00) 
after the last. The transition nap commenced a 34 h “restart” or 
recycling break which also included a nocturnal sleep period 
of 10 h TIB (22:00-08:00) and a prophylactic nap of 5 h TIB 
(15:00-20:00). Subjects were then on a night shift schedule 
again for 5 days, which was identical to the first 5 days on night 
shift and ended with a transition nap of 5 h TIB (10:00-15:00). 
They subsequently had a final recovery sleep period of 10 h TIB 
(22:00-08:00).

The other 14 subjects in this study were randomized to a day 
shift schedule (control condition), which was equivalent to the 
night shift schedule but involved nocturnal sleep with 10 h TIB 
(22:00-08:00) every day and no napping. The second day in the 
laboratory was considered a rest day, not a shift day. Cumulative 
TIB during the study was identical between the 2 conditions.

In both conditions, performance on the 10-min PVT was 
tested before and after a 30-min session on a driving simu-
lator occurring every 3 h during the baseline day (practice) and 
during each of the shift days. Only the pre-driving PVT bouts 
on the shift days are considered here—4 bouts daily starting 
at 21:00 or 22:00 (randomized over subjects) in the night shift 
condition, and at 09:00 or 10:00 (randomized over subjects) in 
the day shift condition. PVT performance was also tested once 
every 3 h during the first 5 h after baseline sleep (at 09:30 and 
12:30), during scheduled wakefulness in the “restart” break (at 
09:30, 12:30, 16:30, and 19:30), and after the final recovery 
sleep period (at 09:30 and 12:30). Sleep inertia was not an 
issue, as there was no significant sleep loss25 and no test bout 
occurred close to awakening.

Study A3
90 healthy young adults were subjected to one of 18 different 

laboratory sleep restriction protocols.32 Each protocol began 
with 2 baseline days involving 8.2 h TIB (21:54-06:06). 
Subjects were then randomly assigned to one of 18 sleep restric-
tion conditions, each involving a specific sleep regimen that 
was maintained for 10 consecutive days, the first 8 of which 
had sufficiently complete data to be considered here. The sleep 
regimen involved one of four nocturnal sleep durations: 8.2 h 
TIB (control condition), 6.2 h TIB, 5.2 h TIB, or 4.2 h TIB 
(all centered around 02:00), of which the 3 shorter ones were 
followed by one of 7 diurnal nap durations: 2.4, 2.0, 1.6, 1.2, 
0.8, or 0.4 h TIB (all centered around 14:00) or 0.0 h TIB (i.e., 
no nap). The 2.4-h nap duration was paired only with the 4.2-h 
nocturnal sleep duration; the 2.0-h and 1.6-h nap durations were 
paired only with the 5.2-h and 4.2-h nocturnal sleep durations. 
Each of the 18 conditions had 5 subjects, which sufficed for the 
study’s original objective to investigate dose-response relation-
ships across different sleep regimens.

Performance on the 10-min PVT was tested every 2 h during 
scheduled wakefulness, starting at 04:10, 06:10, or 08:10, 
depending on the study condition. Focusing on test bouts that 
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the conditions had in common and that were not potentially 
confounded by sleep inertia, only tests administered at 08:10, 
10:10, 12:10, 16:10, 18:10, and 20:10 were considered.

Study B1
Twelve healthy young adults participated in a laboratory 

study of total sleep deprivation.33 The study involved 2 baseline 
days each with 10 h TIB (22:00-08:00), then 62 h of sustained 
wakefulness, and then 2 recovery days each with 10 h TIB 
(22:00-08:00).

Performance on the 10-min PVT was tested every 2 h, 
starting at 09:30, throughout most of scheduled wakefulness. 
The first test bout of each waking period was omitted in order 
to avoid confounds from sleep inertia. Note that the presence of 
recovery days distinguishes the data of this study from the data 
of the total sleep deprivation condition in study A1.

Study B2
Fifteen healthy young adults were subjected to a laboratory 

study condition identical to the 88 h sustained wakefulness 
condition in study A1, except they were given a nap of 2 h TIB 
every 12 h during the 88 h period.34 Nap start times alternated 
between 02:45 and 14:45.

Performance on the 10-min PVT was tested every 2 h, 
starting at 07:30, during scheduled wakefulness. The first 2 test 
bouts after each awakening were omitted in order to avoid 
confounds from sleep inertia.

Study B3
As part of a larger study, 142 healthy young adults were 

involved in a laboratory sleep restriction protocol similar to the 
4 h TIB condition of study A1.35 The study began with 2 baseline 
days each with 10 h TIB (22:00-08:00). Subsequently, subjects 
were given 4 h TIB (04:00-08:00) each day for 5 consecutive 
days. They were then randomized to one of 6 doses of sleep, 
all ending at 08:00 the next day: 0 h TIB (13 subjects), 2 h TIB 
(27 subjects), 4 h TIB (29 subjects), 6 h TIB (25 subjects), 8 h 
TIB (21 subjects), or 10 h TIB (27 subjects).

Performance on the 10-min PVT was tested every 2 h, starting 
at 08:00, during scheduled wakefulness. Data points through to 
20:00 on the day after the night with the randomized sleep dose 

were considered. The first 2 test bouts after each awakening 
were omitted in order to avoid confounds from sleep inertia.

Model Evaluation
For each PVT test bout of every subject in studies A1-A3 and 

B1-B3, the number of lapses (reaction times > 500 ms)36 was 
assessed. Day 0 was defined as the study day leading into the 
night when sleep loss first began, or the equivalent day for 
control conditions without sleep loss. Starting with day 0, the 
number of lapses was averaged over subjects by time point, 
separately for each condition in each study. The number of 
data points was 427 in study A1 (4 conditions), 96 in study A2 
(2 conditions), 972 in study A3 (18 conditions), 31 in study B1 
(1 condition), 28 in study B2 (1 condition), and 317 in study B3 
(6 conditions).

Model parameter estimates and their standard errors (indi-
cating the magnitude of the uncertainty in the parameter esti-
mates) were obtained using the data from studies A1-A3 and 
applying state-of-the-art Metropolis-Hastings-type Markov 
chain Monte Carlo (MCMC) fitting37,38 (with a chain length of 
10,000). We posited that βw = βs and λw = −λs, leaving 9 free 
parameters to be estimated (see Table 2). For determining 
the initial values, we assumed steady state for the sleep/wake 
schedule of the baseline days in each study (see supplemental 
material, section 3).

For studies A1-A3 (calibration) and B1-B3 (validation), 
model goodness-of-fit was quantified using root mean square 
errors (RMSE) and explained variance. Statistical compari-
sons with our earlier model version5 were made using Akaike’s 
Information Criterion (AIC).

RESULTS
Table 2 and Figures 1 and 2 show the results of parameter 

estimation for the model, Eqs. (2)-(7), based on the data from 
studies A1-A3. Judging by the standard errors (Table 2), all 
parameters are well defined by the data. This is largely corrobo-
rated by their pairwise correlations (see supplemental material, 
section 4).

The estimated values for αw and αs are comparable to the 
corresponding parameters in the two-process model of sleep 
regulation,24 −τr

-1 = −1 / 18.2 = −0.055 and −τd
-1 = −1 / 4.2 = 

Table 2—Model parameters and their constraints and interpretations, as well as their estimates and standard errors as obtained using MCMC fitting to the 
data of studies A1-A3

Parameter Constraint Interpretation Estimate Standard Error 
αw < 0 homeostatic build-up rate for p during wakefulness −0.028 / h 0.003 / h
αs < 0 homeostatic dissipation rate for p during sleep −0.26 / h 0.04 / h
βw = βs ≤ 0 scaling factor for impact of u −0.26 / h 0.01 / h
ηw > 0 build-up rate for u during wakefulness 0.0074 / h 0.0004 / h
µw none offset of circadian process during wakefulness 0.33 0.02
µs none offset of circadian process during sleep −1.5 0.3
φ none phase position of circadian process 21.2 h 0.2 h
λw = −λs > 0 rate constant for modulation of circadian amplitude 0.49 / h 0.08 / h
ξ > 0 asymptotic maximum (supremum) of amplitude of 

circadian modulation
1.09 / h 0.04 / h

Note that ηs is defined in Eq. (4) in Table 1, and that φ is modulo τ = 24 h.
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−0.24. The estimate for the parameter ηw, which does not exist 
in the two-process model, is nearly identical to the equivalent 
parameter in our earlier model version,5 α22 = 0.00743. The esti-
mate for φ is also nearly identical to its equivalent in the earlier 
model,5 namely θ + t0 = 12.7 + 8.6 = 21.3 (with θ = 12.7 taken 
from ref. 5 and t0 = 8.6 defined in ref. 24). The other param-
eters in Table 2 are not directly comparable to either the two-
process model parameters or the parameters in our earlier 
model version. Note that the new model version presented in 
this paper has only 9 free parameters (see Table 2), whereas the 
earlier model version had 10.

Figure 1 shows the data of the 4 conditions of study A1 (top 
panels), which had also been used for the calibration of our 
earlier model version,5 and the predictions of the new version of 
the model (bottom panels). The earlier model captured as much 
as 73.2% of the variance (RMSE: 3.06), leaving little room for 
improvement (see supplemental material, section 5). The new 
model, calibrated to fit the collective data of studies A1-A3, 
still captures almost the same amount of variance in study A1, 
namely 71.6% (RMSE: 3.15). Goodness-of-fit for sustained 
sleep restriction and recovery days, which was the main scien-
tific advance achieved with the earlier model, is preserved in 
the new model (Figure 1, right panels).

Figure 2 shows the data and the predictions of the new model 
for the two conditions of study A2, which compares a night shift 
scenario (left panel) to a day shift scenario (right panel). The 
observed performance impairment in this study was remarkably 
low even in the night shift condition.25 Nonetheless, although 
the model slightly overpredicts the magnitude of impairment, 
it captures the relative dynamics in the 2 conditions well. The 
dynamics are also well captured in the nap sleep conditions of 
study A3 (not shown in a figure because there were 18 different 
conditions; but see supplemental material, section 6).

For study A2, the new model represents a notable improve-
ment over our earlier model version (see supplement material, 
section 5). The earlier model would have captured only 15.5% 
of the variance in study A2, but the new model captures 81.9% 
of the variance. For study A3, the new model likewise represents 
an improvement. The earlier model would have mispredicted 
the data and captured none of the variance in study A3, but the 
new model captures 34.9% of the variance. Indeed, considering 
studies A1-A3 together, the new model outperforms our earlier 
model version significantly. Whereas the earlier model would 
have captured 34.2% of the overall variance (RMSE: 4.08) 
in dataset A, the new model captures 60.0% of the variance 
(RMSE: 3.18, smaller is better).

It should be noted that besides model goodness-of-fit, 
variance explained and RMSE also reflect the magnitude of 
the variance in the experimental data (as affected, e.g., by 
the range of sleep loss and the circadian variability) and the 
signal-to-noise ratio. Even so, the improvement of the new 
model over the earlier model is confirmed by the AIC values, 
which are 4222.0 for the earlier model versus 3477.8 for the 
new model (smaller is better). For comparison, a null model 
predicting a straight line at the grand mean (predicting 0% of 
the variance) would have an AIC of 4830.3. AIC values cannot 
be interpreted in an absolute sense, but the relative improve-
ment achieved with the new model version is substantial by 
any standard.

Figures 3 and 4 show the results of validation of the new 
model using the data from studies B1-B3. In study B1 (Figure 3, 
left panel), there is slight underprediction of the highest levels 
of impairment during total sleep deprivation (as expected based 
on metric nonlinearity39), and slight overprediction of residual 
impairment following recovery. Peak impairment in the first 
2 days of study B2 is also overpredicted (Figure 3, middle 
panel), which could potentially be overcome by dropping the 
assumption that λw = −λs (but more data would be needed to 
support the ensuing increase in the number of parameters). 
Regardless, the model does capture the relative dynamics 
within and between studies. Furthermore, the model predicts 
the recovery sleep dose-response curve for study B3 particu-
larly well (Figure 4).

Figure 1—Performance observations for study A1 and predictions by the 
new version of the biomathematical model. Left panels show the 88-h 
total sleep deprivation condition; right panels show the conditions with 
14 days of sustained sleep restriction followed by 2 recovery days. The 
sleep restriction conditions involved 8 h TIB per day (green), 6 h TIB per 
day (yellow), and 4 h TIB per day (red).7 Top panels: condition-average 
data by measurement time point. Bottom panels: predictions by the new 
model version. Gray bars indicate scheduled sleep periods. Tick marks 
indicate midnight of each day. Day 0 is the last baseline day (shown 
starting at scheduled awakening). Note that performance impairment in 
the sleep restriction condition with 6 h TIB per day (yellow) is relatively 
poorly predicted by the model because the condition-average impairment 
observed for this condition is inflated by a few outliers.7
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Overall, the model performs well on the validation dataset, 
relatively closely matching the data of all 3 studies B1-B3. 
The model captures 75.1% of the variance in this dataset, 
although that number should be interpreted carefully—the 
model parameters are not re-estimated to fit the validation data 
and explained variance is then not a reliable statistic.40 The 

excellent goodness-of-fit is confirmed 
by the RMSE though, which is 2.29 and 
near theoretical lower bounds derived in 
earlier fatigue model validation efforts.40

DISCUSSION
Here we refined our previously 

published model5 on the temporal 
dynamics of neurobehavioral perfor-
mance under conditions of sleep loss 
and circadian misalignment. A key 
feature retained from the earlier model 
version is the instantiation of a slow 
process (in the order of days to weeks) 
that modulates the waking neurobehav-
ioral expression of sleep/wake homeo-
stasis as a function of the prevailing 

sleep/wake ratio,5 with prior sleep insufficiency increasing 
the sensitivity to neurobehavioral impairment during subse-
quent sleep deprivation. The dynamics of the model indicate 
that prior sleep history modulates the homeostatic equilibrium 
state for sleep/wake regulation allostatically.8,9 This implies 
that “optimal” neurobehavioral functioning is a moving target 
depending on prior sleep history6 as has been confirmed experi-
mentally.11,12,41,42 Such dynamics could potentially explain the 
discrepancy of temporal profiles in sustained sleep restriction 
scenarios7 between objective measurements of neurobehav-
ioral performance and self-reports of subjective sleepiness. 
That is, the former are typically expressed in terms of absolute 
impairment and therefore display the effects of both short-term 
homeostatic and longer-term allostatic regulation, whereas the 
latter seem to be dominated by acute change and may primarily 
reflect short-term homeostatic regulation in response to devia-
tions from the homeostatic equilibrium state.

The main refinement introduced in the present paper concerns 
the circadian modulation of neurobehavioral performance, for 
which we improved the dynamics and the prediction accuracy 
without increasing the total number of model parameters. To 
better capture the nonlinear interaction between circadian and 
homeostatic influences on neurobehavioral performance,14,15 
where the circadian modulation of neurobehavioral perfor-
mance is small in well-rested individuals and larger in sleep-
deprived individuals,16,43 we implemented a sigmoidal rise in 
circadian amplitude during wakefulness and an exponential 
decline in circadian amplitude during sleep. The introduction of 
sigmoidal time-dependence for the circadian amplitude during 
wakefulness generalizes the scope of the model to include night 
shift schedules and nap sleep scenarios. Moreover, through the 
nonlinear interaction between circadian and homeostatic influ-
ences on neurobehavioral performance, the new model also 
produces good predictions for the neurobehavioral effects of 
recovery sleep following sustained sleep restriction (Figure 4).

The time it takes for the circadian amplitude to rise to and 
saturate near its asymptotic maximum during wakefulness, 
when initially well-rested, is estimated to be about 20 h (as 
derived by entering the estimate for λw in Table 2 into Eq. (7a) 
in Table 1). Sigmoidal dynamics for waking neurobehavioral 
functioning have been proposed previously,44 with similar 
estimated saturation time, but were presumed to be associated 

Figure 2—Performance observations and biomathematical model predictions for study A2. The left 
panel shows the night shift condition; the right panel shows the day shift condition.25 Black: condition-
average data by measurement time point. Blue: predictions by the new model. Gray bars indicate 
scheduled sleep periods. Tick marks indicate midnight of each day. Day 0 is the day leading into the 
first simulated shift for the night shift condition or the equivalent day for the day shift condition (shown 
starting at scheduled awakening). Although the model slightly overpredicts the magnitude of impairment 
in the observations, it captures the relative dynamics in the two study conditions well.

Figure 3—Performance observations and biomathematical model 
predictions for validation studies B1-B3. The left panel shows 62 h of total 
sleep deprivation followed by 2 recovery days (study B1).33 The middle 
panel shows 88 h of extended wakefulness intervened by a 2-h nap 
opportunity every 12 h (study B2).34 The right panel shows sustained sleep 
restriction to 4 h TIB per day for 5 days (the first 5 intervention days of 
study B3).35 Black: study-average data by measurement time point. Blue: 
predictions by the new model. Gray bars indicate scheduled sleep periods. 
Tick marks indicate midnight of each study day. Day 0 is the last study day 
without prior sleep loss in each of the studies (shown starting at scheduled 
awakening). In study B1 (left panel), there is slight underprediction of 
the highest levels of impairment during total sleep deprivation and slight 
overprediction of residual impairment following recovery. In study B2 
(middle panel), peak impairment in the first two days is overpredicted as 
well. Goodness-of-fit for study B3 (right panel) is high. Overall, the model 
captures the relative dynamics within and between studies well.
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principally with a decline in homeostatic influence on waking 
neurobehavioral performance.

Goodness-of-fit statistics for both the calibration dataset 
and the independent validation dataset indicate that prediction 
accuracy across the extended scope of the new model is high. 
The model is grounded in mathematical characterization of the 
emergent dynamic behavior5 and in experimental studies and 
theory of the regulatory neurobiology. The recently proposed 
ATP-cytokine-adenosine hypothesis45,46—the first theoretical 
advance to offer a neurobiological explanation for the cumu-
lative deficits associated with sustained sleep restriction—has 
suggested specific connections between the time-dependent 
variables of our model and the neurobiology of sleep and 
wakefulness. These hypothesized connections are shown in 
Figure 5 (black ovals), placed in the framework of a broader 
theory proposing that sleep is fundamentally use-dependent 
and local to cortical columns and other neuronal assemblies.47-49 
Within that framework, we posit that p(t) corresponds to extra-
cellular adenosine production rate in neuronal assemblies 
critically involved in task performance,49 which may be propor-
tional to the probability of local sleep and thereby underlie 
performance variability and impairment.50 We posit that u(t) 
reflects the regulation of post-synaptic adenosine receptor 
density,48 changes in which may embody allostatic control of 
the homeostatic equilibrium for sleep/wake regulation.9 We 
posit that c(t) represents global modulation of basal synaptic 
activity,51 which may be driven by peripheral oscillators in the 
brain52 orchestrated by the circadian pacemaker in the supra-
chiasmatic nuclei (SCN).53 Lastly, we posit that κ(t) captures 
the influence of sleep homeostasis on SCN activity,26 as may 
be induced by sleep regulatory substances and subcortical sleep 
regulatory circuits49 (see Figure 5).

As the underlying neurobiology is increasingly well under-
stood, confidence grows that predictions of our model gener-
alize to sleep/wake/work scenarios not already included in the 
calibration and validation datasets.54 Some specific predictions 
regarding the dynamics of neurobehavioral performance, in 
scenarios for which carefully controlled studies have yet to be 
published, are worth discussing. Consider, for example, the 
dynamics of neurobehavioral performance impairment across 
days of sustained sleep restriction when the restricted sleep is 
placed during the day. It could be expected that the build-up 
of neurobehavioral deficits across days of sleep restriction is 
accelerated under such conditions of circadian misalignment. 
However, that is not what the model predicts—see Figure 6. 
Although neurobehavioral performance is worse overall when 
sleep is placed during the day and wakefulness during the night, 
the predicted rate for the build-up of impairment is essentially 
the same regardless of the circadian placement of the restricted 
sleep. Preliminary analyses of laboratory data addressing this 
issue appear to tentatively confirm this.55

The situation seems more complex following a “restart” 
(recycling) break with nocturnal recovery sleep—see Figure 7. 
Initially, the nocturnal recovery sleep is predicted to restore 
degraded performance more when prior restricted sleep is 
placed during the day (red trajectory) than during the night 
(blue trajectory), to about the same absolute level of perfor-
mance. The relatively greater restorative benefit of nocturnal 
recovery sleep following restricted diurnal sleep appears to be 

short-lived, though—after a few days, predicted neurobehav-
ioral performance is again worse overall when sleep is placed 
during the day, and with the same predicted rate for the build-up 
of impairment. In contrast, nocturnal recovery sleep immedi-
ately following a short period of acute sleep loss (with only a 
brief nap; black trajectory) is predicted to have a relatively large 
and more enduring restorative effect. The trajectories in the 
figure suggest that sustained circadian misalignment, similar to 
sustained sleep restriction, allostatically modulates the homeo-
static equilibrium for sleep/wake regulation.

The present version of our model may be suitable for use 
in model-based fatigue risk management,4 comparable to if 
not more precise than other fatigue and performance models56 
currently in use for that purpose. Our model is distinct from 
other models in this context in that it uses time in bed (TIB) 
as a basis for predicting waking neurobehavioral function, and 
does not require information about or estimation of actual phys-
iological sleep obtained. That is, homeostatic, circadian, and 
allostatic effects on sleep efficiency are implicitly accounted 
for in the predictions for neurobehavioral performance through 
the parameter estimates of the model. It should be noted that 
external factors that could markedly reduce sleep efficiency 
(such as environmental noise) cannot be accounted for this 
way unless actual sleep obtained is measured (e.g., through 
actigraphy). A reparameterization of the model to use measured 
sleep times as a basis for prediction is possible, and will be 
considered in the future.

Even though our model predicts performance impairment 
quantitatively, model predictions should generally not be 
interpreted as absolute measures of impairment, especially 

Figure 4—Dose-response predictions for the effectiveness of a single 
recovery night following 5 days of sleep restriction to 4 h TIB. The abscissa 
shows the sleep dose on the sixth day of study B3.35 The ordinate shows 
PVT lapses averaged across hours 2-14 of subsequent wakefulness 
(following awakening at 08:00). Black: unadjusted condition-specific 
averages (and standard error bars) as computed with mixed-effects 
ANOVA.59 Blue: predictions by the new model. The model predicts the 
overall dose-response curve well. Residual impairment following the 6 h 
TIB recovery dose is not well predicted, but the relevance of this outlier is 
uncertain given that the empirical data for this condition do not follow the 
expected monotonic relationship between recovery sleep duration and 
residual impairment.35



SLEEP, Vol. 36, No. 12, 2013 1994 Mathematical Model of Fatigue and Performance—McCauley et al

Figure 5—Hypothesized connections between mathematical model variables and the neurobiology of sleep and wakefulness. The schematic is based on a 
theory of local, use-dependent sleep and provides speculative explanations of key phenomena of waking neurobehavioral impairment due to sleep loss, as 
follows49: (A) On a time scale in the order of milliseconds to seconds, information processing in a cortical column or other neuronal assembly associated with 
a given performance task triggers a biochemical cascade (red elements), which induces a sleep-like state locally. When the neuronal assembly is in the wake 
state and stimulated by input, it responds with synaptic transmission to process the input signal and generate corresponding output. The synaptic transmission 
is associated with release of adenosine triphosphate (ATP) into the extracellular space. Breakdown of extracellular ATP results in increased extracellular 
adenosine production, at a rate approximately proportional to the amount of synaptic transmission in response to stimulation (i.e., use-dependent). Binding 
of extracellular adenosine at adenosine (purine type 1) receptors promotes the neuronal assembly sleep-like state, during which the assembly’s synaptic 
transmission patterns are fundamentally altered. This functionally changes the contribution of the neuronal assembly to the coordinated response of the larger 
neuronal pathway involved in the performance task, causing degraded (delayed and/or impaired) information processing.48 As such, the local sleep-like state 
causes output variability, which leads to stochastic cognitive performance variability and thus neurobehavioral performance impairment.60 In this context, we 
posit that in our model, p(t) corresponds to extracellular adenosine production rate. (B) On a time scale of minutes to hours (blue elements), binding of ATP to 
purine type 2 X7 receptors45 results in release of sleep regulatory substances (SRSs) such as tumor necrosis factor (TNF) and interleukin-1 (IL1).46 The SRSs 
mediate neuronal plasticity, and promote the neuronal assembly sleep-like state through growth hormone releasing hormone (GHRH) mediated activation of 
GABAergic neurons.48 These GABAergic neurons inhibit glutamatergic excitatory neurons, which prevents the glutamatergic neurons from promoting the local 
wake state. The SRSs together with adenosine also influence regional blood supply and thereby oxygen and metabolic supply. As a consequence of these 
SRS effects, the probability of entering the sleep-like state increases in a time- and use-dependent manner, giving rise at the cognitive level to habituation 
and the time-on-task effect. A rest break (or switching to a task that does not intensively use the same neuronal pathway) allows SRS and adenosine levels 
to decay, resetting the time-on-task effect.60 (C) On a time scale of hours to days, basal synaptic activity in neuronal assemblies throughout the brain, and 
the associated release of ATP into the extracellular space, leads to a global build-up of SRSs over time awake. This is modulated by the suprachiasmatic 
nuclei (SCN), which orchestrate circadian rhythms in the cellular machinery and neuronal activation across the brain.52 As such, time awake and time of day 
independently and in interaction amplify use-dependent neurobehavioral impairment and the magnitude of the time-on-task effect.61 Sustained exposure to 
wake extension and repeated intensive use of neuronal assemblies over days to weeks cause the SRSs to accumulate and, via their receptors and nuclear 
factor κB, increase the density of post-synaptic adenosine A1 (purine type 1) receptors.62 This leads to cumulative performance deficits across days of 
chronic sleep restriction and allostatic shifting of the homeostatic equilibrium for sleep/wake regulation. Conversely, across multiple days of recovery sleep 
the adenosine receptors downregulate, the homeostatic equilibrium point shifts back, and baseline performance capability is gradually restored.5 We posit 
that in our model, u(t) reflects adenosine receptor density, and c(t) represents global circadian modulation by the SCN. (D) Subcortical circuits involved 
in the coordination of whole-brain sleep (green elements) are influenced by the collective neuronal assembly states, integrated across the brain through 
mechanisms involving the SRSs.63,64 The subcortical circuits concerned include the SCN, as well as the ventrolateral preoptic nucleus (VLPO), which can 
deactivate the wake-promoting (e.g., glutamatergic) neurons of the reticular activating system and other systems such as the cholinergic networks of the 
basal forebrain.65 These subcortical systems thus nycthemerally and homeostatically balance and consolidate sleep/wake states globally, seeking to induce 
whole-brain sleep to prevent interaction with the environment when too many neuronal assemblies would otherwise be in the local sleep-like state. The global 
sleep state allows SRS concentrations to be restored, and adenosine receptors to be gradually downregulated, in a coordinated manner across all neuronal 
assemblies. This counteracts the effects of prior time awake both globally and locally.49 We posit that in our model, κ(t) captures the homeostatic influence of 
the collective neuronal assembly states, as integrated across the brain through SRSs, on SCN activity. Figure adapted from ref. 60 with permission.
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when used in sleep/wake scenario evaluation and model-
based fatigue risk management.4 One reason is that there is 
increasing recognition of quantitative and qualitative differ-
ences in the effects of sleep loss across different tasks.57,58 
This issue can be partially addressed by building on a primary 
strength of fatigue and performance models, which is their 
focus on the temporal dynamics of neurobehavioral impair-
ment. Model predictions can accordingly be used to compare 
the relative impairment associated with different sleep/wake 
schedules (see footnote following this section)—and select 
a schedule that is comparatively favorable with respect to 
fatigue and other operationally relevant criteria. Following 
the recent promulgation by the U.S. Federal Aviation Admin-
istration of a new rule on duty and rest requirements for flight 
crew members in commercial aviation (14 Code of Federal 
Regulations Parts 117, 119, and 121), which contains a provi-
sion for requests for exceptions from duty hour restrictions 
based on safety-relevant evidence including predictions from 
fatigue and performance models, the stakes are high to further 
develop model-based fatigue risk management methodology 
along these lines.4

While the work presented here constitutes a consider-
able expansion of the scope of our model, further improve-
ments will be pursued. Data from additional studies on the 
effectiveness of recovery sleep that may become available in 
the future will be used to re-estimate the parameters of the 
model. In doing so, the correlation among some of the model 
parameters (see supplemental material, section 4) will likely 

be significantly reduced. Prediction of the effects of sleep 
inertia on neurobehavioral performance will be included in 
the model pending the better development of a theoretical 
basis for the phenomenon. Finally, there is a need for addi-
tional improvements to the circadian component of the model, 
particularly with regard to phase adjustments after circadian 
desynchronization. Although informative data on this issue 
relevant to real-world scenarios are scarce, it is a priority for 
our next model development efforts. Until then, the model in 
its present form should not be applied to scenarios involving 
transmeridian travel or otherwise systematically shifted 
circadian rhythmicity.

FOOTNOTE
Schedule-based comparisons of predicted fatigue by time 

point and by time spent above some threshold level4 are 
nominally invariant to what measure of fatigue is considered, 
provided a monotonic relationship between different fatigue 
measures may be assumed. Caution is warranted if schedule-
based comparisons rely on temporal integration of predicted 
fatigue67 (e.g., average or area under the curve), because 
outcomes may then vary depending on the fatigue measures 
considered if relationships between them are nonlinear. 

Figure 7—Model predictions for the effects of sustained sleep restriction 
comparing hypothetical schedules with nighttime versus daytime sleep 
and different sleep histories. The blue trajectory displays predicted 
performance (PVT lapses) for a scenario beginning with 5 days with 
4 h nocturnal sleep (TIB: 03:30-07:30) and ending with a recovery day 
with 12 h nocturnal sleep (TIB: 19:30-07:30) followed by 5 days with 4 h 
nocturnal sleep (TIB: 03:30-07:30). The black trajectory displays predicted 
performance for a scenario also ending with a recovery day with 12 h 
nocturnal sleep and 5 days with 4 h nocturnal sleep, but beginning with 
4 days with 8 h nocturnal sleep (TIB: 23:30-07:30) followed by a day with 
only a 1.5 h nap (TIB: 06:00-7:30). The red trajectory shows predicted 
performance for a scenario beginning with 5 days with 4 h diurnal sleep 
(TIB: 15:30-19:30) and ending with a recovery day with 12 h nocturnal 
sleep (TIB: 19:30-07:30) followed by 5 days with 4 h diurnal sleep (TIB: 
15:30-19:30), where circadian phase adjustment is assumed to be 
negligible. In all three scenarios, baseline sleep is assumed to involve 8 h 
TIB at night (23:30-07:30) for several days prior. Dots represent averages 
across the interval from 2 h to (up to) 12 h after scheduled awakening for 
each period of wakefulness. Bars indicate sleep periods.

Figure 6—Model predictions for the effects of sustained sleep restriction 
on neurobehavioral performance when wakefulness is placed during the 
night as compared to during the day. The blue trajectory displays predicted 
performance (PVT lapses) across days with 20 h diurnal wakefulness 
and 4 h nocturnal sleep (dark gray bars; TIB: 03:30-07:30). The red 
trajectory displays predicted performance across days with the restricted 
sleep periods shifted 12 h later, i.e., with 20 h nocturnal wakefulness and 
4 h diurnal sleep (light gray bars; TIB: 15:30-19:30). In both scenarios, 
baseline sleep is assumed to involve 8 h TIB at night (23:30-07:30) for 
several days prior. In agreement with preliminary laboratory findings,66 
circadian phase adjustment in the shifted scenario is assumed to be 
negligible. Circadian effects on sleep efficiency are accounted for in the 
model dynamics. Dots represent averages across the interval from 2 h to 
14 h after scheduled awakening for each period of wakefulness.
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SUPPLEMENTAL MATERIAL

1. Invariant reformulation of Eqs. (1) as a system of coupled 
non-homogeneous first-order ODEs
Reintroducing previously used notation where p and u are 
replaced by q and v and where wake/sleep cycles are indexed 
by n, we start with Eqs. (1) in the following form1:
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where tn denotes the beginning of scheduled wakefulness in 
the nth wake/sleep cycle, Wn is the duration of scheduled wake-
fulness in the nth cycle, Tn is the total duration of the nth cycle 
(such that tn+1 = tn + Tn), and γ = 0. Eqs. (S1) are linked within 
and across days by:
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The link between un(t) and vn(t) in Eqs. (S2) can be made 
continuous by setting γ = −σ22 δ in Eqs. (S1) and dropping δ 
from Eqs. (S2). However, the equation for dqn(t) / dt then has 
to be adjusted as follows:
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Normalizing un(t) and vn(t) through division by −σ22 δ and 
making a number of trivial parameter substitutions puts the 
model in the following form:
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which is equivalent to the form given in Eqs. (2) and (3).

2. Proof that performance impairment in Eq. (2b) tends to zero 
for increasing sleep duration
The solutions for Eqs. (7b) and (3b) with arbitrary initial 
conditions have the form:

teCt s
1)( λκ = , and (S5)

−1
s2

s)( −= ηη teCtu , (S6)

respectively. Substituting Eqs. (S5) and (S6) into Eq. (2b), and 
taking into account Eqs. (5b) and (6), we arrive at:
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where the non-homogeneous term is a linear combination of the 

functions te sη , te sλ , and 
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The solution of Eq. (S8) with arbitrary initial condition has the 
form:

)()( s
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where F(t) is a particular solution of the non-homogeneous Eq. 
(S8) which, under conditions αs ≠ βs and αs ≠ λs , is also a linear 

combination of te sη , te sλ , and 





 −

τ
φπλ te t 2sins . If αs = βs and/or

αs = λs , then F(t) also contains terms proportional to tte sη

and/or tte sλ . Since αs < 0, βs < 0 and λs < 0, each term on the 
right hand side of Eq. (S9) tends to zero as t → ∞, and thus 
limt → ∞ p(t) = 0. That is, p(t) tends to zero for increasing time 
asleep.

3. Initial values for the ODE system of Eqs. (2), (3) and (7)
For a wake/sleep schedule of constant wake duration W and 
constant day length T, where T = τ (i.e., circadian entrain-
ment), we assume steady state (of a periodic map with period 
T ). The initial values for p(t) and u(t) in Eqs. (2a) and (3a) at 
the onset of scheduled wakefulness t0 are then given by1:

[ ] FWtTtI
tu
tp −1

00
0

0 )()(
)(
)(

+Ψ+Φ−=






  (S10)

where )()()( 0
1 Wttt +=Φ -φφ ( ()()( 0

1 ttt -=Ψ ψψand  with














−=

t

tt

e

ee
t

w

ww

0
)( ww

ww

η

ηα

αη
βα

ψ , (S11a)














−=

t

tt

e

ee
t

s

ss

0
)( ss

ss

η

ηα

αη
βα

φ , (S11b)

and

( ) ( ) ( ) ( ) ( ) ( ) ( )
∫∫

+

+=

+

= 







++








++Φ=

Tt

Wts

Wt

ts

sg
sTt

sg
sWtTtF 0

0

0

0 10
s

0
w−1 -1

00 ϕϕψψ . (S12)



SLEEP, Vol. 36, No. 12, 2013 1997B Mathematical Model of Fatigue and Performance—McCauley et al

The corresponding initial value for κ(t) in Eq. (7a) is given by:
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Note that under the steady state (of the periodic map), the 
time-dependent trajectory for κ(t) is bounded and oscillatory, 
and thus the non-homogeneities given by Eqs. (5) are bounded 
and oscillatory and the integrals in Eq. (S12) are constant. 
Previously provided proofs2 about states of equilibrium, 
stability, and the bifurcation property of the model are there-
fore applicable to the present version of the model.

4. Pairwise correlations among the estimated model parameters
Figure S1 shows the one- and two-dimensional marginal 
probability distributions of the model parameters, obtained 
through MCMC, and gives the pairwise correlations among 

the estimated model parameters. While some correlation 
among model parameters is unavoidable in non-linear models, 
substantive correlations were found only among αs, βw and ηw. It 
suggests some potential redundancy in the model parameteriza-
tion given the data at hand, which may be resolvable with the 
inclusion of data from additional studies focusing on recovery 
sleep.

5. Predictions by the earlier version of the biomathematical 
model
In the publication on the earlier version of our biomathemat-
ical model,1 we focused primarily on the temporal dynamics 
between sleep/wake cycles (i.e., across days). Figure S2 shows 
the predictions of the earlier model version for study A1, which 
had also been used for the calibration of that model version. 
Comparison with the predictions of the new model version 

Figure S1—Approximate one- and two-dimensional marginal probability distributions of the model parameters as obtained with MCMC fitting. The red 
dots are pairs of parameter estimates from the MCMC chain. The blue curves over the clouds of red dots represent contours of the approximate 50% and 
95% reliability regions. The black curves anchored on the axes are the one-dimensional marginal distributions. Numbers in bold are correlation coefficients 
between pairs of parameter estimates as derived from the MCMC chain.
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(main paper, Figure 1, bottom panels) illustrates that goodness-
of-fit between sleep/wake cycles has been preserved from the 
earlier version to the new version of the model.

It was demonstrated that as long as the non-homogeneous 
part of the model contains only oscillatory functions such as 
circadian rhythm, the dynamics across sleep/wake cycles do not 
depend on it.1 A detailed examination of the non-homogeneous 
part of the earlier model version was left to be addressed in the 
present paper, and involved inclusion of additional calibration 
data sets such as those of study A2. The earlier model version 
was not meant to be used for the night shift schedule of study 
A2. For comparison with the predictions of the new model 
version, however, Figure S3 shows the predictions of the earlier 
model version for study A2. The magnitude of the changes 
within sleep/wake cycles in the night shift condition was much 
too large in the earlier model version; this has been fixed in the 
new model version by means of the time-dependent function 
κ, which modulates the amplitude of the circadian process as a 
function of sleep/wake state.

6. Dose response curve for build-up of 
impairment across days with restricted, 
split sleep
In study A3, a dose-response experi-
ment involving 18 different conditions 
with chronically restricted nocturnal 
sleep augmented with a diurnal nap, 
it was found that the rate of PVT 
performance degradation across days 
is primarily a function of total TIB 
per 24 h—in the range from 4.2 h to 
8.2 h—regardless of whether and how 
sleep is split between a nocturnal sleep 
period and a diurnal nap.3 Based on 
previously developed methodology 
for statistical modeling of changes 
in average performance impairment 

across days,4 the data of each condition were normalized to 
baseline and then fitted with a function β tθ, where t denotes 
time in days, θ is a curvature parameter, and β is an index of 
the rate of the (non-linear) build-up of performance impairment 
across days. The study revealed that β could be adequately 
described by a linear function of total TIB per 24 h.3

We applied the same analytical strategy to our new model esti-
mates for study A3, averaging them over the time points 08:10, 
10:10, 12:10, 16:10, 18:10, and 20:10 for each of days 0 (base-
line) through 8 (see study A3 description in the methods section 
of the paper). After subtracting the day 0 average from the other 
day averages, β was assessed for each study condition by fitting 
the function β tθ (where θ was shared among conditions and esti-
mated to be θ = 0.74, indicating near-linearity across days as 
previously reported3,4). The results for β are shown as a function 
of total TIB per 24 h in Figure S4 (blue dots).

To derive a dose-response curve approximation, the anal-
ysis of the model estimates was repeated with β constrained 
as a parabolic function of total TIB per 24 h. Figure S4 (blue 

Figure S2—Predictions by the earlier version of the biomathematical 
model for study A1. See Figure 1 in the main paper for details.

Figure S3—Predictions by the earlier version of the biomathematical model for study A2. See Figure 2 in 
the main paper for details (but note the difference in the range of the ordinate).

Figure S4—Dose-response relationship between daily sleep amounts 
and the build-up of performance impairment across days with restricted, 
split sleep. The blue dots show model-based estimates for β, an index of 
the build-up rate of impairment across days, plotted against total TIB for 
nighttime sleep and daytime naps per 24 h for each of the 18 conditions 
in study A3. The blue dashed curve shows a parabolic dose-response 
approximation thereof. The black dashed line displays a linear dose-
response relationship as estimated originally with statistical modeling of 
the study data.
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dashed curve) shows that the dose-response curve approxima-
tion is near-linear, reaching zero (i.e., no build-up of impair-
ment across days) near 8.2 h TIB (in agreement with an earlier 
estimate4 based on statistical modeling in study A1).

The originally estimated dose-response relationship (Figure 
S4, black dashed line),3 based on statistical modeling of the 
study A3 data, was linear. It was anchored at nearly the same β 
value for the lowest sleep dose of 4.2 h TIB in the experiment. 
However, the improvement as a linear function of increasing 
total TIB per 24 h was underestimated – seemingly implying 
that much more than 9 h TIB per day would be needed to 
maintain baseline performance across days, which is inconsis-
tent with other laboratory study findings.4,5 Here, the model-
based estimates appear to reflect a more realistic account of 
the dose-response relationship between daily sleep amounts 
and the build-up of performance impairment across days with 
restricted, split sleep.
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