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The development of biomathematical models for the prediction of
fatigue and performance relies on statistical techniques to analyze ex-
perimental data and model simulations. Statistical models of empirical
data have adjustable parameters with a priori unknown values. Inter-
individual variability in estimates of those values requires a form of
smoothing. This traditionally consists of averaging observations across
subjects, or fitting a model to the data of individual subjects first and
subsequently averaging the parameter estimates. However, the standard
errors of the parameter estimates are assessed inaccurately by such
averaging methods. The reason is that intra- and inter-individual vari-
abilities are intertwined. They can be separated by mixed-effects mod-
eling in which model predictions are not only determined by fixed
effects (usually constant parameters or functions of time) but also by
random effects, describing the sampling of subject-specific parameter
values from probability distributions. By estimating the parameters of the
distributions of the random effects, mixed-effects models can describe
experimental observations involving multiple subjects properly (i.e.,
yielding correct estimates of the standard errors) and parsimoniously
(i.e., estimating no more parameters than necessary). Using a Bayesian
approach, mixed-effects models can be “individualized” as observations
are acquired that capture the unique characteristics of the individual at
hand. Mixed-effects models, therefore, have unique advantages in re-
search on human neurobehavioral functions, which frequently show
large inter-individual differences. To illustrate this we analyzed labora-
tory neurobehavioral performance data acquired during sleep depriva-
tion, using a nonlinear mixed-effects model. The results serve to dem-
onstrate the usefulness of mixed-effects modeling for data-driven
development of individualized predictive models of fatigue and perfor-
mance.
Keywords: mixed-effects models, random effects, fixed effects, between-
subjects variance, within-subjects variance, individualization, predic-
tion, Bayes posterior distribution estimation, neurobehavioral perfor-
mance, sleep deprivation.

EMPIRICAL DATA SETS in human fatigue and per-
formance research often involve multiple subjects,

each contributing a series of data points obtained over
time. Such data sets contain two distinct sources of
variance: between-subjects variance (due to differences
among individuals) and within-subjects variance (due
to changes over time and/or noise). When describing
the data with a statistical model, these two sources of
variance must be separated in order to get optimal
estimates of the parameters of the model and their
standard errors. This can be done by means of mixed-
effects modeling. To explain the mixed-effects modeling
approach we will first discuss the analysis of a very
simple model in such a degree of detail that all essential
steps of the procedure are presented without having to
go into technicalities. For more details and discussions

we refer to the literature (5,6,9,11,14,16). Implementa-
tions of nonlinear mixed-effects modeling can be found
in the program NONMEM (an acronym for “NONlin-
ear Mixed-Effects Modeling”) (6), in module NLME in
S-PLUS (7), and in PROC NLMIXED in SAS (15). For all
analyses described in this paper we used the program
NONMEM.

METHODS

Within-Subjects and Between-Subjects Variance

Suppose that yij, the j-th experimental observation
(j � 1, . . . , M) from the i-th subject (i � 1, . . . , N) in a
study, can be modeled by:

ŷij � ai � �ij. Eq. 1

The ai are unknown constants and the subscript i re-
flects inter-individual (between-subjects) variability;
the �ij are independent and normally distributed noise
with mean zero and variance �2, and reflect intra-indi-
vidual (within-subjects) variability. Suppose that ai �
a � �i, where a is a constant and the �i are independent
and normally distributed with mean zero and variance
�2, so that:

ŷij � a � �i � �ij. Eq. 2

This is a simple mixed-effects model: a is the fixed effect
and �i is the random inter-individual effect for the
vector ŷi. In more elaborate mixed-effects models for
time series, time is a fixed effect, the model parameters
are functions of one or more �s, and stationarity is
reflected in the assumptions about �.

To estimate a, the observations could first be aver-
aged over all subjects so that:

ŷj � a �
1
N �

i�1

N

�i �
1
N �

i�1

N

�ij � a � �� � �� j Eq. 3
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where �� and �� j have variance �2/N and �2/N, respec-
tively. Least-squares analysis of the averaged observa-
tions ŷj, in this case equivalent with averaging again,
yields â � a � �� � ��. This estimate has a possibly
severely underestimated variance VAR{â} � �2/(N � M)
because information in the variability �j was lost, as �� is
a constant.

An alternative approach, generally called the two-
stage approach, entails first estimating ai for each indi-
vidual:

âi � a � �i �
1
M �

j�1

M

�ij � a � �i � �� i with VAR �âi� �
�2

M

Eq. 4

Subsequently the âi are averaged which yields:

â �
1
N �

i�1

N

âi, with VAR�â� �
�2

N �
�2

N � M Eq. 5

This procedure is suboptimal because the separate es-
timates âi may need to be obtained from small M. This
usually yields biased estimates of model parameters
and their variance, in particular in situations where the
model is nonlinear, where M is not equal for every
subject, where the model parameters depend on covari-
ates (such as subjects’ age), and/or where two or more
parameters need to be estimated that may be correlated.
Furthermore, the magnitudes of the separate intra- and
inter-individual variability terms (�2 and �2) remain
unknown, so even though the above expression for
VAR{â} is correct, we have no means of evaluating it.

Maximum-Likelihood Estimation and Mixed-Effects
Modeling

Parameters of mixed-effects models can be estimated
by application of the maximum likelihood principle.
According to this principle, the best estimates for a, �2,
and �2 are those that would yield the greatest likeli-
hood that the samples yij have the observed values. This
requires knowledge of the type of probability distribu-
tion functions for the inter-individual variability of the
parameters, which need to be postulated in practice
(but were given for the analytical example of the pre-
vious section). For each subject, the likelihood li of
observing the set of samples yi is then given by (�
stands for proportionality):

li�yi; a, �, �i� � �
j�1

M

pN�yij; a � �i, �� Eq. 6

where pN (x; �, �) denotes the normal density function
at x with mean � and variance �2. Although �i is
unknown, it can be integrated out, which gives the
marginal likelihood:

Li� yi; a, �, �� � �
�i��	

	

li� yi; a, �, �i� � pN��i; 0, �� � d�i Eq. 7

The likelihood of observing the entire set of samples yij
is then given by:

L� y; a, �, �� � �
i�1

N

Li� yi; a, �, �� Eq. 8

By maximizing L, estimates of a, � and � and their
variances can be obtained. For more complicated
models and distributions of the variability terms, the
integral in Eq. 7 will usually be intractable and approx-
imations are required. A variety of numerical approxi-
mation algorithms is available for this purpose in the
mixed-effects modeling software routines (6,7,15).

To illustrate the mixed-effects modeling procedure,
data from the model given by Eq. 2 with a � 1, �2 �
0.04, and �2 � 2.25 were generated for N � 20 individ-
uals with M � 10 assessments per individual, using
computer simulation. Data of three individuals are plot-
ted in Fig. 1. Mixed-effects modeling as implemented in
NONMEM was used to estimate the parameters, result-
ing in â � 1.3 
 0.3, �̂2 � 0.034 
 0.004, �̂2 � 2.1 
 0.7
(estimate 
 SE), in good agreement with their exact
values. The procedure was also used to estimate ai for
each individual, which is represented by the lines in
Fig. 1. In the next section, we explain how the mixed-
effects modeling framework is used to calculate these
individual estimates.

Bayesian Estimation for Predictive Modeling

Subject-specific parameters are functions of the inter-
individual variability terms �i. Although these are un-
known, they can be estimated by the mode of the Bayes
posterior densities; they are those �i that maximize:

p�yi; a, �, �� �
li�yi; a, �, �i� � pN��i; 0, ��

Li�yi; a, �, ��
Eq. 9

This equation specifies that the probability density
for yi, conditional on the knowledge of the properties of
the population, equals the likelihood of observing yi
multiplied by the prior (population) density of the in-
ter-individual variability term �i. The denominator
serves as a normalization to yield a proper probability
density function. In practice, population estimates are
substituted for a, �, and � since with experimental data
their true values are unknown. Notice that when more
data are obtained for an individual, the likelihood of

Fig. 1. Three sets of observations of yij (j � 1, . . . , 10; arbitrary i) from
the analytical model given by Eq. 2 with N � 20, M � 10, a � 1, �2 �
0.04, and �2 � 2.25 (dots); and individual estimates of a � â � �i (lines).
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observing their data is an increasingly localized func-
tion of �i (M increases in Eq. 6); and �i, therefore,
converges from the population value of 0 to the value
that corresponds to the exact value for this individual.
Consequently, this analysis does not critically depend
on the assumptions made about the distributions of
inter-individual variabilities.

To show the usefulness of the Bayes posterior distri-
bution estimates, we first considered only individuals
1–19, which resulted in slightly different mixed-effects
modeling estimates of a, �, and �. These parameter
estimates provide information that can be used to pre-
dict the value of a20 � a � �20 when incomplete data for
the 20th subject become available post hoc. To demon-
strate this, we iteratively determined the Bayes poste-
rior density (Eq. 9) of y20 by incorporating observations
y20j starting first with y20,1, then adding y20,2, etc. For
reference, y20 and a20 correspond to the individual
shown at the bottom in Fig. 1. With each added data
point, a more accurate estimate of a20 is achieved, as
shown in Fig. 2.

The information about individuals 1–19 helps to es-
timate a20. Even with only one (or in fact, without any)
data point for the 20th individual, an estimate and
confidence interval for a20 can be given. As data points
are added, the estimate for a20 reaches the exact value
more rapidly than when no information about individ-
uals 1–19 were available (cf. solid vs. dashed lines in
Fig. 2). The distribution* of âi becomes narrower (i.e.,
the confidence interval becomes smaller) as data points
are added; it converges from the population distribu-
tion [approximately pN(a, �)] to the distribution for case
i [approximately pN(ai, � / �M)]. Thus, the Bayesian

estimation technique in the mixed-effects modeling
framework can be extremely valuable in predictive
modeling of longitudinal data for individual subjects.

RESULTS

Application to Experimental Data

As part of a larger study, N � 13 subjects (27.7 
 5.4
yrs old) spent 20 d inside a laboratory (12). Informed
consent was obtained from each subject. After 3 base-
line days with 8 h time-in-bed (23:30–07:30), subjects’
sleep was restricted to 4 h time-in-bed (03:30–07:30) for
14 d. Neurobehavioral performance was tested every 2
h during wakefulness, and included a psychomotor
vigilance test (PVT; 4). Daily averages (09:30–23:30)
were computed for PVT lapses (reaction times � 500
ms).

The PVT lapse data y were modeled by the following
equation:

y�t� � 	 � 
t� � ��t� Eq.10

where the fixed effect t is time in days (t � 0, . . . , 14),
the parameters (affected by random effects) 	, 
, and �
denote baseline performance†, trend gain (i.e., rate of
performance impairment), and a nonlinearity exponent,
respectively, and � denotes within-subjects variability.

The stochastic variables 	 and 
 were assigned log-
normal distributions, which is a reasonable description
for parameters that show large inter-individual vari-
ability but should always be positive. This was imple-
mented by multiplying their typical (i.e., the median of
the distribution when it holds exactly) values with fac-
tors exp(�), where � is normally distributed with mean
zero and variance �2. Variable � was assigned a normal
distribution. Variable � was assumed to be normally
distributed with mean zero and variance �2 for each
individual (which was a reasonable assumption accord-
ing to visual inspection of the residuals as a function of
time). Covariances between the random effects vari-
ables were assumed to be zero (and are usually not
well-estimable from small populations).

Table I presents NONMEM’s estimates of the param-
eters and their SE for this data set. We compare these to
the results from a two-stage analysis (also using NON-
MEM for the first stage) as shown in Table II. Notice
that the means of the individual estimates of 	, 
, and

* The determined confidence intervals are approximations to pre-
diction intervals for the set of observations, since population esti-
mates of a, �, and � were used in their construction (see Eq. 9). The
bootstrap may be used to deal with this issue (2).

† Note that when t � 0, y(0) � 	 � �(0); normalizing y by dividing
by y(0) to eliminate 	 would cause the uncertainty of �(0) to propagate
to the estimates of the remaining parameters.

TABLE I. MIXED-EFFECTS ANALYSIS OF THE EXPERIMENTAL
DATA: ESTIMATES OF MODEL PARAMETERS (	, 
, �)

AND RESIDUAL NOISE VARIANCE (�2), WITH SE,
AND INTER-INDIVIDUAL VARIABILITY TERMS �2

OF THE PARAMETERS, WITH SE �2.

Parameter Estimate SE �2 SE �2

	 1.74 1.09 1.41 0.727

 1.18 0.789 1.72 1.24
� 0.833 0.184 0.179 0.144
�2 8.17 1.74

Fig. 2. Iteratively estimated Bayesian values of a together with their
90% probability intervals for individual 20 (thin lines), based on avail-
ability of only the first data point, the first two data points, etc. The exact
value of a in this individual (thick line) and the subject’s observations
(dots) are shown as well. The panel further shows iterative estimates of
a with 90% probability intervals based solely on this individual’s data
(dashed lines). When no knowledge from other individuals is available,
at least two observations are necessary to estimate this individual’s a and
its variance, and many more observations are required when dealing
with more complex models and less informative data (e.g. 16).
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� are higher than their medians, suggesting that the
distributions of the two-stage estimators are right-
skewed. However, this does not necessarily imply that
the inter-individual variability distributions are right-
skewed as well. The median 	 and 
 are higher than the
estimates obtained by the mixed-effects analysis, indi-
cating a bias in either the mixed-effects estimates, the
two-stage estimates, or both (the true values are obvi-
ously unknown, in contrast to the Monte Carlo simula-
tions below). The difference between the two-stage and
mixed-effects estimates of intra-individual variability
(�2) may be explained by the fact that these are based on
only 15 data points for the former and 195 (15 times 13)
for the latter analysis. The residual variance of the
two-stage estimate of �2 will, therefore, be biased with
a factor of approximately 12/15 (where 12 is the num-
ber of data points minus the number of parameters to
be estimated) which corresponds well with the ratio
6.36/8.17. However, in general the degree of bias of an
estimator is unknown and NONMEM cannot routinely
apply bias correction. Inter-individual variability is
usually poorly quantified in a two-stage analysis, as the
squares of the SD (possibly transformed for non-normal
distributions) of the two-stage estimates are only equiv-
alent to the inter-individual variability terms �2 in Ta-
ble I when the value of �2 is negligible.

Monte Carlo Simulation

Monte Carlo simulations were performed to demon-
strate and explain the differences in results from a
mixed-effects approach versus a two-stage approach.
Monte Carlo simulation is a technique tailored to the
study of the properties of estimators. Data sets are

obtained from a model with specified model parame-
ters, and random-numbers generators provide values
for the random variables.‡ For each data set, model
parameters are estimated using the technique under
investigation (e.g., mixed-effects modeling), and the
mean and SD of those estimates provide information
about the bias and true SE of the estimators under
study.

Table III presents the results of the mixed-effects
modeling approach applied to 1,000 data sets, com-
prised of data for 13 simulated subjects, generated us-
ing Eq. 10 with population estimates of the parameters
	, 
, and �, and � and variances of their inter-individual
variability terms (�2) obtained from Table I. There is
consistency between these results and those from the
original data set. Bias, defined by the expectation of an
estimator minus the true value of the parameter, and
estimated here by the difference between the mean of
the Monte Carlo estimates and the fixed value used for
the simulation, is relatively small.§

The SD of the estimated parameters (columns 2 and 6
in Table III) are a measure of their true variability (as
they are obtained by repeatedly analyzing new data).
They correspond well with the means of the SE (col-
umns 3 and 7), estimated by maximum likelihood the-
ory, demonstrating their validity. An exception is the
relative disagreement between the SD of the inter-indi-
vidual variability estimates of 	 (1.57) and the mean
estimated SE (0.823) of 	; the latter would seem to be
underestimated. However, the median absolute devia-
tion of the inter-individual variability estimates of 	
was 0.447 (not shown) so they are probably not nor-
mally distributed, causing the standard deviation to be
overestimated in this case. The standard deviation of �2

(0.890) in Table III is considerably lower than the stan-
dard error (1.74) obtained from the experimental data
(Table I). This may be due to inter-individual variability
in �2 in the experimental data which we did not take
into account.§§

The results of the two-stage approach applied to

‡ Extensive simulations like these have recently become feasible on
personal computer platforms due to the considerable increases in
computational power.

§ Although maximum likelihood estimators are asymptotically un-
biased, they are likely to be biased with a finite data set. Precision of
the estimates of bias may be obtained by dividing the standard
deviations by the square root of the number of Monte Carlo trials.

§§ This could be done in NONMEM, but at the expense of a poorer
approximation of the likelihood function as the Laplacian approxi-
mation is not available in this case (6).

TABLE II. TWO-STAGE ANALYSIS OF THE EXPERIMENTAL
DATA: MEAN AND SD OF PARAMETER ESTIMATES (	, 
, �)
AND RESIDUAL NOISE VARIANCE (�2), AS WELL AS THEIR
MEDIANS AND MEDIAN ABSOLUTE DEVIATIONS (MAD).

Parameter Mean SD SEM* Median MAD†

	 3.18 4.37 1.21 2.29 2.33

 2.33 2.26 0.628 2.20 2.17
� 1.33 1.11 0.308 0.806 0.286
�2 6.36 4.54 1.26 6.25 3.79

*SEM were obtained by dividing the SD by the square root of the
number of individuals (N � 13).
†The median absolute deviations give an indication of the stability of
the SD as the former are robust against outliers; asymptotically, MAD
equals SD times 0.675. The SE of the median equals SEM times
���/ 2� (ref. 8).

TABLE III. MEANS (AND SD) OF PARAMETER ESTIMATES AND THEIR STANDARD ERRORS (SE) OBTAINED FROM 1,000 MONTE
CARLO SIMULATIONS USING THE POPULATION MODEL IN EQ. 10 WITH PARAMETERS AS GIVEN IN TABLE I,

AND ANALYZED WITH THE MIXED-EFFECTS APPROACH.

Parameter Mean* (SD)† Mean SE† (SD) Mean* �2 (SD) Mean SE �2 (SD)

	 2.04 (0.969) 1.01 (0.478) 1.35 (1.57) 0.823 (2.32)

 1.35 (0.681) 0.651 (0.470) 1.70 (1.20) 0.886 (0.690)
� 0.852 (0.203) 0.165 (0.114) 0.156 (0.112) 0.0811 (0.0823)
�2 8.16 (0.890) 0.788 (0.295)

* Biases, given by the difference between the mean parameter estimates and their values in Table I, are relatively small.
† The SD of the parameters, which are a measure of their true SE, correspond well the means of NONMEM’s estimated SE.
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1,000 generated data sets are presented in Table IV. For
each data set, the population parameters were deter-
mined by taking both the mean and the median in the
second stage (as was done for Table II), and subse-
quently their means and standard deviations over the
1,000 simulations were calculated. Based on the means,
there is considerable bias in the estimates of 	 (3.17
minus 1.74) and 
 (3.63 minus 1.18). Based on the
medians, a considerable bias for 
 (2.16 minus 1.18)
remains. A possible cause for this bias is inter-individ-
ual variability, as it disappeared when we repeated the
Monte Carlo simulations without inter-individual vari-
ability on 
 (note that it was the highest, with �2 � 1.72
in table 1). The fact that the difference between the
(mean) mean (3.63) and the (mean) median (2.16) of 
 is
higher than obtained from the experimental data set
(2.33 and 2.20) would suggest that 
 is not lognormally
distributed in this set (by definition it was lognormally
distributed in the Monte Carlo simulations). However,
mixed-effects analysis with a normal distribution for 

yielded a worse fit (judged by the value of the likeli-
hood). The difference between the median mean (3.23)
and the median median (1.96) (not shown) suggests that
the discrepancy is not primarily caused by non-normal-
ity of the two-stage estimator of 
, but by bias.** For a
two-stage analysis, the individual estimates have to be

averaged and the arithmetic means are likely to be
biased estimates, as the distributions of the individual
estimates are often not normal. On the contrary, the
medians of the first-stage estimates are unaffected by
assumptions concerning those distributions.

Individualization and Prediction

When a population model has been established (i.e.,
the experimental data of a previously studied group of
subjects are adequately described by a set of mathemat-
ical equations with identified parameter values and
their uncertainties), it can be used to predict the perfor-
mance of an as yet unstudied individual by means of
Bayes posterior distribution estimation. Initially, the
individual could be described using the population av-
erage response to the experimental circumstances.
Then, as data for the individual are being obtained, the
model parameters can be adjusted from their popula-
tion values to the ones describing the individual at
hand—even when only one or two data points for the
new individual are available as yet (as we demon-
strated for the example problem in the first part of the
paper). Moreover, the individualized parameters can be
used to make a one-day-ahead prediction (and beyond).

Fig. 3 and 4 show the results for three subjects. For
the first day, the prediction of both the model parame-
ters and the performance outcomes are set to equal the
estimates of an analysis based on the population with-
out these three subjects. As data for these individuals
are obtained, the model parameters are updated taking

** Correlation matrices revealed a large correlation between 
 and
� for two-stage analyses (for � � 1, y � 	 � 
t� � 	 � 
�t).
Furthermore, the model is by necessity not centered with respect to
the fixed effect (time), which may be another source of correlation.

TABLE IV. MEANS (AND STANDARD DEVIATIONS) OF PARAMETER ESTIMATES AND THE STANDARD ERRORS OF THE MEAN
(SEM), AS WELL AS THE MEDIANS AND MEDIAN ABSOLUTE DEVIATIONS (MAD), OBTAINED FROM 1,000 MONTE CARLO

SIMULATIONS USING THE POPULATION MODEL IN EQ. 10 WITH PARAMETERS AS GIVEN IN TABLE I,
AND ANALYZED WITH THE TWO-STAGE APPROACH.

Parameter Mean* (SD)† SEM (SD) Median* (SD) MAD (SD)

	 3.17 (2.27) 1.51 (1.36) 1.97 (1.17) 2.14 (0.906)

 3.63 (1.93) 1.25 (1.10) 2.16 (1.10) 1.51 (0.732)
� 1.03 (0.213) 0.181 (0.066) 0.943 (0.220) 0.361 (0.135)
�2 6.50 (0.795) 0.713 (0.193) 6.24 (0.932) 1.60 (0.625)

* Biases, given by the difference between the mean or median parameter estimates and their values in Table I, are higher than when the
mixed-effects approach is applied.
† The SD of the parameters are also higher than those obtained using the mixed-effects approach (see Table III).

Fig. 3. Observations from three in-
dividuals (dots), model fits (thin solid
lines), and population average model
profiles (thick solid lines) based on the
mixed-effects analysis, and one-day-
ahead predictions (connected dots) ad-
justed each day as more data for the
individual were obtained. The three
panels illustrate the variety in vulnera-
bility of these individuals to the effects
of chronic partial sleep deprivation
compared to the population average;
subject 2 was much less vulnerable
than subjects 1 and 3.
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into account this subject-specific information. Thus, as
data are obtained, the predictions converge to the val-
ues that characterize these individuals.††

For example, subject 1, presented in the left panels of
Fig. 3 and 4, has a significantly higher gain factor 
 than
the population average, for which correction appears to
be easily achieved as more data for the individual are
obtained. Subject 2, displayed in the middle panels, has
lower values for all three parameters compared to the
population averages, but one-day-ahead predictions re-
main reasonable. The performance of subject 3, dis-
played in the right panel of Fig. 3, closely follows the
population average at first, but later deteriorates more
rapidly as is reflected in this individual’s estimate of �.
One-day-ahead predictions for subjects were about 10
units off at maximum. They obviously depend on the

quality of both the model and the data, and may be
further improved by including relevant covariates. The
distribution of the differences between the one-day-
ahead predictions and the corresponding actual obser-
vations provides an indication of the usefulness of the
predictions. Research is in progress in order to obtain
confidence intervals, which is a challenge due to the fact
that model selection uncertainty also has to be taken
into account (1). Finally, although we assumed lognor-
mal distributions for the inter-individual variabilities of
parameters 	 and 
, and a normal distribution for �,
their true distributions remain unknown. In a mixed-
effects analysis these assumptions serve as prior infor-
mation; the distributions converge to the true ones as
more data are included [recall that in Eq. 9 the likeli-
hood li(yi; a, �, �i) sharpens up].

CONCLUSIONS

We illustrated the mixed-effects modeling theory by
studying a simple model for which analytical results

†† The one-day-ahead predictions for day t � 14 are based on days
t � 0, . . . , 13 and may, therefore, differ slightly from final estimates
based on all 14 days.

Fig. 4. One-day-ahead predictions
(connected dots) for subject-specific
estimates of 	 (upper panels), 
 (mid-
dle panels), and � (bottom panels). The
three panels per parameter correspond
to the three individuals in Fig. 3. Also
shown are the final parameter esti-
mates for these individuals (using all
14 d of data; thin lines) and the popu-
lation average estimates (thick lines).
As the parameters of the model are
tuned over the days and increasingly
characterize the individual at hand,
they allow improved prediction com-
pared to the population average.
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can be derived, and by numerically analyzing experi-
mental data with a nonlinear model. We showed that
by separating within- and between-subjects variance
components, model parameters can be estimated more
precisely and more accurately than with a two-stage
approach. Furthermore, the mixed-effects modeling
serves as a foundation for the prediction of subject-
specific temporal profiles, something that has been
needed in performance model development (3,10) for
years. As recent studies have shown trait-like inter-
individual differences in vulnerability to performance
impairment from sleep loss (13), there is a clear advan-
tage of applying mixed-effects modeling approaches in
the development of future biomathematical models of
fatigue and performance.
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