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SUMMARY The two-process model of sleep regulation has been applied successfully to describe,

predict, and understand sleep–wake regulation in a variety of experimental protocols

such as sleep deprivation and forced desynchrony. A non-linear interaction between

the homeostatic and circadian processes was reported when the model was applied

to describe alertness and performance data obtained during forced desynchrony.

This non-linear interaction could also be due to intrinsic non-linearity in the metrics

used to measure alertness and performance, however. Distinguishing these possibil-

ities would be of theoretical interest, but could also have important implications for

the design and interpretation of experiments placing sleep at different circadian

phases or varying the duration of sleep and/or wakefulness. Although to date no

resolution to this controversy has been found, here we show that the issue can be

addressed with existing data sets. The interaction between the homeostatic and

circadian processes of sleep–wake regulation was investigated using neurobehavioural

performance data from a laboratory experiment involving total sleep deprivation.

The results provided evidence of an actual non-linear interaction between the

homeostatic and circadian processes of sleep–wake regulation for the prediction of

waking neurobehavioural performance.

k e y w o r d s circadian process, homeostatic process, non-linear interaction, non-linear

metric, sleep deprivation, two-process model of sleep regulation

INTRODUCTION

One of the major advances in the understanding of the

regulation of sleep was the development of the two-process

model of sleep regulation (Borbély, 1982; Borbély and Ach-

ermann, 2000; Daan et al., 1984). The model consists of a

homeostatic process termed �process S� and a circadian process
termed �process C�. Process S represents a putative drive for
sleep that increases progressively during wakefulness, and

decreases progressively during (non-REM) sleep. Process C

represents a (nearly) 24-h oscillatory variation in the propen-

sity for sleep. These two processes were demonstrated to

predict the timing and duration of sleep and the intensity of

non-REM sleep (e.g. Achermann et al., 1993; Borbély, 1982).

When applied in an additive (i.e. linear) manner, the two

processes were also shown to predict measures of alertness and

performance during wakefulness (Achermann and Borbély,

1994; Åkerstedt and Folkard, 1997), although the degree of

accuracy of these predictions is an area of continuing research

(Van Dongen, 2003). A review and update of the two-process

model, including the mathematical formulation used in the

present research, was recently presented by Borbély and

Achermann (1999).

The two-process model has been applied successfully to

describe, predict and understand sleep–wake regulation in a

variety of experimental protocols, including total sleep depri-

vation followed by recovery sleep (e.g. Daan et al., 1984), and

constant routine and forced desynchrony paradigms (e.g. Dijk

et al., 1992). The forced desynchrony paradigm is of particular
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interest because its design permits the systematic scanning of

many combinations of different states of the processes S and

C. It was found that application of the two processes in an

additive manner did not suffice to predict subjective alertness

and cognitive performance during forced desynchrony, leading

investigators to hypothesize a non-linear interaction between

the two processes1 (Dijk et al., 1992; Jewett and Kronauer,

1999). Establishing the existence of a non-linear interaction

between process S and process C is important for the reliability

of the model’s predictions, especially under extreme circum-

stances such as long-duration total sleep deprivation. It is also

of theoretical interest, and has implications for the design and

interpretation of experiments placing sleep and wakefulness at

different circadian phases or varying the duration of sleep and/

or wakefulness.

Achermann (1999) pointed out that an apparent non-linear

interaction could be entirely due to an intrinsic non-linearity in

the mapping of the predictions of the two-process model onto

the measurement variable in the experiment, that is, a non-

linearity in the metric used to measure alertness or perform-

ance. For instance, if the inclusion of a non-linear interaction

between processes S and C is found to improve the model’s

predictions for a given measure of subjective alertness, then

assuming that the metric used to measure subjective alertness

may be intrinsically non-linear could have equal potential to

improve the model’s predictions. Thus, it seemed that the

hypothesis of a non-linear interaction between processes S and

C would not be testable. This issue was further discussed by

Dijk et al. (1999), but to date no resolution has been found.

Here we show that the issue of whether or not there is an

inherent non-linearity in the interaction of processes S and C,

regardless of the metric used to measure waking neurobehav-

ioural function, can in fact be addressed with existing data sets.

The idea is to select different combinations of the states of the

processes S and C that predict similar outcomes if the two

processes are strictly additive. The corresponding measure-

ments of alertness or performance should then also be similar,

regardless of any non-linearity in the metric, as the same

portion of the metric scale is involved. If the measurements are

statistically significantly dissimilar, then the assumption that

the processes S and C are strictly additive in predicting

alertness and performance can be rejected. Consequently, the

existence of an actual non-linear interaction between the

homeostatic and circadian processes of sleep–wake regulation

can be inferred, independently of the characteristics of the

metric at hand. In the present paper, the nature of the

interaction between the two processes is investigated using

neurobehavioural performance data from a laboratory experi-

ment involving total sleep deprivation.

METHODS AND RESULTS

Empirical data and model predictions

Data were taken from a laboratory experiment involving 88 h

(3.7 days) of total sleep deprivation (see Doran et al., 2001;

Van Dongen et al., 2001). The experiment involved a phar-

macological and a placebo condition; for the present purposes,

only data from n ¼ 13 healthy subjects in the placebo

condition were used. After three baseline days with sleep

scheduled from 23:30 until 07:30 hours, subjects were kept

awake for 88 h continuously.

Starting 30 min into the sleep deprivation period (at

08:00 hours), subjects� neurobehavioural performance was

tested at 2-h intervals on a computerized assessment battery.

This battery included a 10-min high-load psychomotor

vigilance task (Dinges and Powell, 1985) documented to be

sensitive to the effects of sleep loss and circadian rhythmicity

(e.g. Dinges et al., 1987; Doran et al., 2001). The psycho-

motor vigilance task is devoid of practice effects (Van

Dongen et al., 2003a), which is a critical property with

regard to the investigation of the interaction between the

homeostatic and circadian processes of sleep–wake regula-

tion. For each assessment on the task, the average of the

reciprocals of the 10% slowest reaction times was computed

as a measure of performance impairment. These experimental

data y are shown in Fig. 1 (top panel) for up to 64 h of

continuous wakefulness. The last 24 h of the 88-h sleep

deprivation period were not used because of negligible

predicted homeostatic variability during that period (i.e.

<1% of the total range for process S during the experiment).

Predictions for processes S and C were made (see Borbély

and Achermann, 1999) for the three baseline days and across

the subsequent total sleep deprivation period. Stable circadian

rhythmicity with an effective period of s ¼ 24.0 h was assumed
throughout the experiment. Empirical evidence has shown this

to be a reasonable approximation (Van Dongen et al., 1998).

The predictions for processes S and C across the first 64 h of

sleep deprivation are shown in Fig. 1 (middle panel).

Predictions assuming strictly additive processes

We considered the null hypothesis that the processes S and C

are strictly additive (linear) in modelling the data y:

y � f ðS � c � CÞ; ð1Þ

where c represents the contribution of the circadian process
relative to the homeostatic process, and f is a monotonic

function mapping the predictions of the two-process model

onto the measurement variable y. Initially, all data analyses

were performed under the null hypothesis. Later in this paper,

we will investigate whether maintaining the null hypothesis led

to a contradiction that would prove the hypothesis wrong.

In order to determine the relative contributions of the

homeostatic and circadian processes to psychomotor vigilance

as measured by y, we needed to estimate the value of c. To
accomplish this, it was necessary to also assess the nature of

the monotonic mapping function f. The mapping function can

be expressed in terms of a finite number of parameters

Qm ¼ {h1,h2,…,hm}. In the face of ever-present noise in the
data, the number of parameters m required to properly specify

the mapping function had to be estimated from the data, using
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an appropriate statistical criterion such as Akaike’s Informa-

tion Criterion (AIC; Akaike, 1973). In the simplest possible

case, the mapping function would be linear, which means that

m ¼ 2 and f is given by:
f2ðxÞ ¼ h1 þ h2x: ð2Þ

Commonly used metrics have floor and/or ceiling effects,

however, which could require mapping functions with more

than two parameters. Generic monotonic functions with m ¼ 3
parameters (either a floor or a ceiling effect; exponential) or

m ¼ 4 parameters (both a floor and a ceiling effect; sigmoidal)
can be formulated as:

f3ðxÞ ¼ h1 þ h3eh2x; ð3Þ

f4ðxÞ ¼ h1 þ
h4

1þ h3eh2x
: ð4Þ

We estimated c, taking into account any inter-individual

differences therein, to assess the relative contributions of the

homeostatic and circadian processes for predicting psychomo-

tor vigilance. Simultaneously, we estimated m and Qm,

allowing for inter-individual differences in baseline perform-

ance levels, to identify the most suitable function mapping the

predictions of the two-process model onto the psychomotor

vigilance measurements. Under the null hypothesis of eqn 1,

we therefore considered the following set of mixed-effects

regression models (Davidian and Gallant, 1993) for m ¼ 2,3,4
(assuming independent, normally distributed noise in the

data):

y � fmðP Þ þ bi; ð5Þ

where P represents the two-process model predictions:

P ¼ S � ci � C: ð6Þ

Here ci (for i ¼ 1,…,13) is the subject-specific contribution of
the circadian process relative to the homeostatic process,

implemented as a normally distributed random effect with

mean c and standard deviation r; and bi represents inter-
individual variability in performance levels, implemented as a

log-normally distributed random effect with mean zero and

standard deviation x. The covariance between these two

random effects was assumed to be zero, as it is usually not

estimable for small populations. Note that the results of this

analysis do not critically depend on a priori assumptions about

the distributions of the random effects (Olofsen et al., 2003).
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Figure 1. Empirical waking neurobehavioural performance data y (top panel), two-process model predictions for processes S and C (middle panel)

and performance predictions ŷy (bottom panel) for 64 h of total sleep deprivation in a laboratory experiment. The top panel shows observations y

for the average of the reciprocals of the 10% slowest reaction times (1/RT; in 1/s units) on a 10-min psychomotor vigilance task. The task was

presented at 2-h intervals; data are shown as mean ± standard error for n ¼ 13 subjects. Performance decrements (i.e. impairments) are associated
with lower values on the ordinate. The middle panel shows the two-process model predictions for process S (solid curve; right-hand ordinate) and

process C (dotted curve; left-hand ordinate) during the 64 h of total sleep deprivation. Process S is reversed (see right-hand ordinate) to facilitate

comparison with the empirical data. The bottom panel shows the two-process model predictions ŷy for the data in the top panel, under the null

hypothesis of eqn 1, after estimation of the parameter c in eqn 6. The curves in the bottom panel display the results using three different functions
mapping the predictions P of eqn 6 onto the measurements y: f2 (thick line), f3 (dotted line) and f4 (thin line). Using Akaike’s Information Criterion

(AIC; Akaike, 1973), f2 (thick line) was selected as the most suitable mapping function. Goodness of fit for f2 was similar to that for f3 and f4, but f2
required the least (i.e. m ¼ 2) parameters to be estimated.
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The computer algorithm Proc NLMIXED in SAS release 8.2

(Wolfinger, 2000) was employed to estimate the parametersQm,

c, r and x of the mixed-effects models in eqn 5. To choose the
mapping function fm, the AIC was used; smaller AIC values

correspond to better mapping functions in terms of both

goodness of fit and parsimony. We found that for m ¼ 2,
AIC ¼ 776.3; for m ¼ 3, AIC ¼ 805.9; and for m ¼ 4,
AIC ¼ 777.6. Thus, under the null hypothesis of eqn 1, the

linear function f2 (i.e. m ¼ 2) was identified to best describe the
relationship between the predictions of the two-process model

and the psychomotor vigilance data; see Fig. 1 (bottom panel).

The contribution of the circadian process relative to the

homeostatic process, for m ¼ 2, was c ¼ 1.6 ± 0.3 with stand-

ard deviation r ¼ 0.6 ± 0.4 (estimates ± standard error).

These analyses were repeated leaving out the first measure-

ment during the sleep deprivation period, taken 30 min after

awakening (at 08:00 hours). The reason for leaving out this

data point is that it might have been confounded by sleep

inertia – the transient performance impairment frequently

observed immediately after awakening (Dinges et al., 1981) –

which falls outside the predictive capability of the two-process

model. Sleep inertia may take up to approximately 2 h to

dissipate (Achermann et al., 1995; Jewett et al., 1999); leaving

out the first data point for each subject should therefore

remove any sleep inertia effects from the data set. Neverthe-

less, we found essentially the same results with or without the

first data point. The linear function f2 was again the most

suitable mapping function (i.e. it had the lowest AIC value).

Also, the parameter estimates were again c ¼ 1.6±0.3 and
r ¼ 0.6±0.4.

Null hypothesis testing

Under the null hypothesis of eqn 1, which states that the

processes S and C are strictly additive in modelling the data y,

the relationship between the predictions P of eqn 6 and the

measurements y should be independent of the separate values

of S and C. If there is a non-linear interaction between the two

processes, however, we should expect that the relationship

between the predictions P and the measurements y is modu-

lated by the underlying values of S and C. Thus, after having

assessed the relative contributions of the homeostatic and

circadian processes by estimating c, different combinations of
values for S and C can be selected that yield the same values

for P in eqn 6. As these P values would be affected in the same

manner by any metric non-linearity – if the null hypothesis

holds true – they should map to the same values of y (aside

from random measurement noise). This consequence of the

null hypothesis can be tested to examine if the null hypothesis

is to be rejected.

Fig. 2 shows the subject-specific values of ci Æ C plotted

against the values of S for all times of measurement during the

64 h of sleep deprivation. We wrote an optimization computer

program to identify two different sets A and B of S values and

associated ci Æ C values – with all subjects contributing

multiple data points to each set – that yielded similar P values

in a moderately restricted range. The core steps of the

computer program were as follows (in symbolic language):

Scan a range of different sizes d for possible sets A and B

(in small steps):

Scan a range of different lowest boundaries s for process

S (in small steps):

Scan a range of different lowest boundaries c for ci Æ C
(in small steps):

For each subject i compute the number of data points ai in

set A, counting only s<S<s+d/2 and c<ci Æ C<c+d/2;

For each subject i compute the number of data points bi
in set B, counting only s+d/2<S<s+d and

c+d/2<ci Æ C<c+d;

Compute the product q of the ai and bi values across

all subjects i.

Let Q be the greatest q value among all different combinations

of d, s and c.

The values of d, s and c corresponding with Q define the selected

sets A and B.

The two sets A and B thus identified are shown in Fig. 2 as

shaded areas. The lower left shaded area (set A) is described by

0.70 < S < 0.85 and 0.03 < ci Æ C < 0.18; using eqn 6, this

yields 0.52 < P < 0.82. The upper right shaded area (set B) is

described by 0.85 < S < 1.00 and 0.18 < ci Æ C < 0.33; this

also yields 0.52 < P < 0.82.

The similarity of the ranges of P values in sets A and B

(F1,101 ¼ 0.11, p ¼ 0.74) was crucial for testing the existence of
a non-linear interaction term, because it followed that – under

the null hypothesis – the corresponding data y were affected in

the same manner by any metric non-linearity. Thus, although

sets A and B comprised only 115 (56 in set A and 59 in set B)
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Figure 2. Subject-specific ci Æ C values plotted against S values, with S
and C predicted by the two-process model for the 32 time points

associated with empirical data during the 64 h of sleep deprivation.

Thus, each of the n ¼ 13 subjects contributed 32 points to the figure,
with each point corresponding to a different time in the experiment;

these points are plotted at the predicted S (abscissa) and ci Æ C
(ordinate) values for those times. The two shaded areas contain

different sets of predictions for S and ci Æ C, yielding similar ranges of
P values in eqn 6. Each subject contributed multiple points to the

lower left shaded area, which is referred to here as set A, and the upper

right shaded area, which is referred to here as set B.
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of a total of 416 data points (i.e. 28% of the whole data set),

they constituted a selected subset of data suitable2 for testing

the null hypothesis that the processes S and C are strictly

additive in modelling the data y. Note that data points

potentially affected by sleep inertia (see above) were not

included in sets A and B.

Under the null hypothesis, the relationship between the

predictions P and the measurements y should be independent

of the underlying values of S and C. As the range of P values in

sets A and B was similar (by design), this implies that the range

of corresponding y values should also be similar. Fig. 3 shows

the P values and associated y values in sets A and B. Direct

statistical comparison of the (subject-specific) y values in

sets A and B did not conclusively demonstrate if the y values in

the two sets were indeed similar (F1,101 ¼ 3.45, p ¼ 0.066). It is
difficult to interpret the result of this comparison anyway,

however, as the values for P were not exactly the same for

sets A and B; thus, we should not expect the corresponding

values for y to be exactly the same for the two sets either,

whether the null hypothesis is true or not. At the least, though,

the relationship between P and y, which we had found to be

well described by a linear function f2, should be identical for

both sets if the null hypothesis is true. We tested this with the

following mixed-effects regression model, which was derived

from eqn 5 with m ¼ 2:

y � IA � fAðPÞ þ IB � fBðP Þ þ bi; ð7Þ

where IA and IB are indicator variables that equal unity if the

data y are from sets A and B, respectively, and zero otherwise;

and bi represents inter-individual variability as in eqn 5. The

functions fA and fB were mapping functions f2 with newly

estimated parameters QA and QB representing the relationship
between P and y for sets A and B, respectively. Examining the

null hypothesis that the processes S and C are strictly additive

in modelling the data y was thus reduced to considering the

following null and alternative hypotheses:

H0: HA ¼ HB;
Ha: HA 6¼ HB:

The computer algorithm Proc. NLMIXED in SAS release 8.2

was again used to estimate the parameters of the model, and to

statistically test H0. The parameter estimates for h1 and h2
constituting QA and QB are shown in Table 1; statistical testing
revealed differences for set A vs. set B in both parameters. The

overall statistical test for QA vs. QB corroborated this finding
(F2,12 ¼ 4.55, p ¼ 0.034). Thus, H0 was rejected in favour of
Ha. This directly implied the existence of an actual non-linear

interaction between processes S and C for the prediction of

waking neurobehavioural performance, irrespective of the

characteristics of the metric we used to examine this.

DISCUSSION

The two-process model was originally developed as a model of

sleep regulation, but its use has gradually been expanded to

include prediction of human waking alertness and perform-

ance (Borbély and Achermann, 1999). This has typically been

performed by (linear) addition of the homeostatic process S

and the circadian process C (Achermann and Borbély, 1994),

but in data from a forced desynchrony study evidence was

found of the need for a non-linear interaction term (Dijk et al.

1992). A debate ensued about whether this apparent non-linear

interaction was merely an artefact resulting from non-linearity
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Figure 3. Two-process model predictions P under the null hypothesis

of strict additivity between processes S and C as in eqn 6 (top left-

hand panel), and observations y for the average of the reciprocals of

the 10% slowest reaction times (1/RT; in 1/s units) on a 10 minute

psychomotor vigilance task (top right-hand panel), in sets A and B.

These two sets were selected to have similar P values but different

underlying values for processes S and C; each subject contributed

multiple data points to sets A and B. The relationship between P and y

values should be identical for set A, and for set B if the null hypothesis

is true. The P and y values are juxtaposed in the bottom panels (set A:

bottom left-hand panel; set B: bottom right-hand panel), with P values

on the left and y values on the right in both panels. All P ordinates are

reversed to facilitate comparison with the y ordinates (lesser P values

should correspond to greater y values).

Table 1 Estimates ± standard errors of eqn 2 parameters h1 (offset)
and h2 (slope) for sets A and B (i.e. constituting QA and QB), and F
statistics and p values comparing sets A and B to test the null

hypothesis that the processes S and C are strictly additive in modelling

the data y

QA QB F1,12 p

h1 0.39 ± 0.77 2.60 ± 0.76 4.82 0.049

h2 0.86 ± 1.08 )2.63 ± 1.07 5.56 0.036
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in the metrics used to measure alertness or performance, or

constituted an actual non-linear interaction between the

homeostatic and circadian processes (Achermann, 1999; Dijk

et al., 1999).

To investigate this controversy, we studied psychomotor

vigilance measurements collected during a laboratory experi-

ment involving 64 h of total sleep deprivation. We considered

the null hypothesis of a strictly additive (linear) interaction

between process S and process C, and identified time points at

which the addition of the two processes led to similar

predictions for psychomotor vigilance while the separate

underlying values of S and C were different. By means of

within-subject statistical testing (allowing for inter-individual

differences), we then showed that the similarity of the

predictions was not consistent with the observations, indica-

ting that there was an actual non-linear interaction between

the two processes S and C when used to predict waking

neurobehavioural performance. This result is in line with

recent findings in hamsters (Antle et al., 2001) and mice

(Sigworth and Rea, 2003) that adenosine (a putative sleep

homeostatic signal) may affect the suprachiasmatic nuclei (site

of the circadian pacemaker), which could well result in a non-

linear interaction between the homeostatic and circadian

processes. Whether or not our finding of non-linear interaction

is dependent on the specific metric y we used (Dijk et al., 1999),

or conditional to the experimental context (i.e. total sleep

deprivation in a laboratory), remains to be determined.

Further research is needed to assess the precise mathemat-

ical form of the non-linear interaction term exposed in the

study. This may reveal whether process Smodulates process C,

or vice versa, or both (see Achermann, 1999), and whether or

not the mode and duration of waking activity (e.g. cognitive

testing in a laboratory) are contributing factors. It is important

to recognize, however, that misspecification of the model

presently used to predict waking function may have resulted in

the rejection of the null hypothesis; that is, the current evidence

of a non-linear interaction between processes S and C could

also point to an incorrect formulation of the two-process

model with regard to prediction of waking function. Such

model misspecification could stem from an inaccurate defini-

tion of the shape of the circadian process, for instance, which is

an issue that has been revisited from time to time (e.g.

Achermann and Borbély, 1994). There could also be an

additional, as yet unidentified regulatory process for waking

neurobehavioural function accumulating over time, which may

result in the mere appearance of a non-linear interaction term

during total sleep deprivation (irrespective of the non-linear

metric debate). Results from a laboratory experiment invol-

ving 14 days of chronic sleep restriction have suggested the

existence of such a novel process (Van Dongen and Dinges,

2002; Van Dongen et al., 2003b).

In the total sleep deprivation experiment of the present

paper, although the variable time was not directly involved in

the data analyses, a non-linear interaction between processes S

and C cannot be unequivocally distinguished from any

additional regulatory process for waking function varying

with time, because process S also built up continuously over

time. Data from forced desynchrony or ultradian sleep–wake

cycle paradigms, which provide a systematic scanning across

many combinations of different states of the processes S and C

– neither of which varies monotonically over time in these

paradigms – will be useful to resolve this matter. New studies

employing these paradigms with neurobehavioural measure-

ments scheduled at predetermined times a priori predicted to

yield identical P values (rather than nearly identical P values as

in the present study) with different underlying values of S and

C could enhance the precision of such inquiries. Whether using

existing or newly acquired data, though, those investigations

will inform the further development of biomathematical

models for the prediction of temporal changes in alertness

and performance (Van Dongen, 2003). This may ultimately

result in reliable tools for anticipating neurobehavioural

incapacitation as a result of sleep loss and/or circadian

misalignment.
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combination of the two processes (e.g. multiplicative). From a

statistical perspective, it is sufficient to call this an �interaction�;
the adjective �non-linear� specifies a particular type of interac-
tion which is not necessarily what is meant here. Nevertheless,

we used �non-linear interaction� in this paper, because it is
commonly used terminology in the context of the two-process

model of sleep regulation.
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