Pulmonary and Critical Care Medicine

Covid-19 Bootcamp #2

Jasleen Minhas, Katie Auriemma, Roger Kim

March 31, 2020
Presentation Slides and Tip sheets
Penn Medicine Tip Sheet: Personal Protective Equipment
Updated 3/5/2020 – newest version here

DONNING PPE
HAND HYGIENE

HIGH-RISK PROCEDURES & ALTERNATIVES
Nebulized bronchodilators
Inhaled epoprostenol (Prostacyclin)
BIPAP or HFNC
Mask ventilation
Ventilator disconnect
Open suctioning
Also includes: Intubation, CPR, bronchoscopy

PPE GUIDELINES

Workspaces
Non-PUI
PUI
Confirmed COVID-19 +
Aerosol Generating Procedures (PUI or COVID-19+)

RRT CODE

DOFFING PPE
SANITIZE GLOVES

HAND HYGIENE
Exit room

HAND GLOVES
Put on clean gloves

SANITIZE GLOVES

CONSERVING PPE

CHECK SHAREPOINT FOR UPDATES

Penn Medicine
Intranet

A quick reference guide created for the Division of Pulmonary and Critical Care Medicine. Contents may change as situation demands. Email Jeff Min & Jennifer Griemstine for corrections.
Please reach out to the following fellows for questions:

- Jeff Min: jeff.min@pennmedicine.upenn.edu
- Jen Ginestra: Jennifer.ginestra@pennmedicine.upenn.edu
- Jasleen Minhas: jasleen.minhas@pennmedicine.upenn.edu
Screening and Diagnosis
HUP COVID-19 Testing - Logistics

- Rapid Cartridge PCR with run time of < 45 minutes

- Specimens: obtained by MDs
 - Non intubated: NP or OP swab
 - Intubated: NP swab only

- Can be added on to RPP if sent in ED

- In house testing: currently only by approval from ID

Key Contact Information

HUP ID APPROVAL PAGER: (215)-614-0895 → contact 24/7 for in-house test approval
HUP COVID-19 Testing - Logistics

<table>
<thead>
<tr>
<th>Daily Volume</th>
<th>Result time</th>
<th>Population targeted</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urgent</td>
<td>120 tests/day</td>
<td><4 hours</td>
<td>Golden Ticket</td>
</tr>
<tr>
<td>Less Urgent</td>
<td>200 tests/day</td>
<td>4-12 hours</td>
<td>Blue Ticket</td>
</tr>
</tbody>
</table>

- As of 3/30 testing is being offered 24 hours a day
HUP COVID19 – Inpatient Protocol

Has patient had a recent RPP or rapid flu/RSV sample that is still in HUP lab

1. Call ID approval pager
2. Infection control completes COVID-19 Requisition form aka “Golden Ticket”. No order entry in EPIC
3. Deliver / tube form to Central Receiving (Founders 7)

1. Call ID approval pager
2. Infection control completes COVID-19 Requisition form aka “Golden Ticket” – form emailed/delivered in person
3. Collect Specimen
4. Deliver / tube form to Central Receiving (Founders 7)
Table 4. Common respiratory pathogens detected in COVID-19 patients and healthy controls

<table>
<thead>
<tr>
<th>Pathogens detected</th>
<th>COVID-19 patients (n=30)</th>
<th>Healthy controls (n=30)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (%)</td>
<td>No. (%)</td>
<td></td>
</tr>
<tr>
<td>IFV-A</td>
<td>18 (60.00)</td>
<td>0 (0.00)</td>
<td><0.0001</td>
</tr>
<tr>
<td>IFV-B</td>
<td>16 (53.33)</td>
<td>4 (13.33)</td>
<td>0.0018</td>
</tr>
<tr>
<td>MP</td>
<td>7 (23.33)</td>
<td>0 (0.00)</td>
<td>0.0105</td>
</tr>
<tr>
<td>LP</td>
<td>6 (20.00)</td>
<td>0 (0.00)</td>
<td>0.0237</td>
</tr>
<tr>
<td>RSV</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Nasopharyngeal Swabs

- PPE: surgical mask + eye protection + gown + gloves

- Procedure:
 - Tilt head back & insert swab parallel to palate
 - Stop when resistance met
 - Leave in place for 2 – 3 seconds
 - Rotate 10 – 15 sec
 - Repeat on other side

- OP swab: larger swab
- Immediately place both into sterile viral transport media vial
- Double bag specimen
- Include “golden ticket”
- Deliver to central receiving (Founders 7)
Correlation of Chest CT and RT-PCR

1049 patients suspected of COVID-19 underwent both chest CT and RT-PCR assays from January 6 to February 6, 2020.

Excluded 35 patients: Time-interval of CT and RT-PCR was longer than 7 days.

Included patients (n=1014)

- 580 patients with positive RT-PCR and positive CT
- 308 patients with negative RT-PCR and positive CT
- 21 patients with positive RT-PCR and negative CT
- 105 patients with negative RT-PCR and negative CT

Graph showing correlation between initial and follow-up chest CT with RT-PCR results, indicating progression and new positive cases.
Screening for COVID 19

- Logistics of screening
- Co-infections may occur with COVID 19
- Procedure of obtaining NP swab
- False negatives – more to come as we learn
Clinical Features and Course

Katie Auriemma
Actual Patients admitted in UPHS System

- 72M with confusion and a fever
- 80M with disequilibrium – activated for code stroke
- 68W with fever and SOB
- 72M with 1 week of diarrhea and emesis

All Covid-19 Positive
Early Reports of Epidemiology and Clinical Characteristics

Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

Nanshan Chen*, Min Zhou*, Xuan Dong*, Jiemei Qu*, Fengyuan Gong, Yang Han, Yang Qiu, Jingli Wang, Ying Liu, Yuan Wei, Jia’an Xia, Ting Yu, Xinmin Zhang, Li Zhang

- Lancet, February 15, 2020
- Largest early cohort of hospitalized patients
- Fever, cough, shortness of breath

<table>
<thead>
<tr>
<th>Signs and symptoms at admission</th>
<th>Patients (n=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>82 (83%)</td>
</tr>
<tr>
<td>Cough</td>
<td>81 (82%)</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>31 (31%)</td>
</tr>
<tr>
<td>Muscle ache</td>
<td>11 (11%)</td>
</tr>
<tr>
<td>Confusion</td>
<td>9 (9%)</td>
</tr>
<tr>
<td>Headache</td>
<td>8 (8%)</td>
</tr>
<tr>
<td>Sore throat</td>
<td>5 (5%)</td>
</tr>
<tr>
<td>Rhinorrhoea</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>Chest pain</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Nausea and vomiting</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>More than one sign or symptom</td>
<td>89 (90%)</td>
</tr>
<tr>
<td>Fever, cough, and shortness of breath</td>
<td>15 (15%)</td>
</tr>
</tbody>
</table>
NEJM, February 28, 2020
1099 patients – 93.6% hospitalized
Less than half of patients presented with fever
Vast majority did develop fever during hospitalization
Wide range of other reported symptoms
Cough, sputum, and fatigue most common

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients (N = 1099)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever on admission</td>
<td>473/1081 (43.8)</td>
</tr>
<tr>
<td>Patients — no./total no. (%)</td>
<td></td>
</tr>
<tr>
<td>Fever during hospitalization</td>
<td>975/1099 (88.7)</td>
</tr>
<tr>
<td>Patients — no./total no. (%)</td>
<td></td>
</tr>
</tbody>
</table>

Symptoms — no. (%)	
Conjunctival congestion	9 (0.8)
Nasal congestion	53 (4.8)
Headache	150 (13.6)
Cough	745 (67.8)
Sore throat	153 (13.9)
Sputum production	370 (33.7)
Fatigue	419 (38.1)
Hemoptysis	10 (0.9)
Shortness of breath	205 (18.7)
Nausea or vomiting	55 (5.0)
Diarrhea	42 (3.8)
Myalgia or arthralgia	164 (14.9)
Chills	126 (11.5)
Table 3. Complications, Treatments, and Clinical Outcomes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Patients (N=1099)</th>
<th>Disease Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nonsevere (N=926)</td>
</tr>
<tr>
<td>Complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septic shock — no. (%)</td>
<td>12 (1.1)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Acute respiratory distress syndrome — no. (%)</td>
<td>37 (3.4)</td>
<td>10 (1.1)</td>
</tr>
<tr>
<td>Acute kidney injury — no. (%)</td>
<td>6 (0.5)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Disseminated intravascular coagulation — no. (%)</td>
<td>1 (0.1)</td>
<td>0</td>
</tr>
<tr>
<td>Rhabdomyolysis — no. (%)</td>
<td>2 (0.2)</td>
<td>2 (0.2)</td>
</tr>
<tr>
<td>Physician-diagnosed pneumonia — no./total no. (%)</td>
<td>972/1067 (91.1)</td>
<td>800/894 (89.5)</td>
</tr>
<tr>
<td>Median time until development of pneumonia (IQR) — days*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After initial Covid-19 diagnosis</td>
<td>0.0 (0.0–1.0)</td>
<td>0.0 (0.0–1.0)</td>
</tr>
<tr>
<td>After onset of Covid-19 symptoms</td>
<td>3.0 (1.0–6.0)</td>
<td>3.0 (1.0–6.0)</td>
</tr>
</tbody>
</table>

15.7% of 1099 patients had “severe disease”
Clinical Characteristics of Coronavirus Disease 2019 in China

- 6.1% experienced the primary composite endpoint:
 - ICU admission - 5%
 - invasive MV - 2.3%
 - death - 1.4%

- Characteristics associated with worst outcomes
 - Older age
 - Comorbid illness

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Presence of Primary Composite End Point‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (N=67)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Median (IQR) — yr</td>
<td>63.0 (53.0–71.0)</td>
</tr>
<tr>
<td>Distribution — no./total no. (%)</td>
<td></td>
</tr>
<tr>
<td>0–14 yr</td>
<td>0</td>
</tr>
<tr>
<td>15–49 yr</td>
<td>12/65 (18.5)</td>
</tr>
<tr>
<td>50–64 yr</td>
<td>21/65 (32.3)</td>
</tr>
<tr>
<td>≥65 yr</td>
<td>32/65 (49.2)</td>
</tr>
<tr>
<td>Coexisting disorder — no. (%)</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>39 (58.2)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>7 (10.4)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>18 (26.9)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>24 (35.8)</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>6 (9.0)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>4 (6.0)</td>
</tr>
<tr>
<td>Hepatitis B infection</td>
<td>1 (1.5)</td>
</tr>
<tr>
<td>Cancer</td>
<td>1 (1.5)</td>
</tr>
<tr>
<td>Chronic renal disease</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>Immunodeficiency</td>
<td>0</td>
</tr>
</tbody>
</table>
4,226 total US cases at that time

Highest fatality in age ≥ 85 (10-27%)

Overall in US, persons age ≥ 65:
- 31% of cases
- 45% of hospitalizations
- 53% of ICU admissions
- 80% of deaths

Of ICU admissions
- 36% age 45-64
- 12% age 20-44
NYC and Philadelphia

▶ In Philadelphia, half of cases <40 years

▶ In NYC, majority of cases <65 years

NYC COVID-19 Cases

<table>
<thead>
<tr>
<th></th>
<th>Total Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>32308</td>
</tr>
<tr>
<td>Median Age (Range)</td>
<td>48 (0-105)</td>
</tr>
<tr>
<td>Age Group</td>
<td></td>
</tr>
<tr>
<td>- 0 to 17</td>
<td>611 (2%)</td>
</tr>
<tr>
<td>- 18 to 44</td>
<td>13794 (43%)</td>
</tr>
<tr>
<td>- 45 to 64</td>
<td>11146 (35%)</td>
</tr>
<tr>
<td>- 65 to 74</td>
<td>3790 (12%)</td>
</tr>
<tr>
<td>- 75 and over</td>
<td>2897 (9%)</td>
</tr>
<tr>
<td>- Unknown</td>
<td>70</td>
</tr>
<tr>
<td>Age 50 and over</td>
<td></td>
</tr>
<tr>
<td>- Yes</td>
<td>15074 (47%)</td>
</tr>
<tr>
<td>- No</td>
<td>17164 (53%)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>- Female</td>
<td>14293 (44%)</td>
</tr>
<tr>
<td>- Male</td>
<td>17971 (56%)</td>
</tr>
<tr>
<td>- Unknown</td>
<td>44</td>
</tr>
<tr>
<td>Borough</td>
<td></td>
</tr>
<tr>
<td>- Bronx</td>
<td>6145 (19%)</td>
</tr>
<tr>
<td>- Brooklyn</td>
<td>8451 (26%)</td>
</tr>
<tr>
<td>- Manhattan</td>
<td>5438 (17%)</td>
</tr>
<tr>
<td>- Queens</td>
<td>10373 (32%)</td>
</tr>
<tr>
<td>- Staten Island</td>
<td>1866 (6%)</td>
</tr>
<tr>
<td>- Unknown</td>
<td>35</td>
</tr>
<tr>
<td>Deaths</td>
<td>678</td>
</tr>
</tbody>
</table>
Imaging Findings

- A: 56M, d3 after Sx onset
- B: 74W, d10 after Sx onset
- C: 61W, d20 after Sx onset
- D: 63W, d17 after Sx onset

Shi H et al Lancet 2020
Imaging Findings

- Distribution CT patterns at various timepoints from symptom onset

Shi H et al. Lancet 2020
Laboratory Findings

- Leukopenia and lymphopenia (80%+)
- IL-6, Ferritin elevated
- D-Dimer, CRP, LDH elevated
- Procalcitonin generally low → may be high with bacterial superinfection
Disease Progression

Median time from onset to recovery:
- Mild: 2 weeks
- Severe: 3-6 weeks

Onset to development of severe disease:
- 1 week

Among those who have died, time of symptom onset to death:
- 2-8 weeks
Decompensation – Mainly Anecdotal

- **Respiratory Failure**
 - Rapidly progressive from hospital admission (often 7-10d out from symptom onset)

- **Shock**
 - Onset described when respiratory failure seems to be resolving
 - Described as cold/clamped, POCUS demonstrating impaired cardiac function

- **Cardiac Arrest**
 - VT/VF
 - PEA
Washington ICU Outcomes

- Case series of 21 critically ill patients from Washington State
- Published 3/19/20

- Over half had severe ARDS
- 2/3 developed shock requiring vasopressors
- 19% AKI
- 1/3 developed a cardiomyopathy

Table 2. Clinical Measures During the Course of Illness and Outcomes of 21 Critically Ill Patients With Coronavirus Disease 2019

<table>
<thead>
<tr>
<th>Clinical measures</th>
<th>No. (%) of patients³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute respiratory distress syndrome (ARDS)ᵇ</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1 (4.8)</td>
</tr>
<tr>
<td>Mild</td>
<td>2 (9.5)</td>
</tr>
<tr>
<td>Moderate</td>
<td>6 (28.6)</td>
</tr>
<tr>
<td>Severe</td>
<td>12 (57.1)</td>
</tr>
<tr>
<td>Required mechanical ventilation</td>
<td>15 (71.0)</td>
</tr>
<tr>
<td>Use of vasopressors</td>
<td>14 (67.0)</td>
</tr>
<tr>
<td>Acute kidney failureᵈ</td>
<td>4 (19.1)</td>
</tr>
<tr>
<td>Cardiomyopathyᵉ</td>
<td>7 (33.3)</td>
</tr>
<tr>
<td>Acute hepatic injuryᶠ</td>
<td>3 (14.3)</td>
</tr>
<tr>
<td>Seizures</td>
<td>1 (4.8)</td>
</tr>
<tr>
<td>Length of follow-up, mean (range), d</td>
<td>5.2 (1-10)</td>
</tr>
</tbody>
</table>

Outcomes

Died	11 (52.4)
Survived to transfer out of ICU	2 (9.5)
Remains critically ill and requires mechanical ventilation	8 (38.1)
Length of follow-up for those who survived or remain critically ill, mean (range), d	7.5 (5-10)

Arentz M et al JAMA 2020
Critical Care Management

Roger Kim
Outline

- Respiratory failure
- Mechanical ventilation
- Hemodynamic management
- Novel strategies / future directions
Respiratory failure algorithms

UPHS guidelines
March 27, 2020
Respiratory support general principles

- Favor early intubation
- Avoid NIPPV (i.e. CPAP, BiPAP)
- Limit HFNC use to 10-20 L/min flow rate and 60% FiO2
Acute hypoxic respiratory failure

1. **SaO2 <92% +/- ↑ WOB Despite 6 L/min NC**

 - Transfer to airborne isolation room and use airborne, droplet, & contact isolation PPE

2. **Early intubation**
 - *call anesthesia STAT*
 - Yes
 - Rapidly worsening?
 - No

 - Consider HFNC up to 10-20 L/min + 60% FiO2
 - *surgical mask over patient’s nose + mouth*

 - No

 - Clinical stability within 1 hour?
 - No
 - Yes
Acute on chronic hypoxic respiratory failure

1. \(\text{SaO}_2 <88\% \pm \uparrow \text{WOB} \)
 Despite baseline \(>6 \text{ L/min NC} \)

2. Transfer to airborne isolation room and use airborne, droplet, & contact isolation PPE

3. Intubation
 - *call anesthesia STAT*

4. HFNC up to 10-20 L/min + 60% FiO2
 - or NRB up to 10-12 L/min
 - *surgical mask over patient's nose + mouth*

5. Clinical stability?
 - No
 - Yes

Penn Medicine
Acute / acute on chronic hypercapnic respiratory failure

- Acutely rising PCO2 with respiratory acidosis
- Transfer to airborne isolation room and use airborne, droplet, & contact isolation PPE
- Early intubation
 *call anesthesia STAT
Stable chronic hypercapnic respiratory failure

Baseline NIPPV use

Transfer to airborne isolation room and use airborne, droplet, & contact isolation PPE

NIPPV prohibited

Indication for NIPPV strictly OSA?

Yes

No

Contact NIPPV team
HUP: 215-964-7480
PMC: 267-591-3767
PAH: 610-529-5171
CCH: 610-731-9736
MCP: 732-672-6450
LGH: 412-491-7603
ARDS mechanical ventilation strategies

UPHS guidelines
March 27, 2020

SCCM COVID-19 guidelines
March 2020
ARDS mechanical ventilation general principles

- Low-stretch (lung protective) ventilation

- High PEEP strategy

- Conservative fluid strategy

- Refractory hypoxemia
 - Neuromuscular blocking agents (NMBA)
 - Prone ventilation
ARDS mechanical ventilation general principles

- Low-stretch (lung protective) ventilation
- High PEEP strategy
- Conservative fluid strategy
- Refractory hypoxemia
 - Neuromuscular blocking agents (NMBA)
 - Prone ventilation
Low-stretch (lung protective) ventilation

- **Volume assist control (VAC) with low tidal volumes**
 - Vt 4-8 mL/kg of predicted ideal body weight (start at 6 mL/kg)

- **Target plateau pressure (P_{plat})<30 cm H_2O**

- **Goal pH: 7.30-7.45**

- **Goal SpO2: 92-96%**

- **Ventilator dyssynchrony is common**
 - Adequate sedation is required
 - Consider RASS goal of -2 to -3
High PEEP strategy

- PEEP-responsive ARDS with driving pressures <15 cm H₂O consistently reported

- Start with PEEP of >14-18 cm H₂O

- Risk of PTX and hemodynamic compromise
Peak inspiratory pressure (P_{peak})

Driving Pressure (ΔP) = P_{plateau} - PEEP

Average pressures represented by AUC / time → Mean airway pressure

$C_{\text{dyn}} = TV / [P_{\text{peak}} - \text{PEEP}]$

$C_{\text{stat}} = TV / [P_{\text{plateau}} - \text{PEEP}]$
High PEEP strategy

- PEEP-responsive ARDS with driving pressures <15 cm H₂O consistently reported
- Start with PEEP of ≥14-18 cm H₂O
- Risk of PTX and hemodynamic compromise

<table>
<thead>
<tr>
<th>FiO₂</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FiO₂</th>
<th>0.5</th>
<th>0.5-0.8</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>
Conservative fluid strategy

- No consensus on definition
- Diurese to avoid obvious volume overload
- Diurese if SpO2 <92% despite optimization of ventilator mechanics
- Consider diuresis if on low-dose pressors with normal renal function
Neuromuscular blocking agents (NMBA)

- Intermittent boluses to facilitate lung protective ventilation

- Continuous infusion <48 hrs for prone ventilation, persistent $P_{plat} > 30$ cm H$_2$O, or persistent ventilator dyssynchrony

Prone ventilation

- Use if $P:F < 150$, FiO$_2 > 60\%$, and PEEP > 5 cm H$_2$O after > 12 hours of ventilator support

- Prone 16-18 hours per day

- Stop:
 - When $P:F > 150$ with PEEP ≤ 10 cm H$_2$O and FiO$_2 \leq 60\%$ in supine position for ≥ 4 hours
 - If prone position decreases $P:F$ by $> 20\%$ compared to supine position
Refractory hypoxemia – strategies to consider

<table>
<thead>
<tr>
<th>Traditional recruitment maneuvers</th>
<th>Bronchoscopy ONLY in following situations:</th>
<th>VV-ECMO Consider if all other interventions exhausted AND any 1 of following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 30-40 cm H₂O for 30-40 s</td>
<td>• Complete lung atelectasis from mucous plugging with worsening hypoxemia</td>
<td>• Injurious ventilator settings necessary to achieve adequate oxygenation</td>
</tr>
<tr>
<td>• If oxygenation improves, use higher PEEP</td>
<td>• Massive hemoptysis with need to clear blood/clot and place bronchial blocker</td>
<td>• Uncontrolled respiratory acidosis</td>
</tr>
<tr>
<td></td>
<td>• Unable to obtain tracheal aspirate for VAP workup</td>
<td>• Right heart failure with persistent organ dysfunction despite lung protective ventilation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• May need to switch to VA-ECMO if does not improve with VV-ECMO</td>
</tr>
</tbody>
</table>
Refractory hypoxemia – NOT recommended strategies

Inhaled epoprostenol (i.e. Flolan, Veletri)

- No mortality benefit
- May clog vent filter and increase risk of aerosolization
- Can consider a trial of inhaled nitric oxide after discussion with pharmacy

Staircase (incremental PEEP) recruitment maneuvers

- Defined as incremental increases in PEEP from 25 to 35 to 45 cm H$_2$O for 1-2 min. each
- May be associated with increased mortality
Hemodynamic management

UPHS guidelines
March 27, 2020

SCCM COVID-19 guidelines
March 2020
Septic shock management

- Empiric antibiotics in mechanically ventilated patients
- Conservative isotonic crystalloid fluids (LR > NS) for acute resuscitation
 - Preferred over hydroxyethyl starches, dextrans, gelatins, or albumin
- Norepinephrine = preferred 1st line vasoactive agent
 - If not available, consider vasopressin or epinephrine
 - Preferred over dopamine
- Vasopressin = preferred 2nd line vasoactive agent
 - If not available, consider epinephrine
- MAP goal: 60-65 mmHg
- Consider “stress-dose” steroids (hydrocortisone 200 mg/d) for refractory shock
COVID-19 hemodynamic considerations

- Start norepinephrine at 0.05-0.1 mcg/kg/min immediately after intubation and titrate accordingly

- Presumed viral myocarditis → cardiac dysfunction / fluid overload
 - Favor negative fluid balance without causing organ hypoperfusion
 - Consider diuresis if POCUS reveals non-collapsible IVC
 - Dynamic hemodynamic reassessment with POCUS TTE
 - Consider VA-ECMO for severe myocarditis causing cardiogenic shock

- Ensure adequate preload in setting of high PEEP ventilatory strategy
 - Consider careful IVF boluses if PEEP >15cm H₂O
Novel strategies / future directions
Awake prone ventilation

- Floor patients with hypoxic respiratory failure on supplemental O2 (including HFNC)

- **NOT** recommended in patients with:
 - Chronic lung disease
 - Chest tubes
 - Spinal instability
 - Cardiogenic pulmonary edema
 - GCS <15
 - PaCO2 >45 mmHg

- Prone for ≥2-4 hours bid as tolerated
BMI-based PEEP ventilatory strategy

<table>
<thead>
<tr>
<th>BMI</th>
<th>Starting PEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>10</td>
</tr>
<tr>
<td>35-50</td>
<td>12</td>
</tr>
<tr>
<td>>50</td>
<td>15</td>
</tr>
</tbody>
</table>
Future directions

- Define PEEP weaning and prolonged SBT protocol

- Standardize approach to cardiac monitoring
 - Daily EKG not recommended
 - Early POCUS vs. TTE?

- Standardize sedation protocol
 - Concerns about propofol (↑TG’s & LFT’s)
 - Cisatracurium shortage

- Standardize laboratory testing frequency
 - D-dimer, procalcitonin, LFT’s, LDH, ferritin, WBC w/ diff, CRP, IL-6, coags
Supplemental slides / figures
Penn Medicine Tip Sheet: Escalation of Care for Respiratory Failure

ACUTE RESPIRATORY FAILURE
Are O₂ requirements or work of breathing rapidly escalating?

COVID-19 STATUS

<table>
<thead>
<tr>
<th>Non-COVID / Non-PUI</th>
<th>COVID-19 PUI</th>
<th>COVID-19 Confirmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade to droplet + contact isolation Close door, minimize entry</td>
<td>Upgrade to airborne + contact isolation Move to negative pressure room if possible</td>
<td>Call lab to expedite results</td>
</tr>
<tr>
<td>Call ID for testing (hypercapnia only)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYPOXEMIA (↑WOB or SaO₂ <92% on ≥6L RPM)

<table>
<thead>
<tr>
<th>Normal management</th>
<th>Trial HFNC Flow: 10-20 LPM; FiO₂: up to 60%</th>
<th>Only if chronic baseline O₂ ≥6 LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Trial NRB Flow: 10-12 LPM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYPERCAPNIA

- Start NPPV Non-vented mask
 - Active ventilation circuit w/ exhalation filter
 - Healthcare workers to wear N95 until COVID testing is negative
- Consider Early Intubation if high risk for COVID-19 or impending respiratory failure
- Early Intubation
 - Risk of rapid progression of respiratory failure requiring mechanical ventilation

EARLY INTUBATION

- All intubations, including ICU intubations should be called overhead STAT
 - Ward (neg pressure): intubate in room prior to ICU transfer
 - Ward (regular): transfer to ICU with mask on patient, then intubate
 - For most patients, use Low Stretch Protocol for ARDS
 - SaO₂ < 92% or pH < 7.3 despite maximal interventions

Stable Chronic Hypercapnia

- Upgrade isolation by COVID-19 status as per acute respiratory failure algorithm.
 - OSA: No NPPV allowed
 - COPD, OHS, NMD: contact hospital NIV team
 - HUP: 215-964-7480 CCH: 610-731-9736
 - PMC: 267-591-3767 MCP: 732-672-6450
 - Pah: 610-529-5171 CHH: 412-491-7603
 - 215-498-6357 acute

Adapted from the UPHS Critical Care Clinical Operations COVID-19 guidelines. UPHS CCOG guidelines are rapidly evolving - check Penn SharePoint for most updated information. Email Jeff Min & Jennifer Giavrieta for corrections.
COVID-19 with hypoxia

Indication for endotracheal intubation?

Yes

Tolerating supplemental oxygen?

No

Tolerating HFNC

Consider: HFNC

Not tolerating HFNC or HFNC is not available

No

Indication for endotracheal intubation?

Yes

Consider: a trial of NIPPV

Do it: Monitor closely at short intervals

Do not: Delay intubation if worsening

Do it: Monitor closely for worsening

Do it: Target SPO₂ 92 to 96%

Do it: Appropriate infection control precautions

Do not: Delay intubation if worsening

Do it: Endotracheal intubation

Do it: Expert in airway to intubate

Do it: Use N-95/FFP-2 or equivalent and other PPC/Infection control precautions

Do it: Minimize staff in the room

Consider: if available Video-laryngoscope
<table>
<thead>
<tr>
<th>Timing</th>
<th>Within 1 week of a known clinical insult or new or worsening respiratory symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest imaging(^a)</td>
<td>Bilateral opacities—not fully explained by effusions, lobar/lung collapse, or nodules</td>
</tr>
<tr>
<td>Origin of edema</td>
<td>Respiratory failure not fully explained by cardiac failure or fluid overload. Need objective assessment (eg, echocardiography) to exclude hydrostatic edema if no risk factor present</td>
</tr>
<tr>
<td>Oxygenation(^b)</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>200 mm Hg < Pao(_2)/FiO(_2) ≤ 300 mm Hg with PEEP or CPAP ≥ 5 cm H(_2)O(^c)</td>
</tr>
<tr>
<td>Moderate</td>
<td>100 mm Hg < Pao(_2)/FiO(_2) ≤ 200 mm Hg with PEEP ≥ 5 cm H(_2)O</td>
</tr>
<tr>
<td>Severe</td>
<td>Pao(_2)/FiO(_2) ≤ 100 mm Hg with PEEP ≥ 5 cm H(_2)O</td>
</tr>
</tbody>
</table>

Abbreviations: CPAP, continuous positive airway pressure; FiO\(_2\), fraction of inspired oxygen; Pao\(_2\), partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure.

\(^a\) Chest radiograph or computed tomography scan.

\(^b\) If altitude is higher than 1000 m, the correction factor should be calculated as follows: [Pao\(_2\)/FiO\(_2\) × (barometric pressure/760)].

\(^c\) This may be delivered noninvasively in the mild acute respiratory distress syndrome group.
<table>
<thead>
<tr>
<th>Height</th>
<th>PBW</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4'10"</td>
<td>58</td>
<td>45.4</td>
<td>180</td>
<td>230</td>
<td>270</td>
<td>320</td>
</tr>
<tr>
<td>4'11"</td>
<td>59</td>
<td>47.7</td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>330</td>
</tr>
<tr>
<td>5'0"</td>
<td>60</td>
<td>50</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>5'1"</td>
<td>61</td>
<td>52.3</td>
<td>210</td>
<td>260</td>
<td>310</td>
<td>370</td>
</tr>
<tr>
<td>5'2"</td>
<td>62</td>
<td>54.6</td>
<td>220</td>
<td>270</td>
<td>330</td>
<td>380</td>
</tr>
<tr>
<td>5'3"</td>
<td>63</td>
<td>56.9</td>
<td>230</td>
<td>280</td>
<td>340</td>
<td>400</td>
</tr>
<tr>
<td>5'4"</td>
<td>64</td>
<td>59.2</td>
<td>240</td>
<td>300</td>
<td>360</td>
<td>410</td>
</tr>
<tr>
<td>5'5"</td>
<td>65</td>
<td>61.5</td>
<td>250</td>
<td>310</td>
<td>370</td>
<td>430</td>
</tr>
<tr>
<td>5'6"</td>
<td>66</td>
<td>63.8</td>
<td>260</td>
<td>320</td>
<td>380</td>
<td>450</td>
</tr>
<tr>
<td>5'7"</td>
<td>67</td>
<td>66.1</td>
<td>270</td>
<td>330</td>
<td>400</td>
<td>460</td>
</tr>
<tr>
<td>5'8"</td>
<td>68</td>
<td>68.4</td>
<td>280</td>
<td>340</td>
<td>410</td>
<td>480</td>
</tr>
<tr>
<td>5'9"</td>
<td>69</td>
<td>70.7</td>
<td>290</td>
<td>350</td>
<td>420</td>
<td>490</td>
</tr>
<tr>
<td>5'10"</td>
<td>70</td>
<td>73</td>
<td>300</td>
<td>370</td>
<td>440</td>
<td>510</td>
</tr>
<tr>
<td>5'11"</td>
<td>71</td>
<td>75.3</td>
<td>310</td>
<td>380</td>
<td>450</td>
<td>530</td>
</tr>
<tr>
<td>6'0"</td>
<td>72</td>
<td>77.6</td>
<td>320</td>
<td>390</td>
<td>470</td>
<td>540</td>
</tr>
<tr>
<td>6'1"</td>
<td>73</td>
<td>79.9</td>
<td>330</td>
<td>400</td>
<td>480</td>
<td>560</td>
</tr>
<tr>
<td>6'2"</td>
<td>74</td>
<td>82.2</td>
<td>340</td>
<td>410</td>
<td>490</td>
<td>580</td>
</tr>
<tr>
<td>6'3"</td>
<td>75</td>
<td>84.5</td>
<td>350</td>
<td>420</td>
<td>510</td>
<td>590</td>
</tr>
<tr>
<td>6'4"</td>
<td>76</td>
<td>86.8</td>
<td>360</td>
<td>430</td>
<td>520</td>
<td>610</td>
</tr>
<tr>
<td>6'5"</td>
<td>77</td>
<td>89.1</td>
<td>370</td>
<td>450</td>
<td>530</td>
<td>620</td>
</tr>
<tr>
<td>6'6"</td>
<td>78</td>
<td>91.4</td>
<td>380</td>
<td>460</td>
<td>550</td>
<td>640</td>
</tr>
</tbody>
</table>
INCLUSION CRITERIA: Acute onset of
1. \(P_{a}O_{2}/FiO_{2} \leq 300 \) (corrected for altitude)
2. Bilateral (patchy, diffuse, or homogeneous) infiltrates consistent with pulmonary edema
3. No clinical evidence of left atrial hypertension

PART I: VENTILATOR SETUP AND ADJUSTMENT
1. Calculate predicted body weight (PBW)
 - Males = 50 + 2.3 \[\text{height (inches)}\] - 60
 - Females = 45.5 + 2.3 \[\text{height (inches)}\] - 60
2. Select any ventilator mode
3. Set ventilator settings to achieve initial \(V_{T} = 8 \text{ ml/kg PBW} \)
4. Reduce \(V_{T} \) by 1 ml/kg at intervals ≤ 2 hours until \(V_{T} = 6 \text{ ml/kg PBW} \).
5. Set initial rate to approximate baseline minute ventilation (not > 35 bpm).
6. Adjust \(V_{T} \) and RR to achieve pH and plateau pressure goals below.

OXYGENATION GOAL: \(P_{a}O_{2} \geq 55-80 \) mmHg or \(SpO_{2} \geq 88-95\%
Use a minimum PEEP of 5 cm H\(_2\)O. Consider use of incremental \(FiO_{2}/PEEP \) combinations such as shown below (not required) to achieve goal.

Lower PEEP/higher \(FiO_{2} \)

<table>
<thead>
<tr>
<th>(FiO_{2})</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(FiO_{2})</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>0.9</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>18-24</td>
</tr>
</tbody>
</table>

Higher PEEP/lower \(FiO_{2} \)

<table>
<thead>
<tr>
<th>(FiO_{2})</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(FiO_{2})</th>
<th>0.5</th>
<th>0.5</th>
<th>0.8</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

PLATEAU PRESSURE GOAL: ≤ 30 cm H\(_2\)O
Check \(P_{p}lat \) (0.5 second inspiratory pause), at least q 4h and after each change in PEEP or \(V_{T} \).

- If \(P_{p}lat \geq 30 \) cm H\(_2\)O: decrease \(V_{T} \) by 1 ml/kg steps (minimum = 4 ml/kg).
- If \(P_{p}lat < 25 \) cm H\(_2\)O and \(V_{T} < 6 \) ml/kg, increase \(V_{T} \) by 1 ml/kg until Pplat > 25 cm H\(_2\)O or \(V_{T} = 6 \) ml/kg.
- If \(P_{p}lat < 30 \) and breath stacking or dys-synchrony occurs: may increase \(V_{T} \) in 1ml/kg increments to 7 or 8 ml/kg if Pplat remains ≤ 30 cm H\(_2\)O.
pH GOAL: 7.30–7.45

Acidosis Management: (pH < 7.30)
 If pH 7.15–7.30: Increase RR until pH > 7.30 or PaCO₂ < 25
 (Maximum set RR = 35).

If pH < 7.15: Increase RR to 35.
 If pH remains < 7.15, V̇₁ may be increased in 1 ml/kg steps until pH > 7.15 (Pplat target of 30 may be exceeded).
 May give NaHCO₃

Alkalosis Management: (pH > 7.45) Decrease vent rate if possible.

I: E RATIO GOAL: Recommend that duration of inspiration be ≤ duration of expiration.

PART II: WEANING

A. Conduct a SPONTANEOUS BREATHING TRIAL daily when:
 1. FiO₂ ≤ 0.40 and PEEP ≤ 8 OR FiO₂ ≤ 0.50 and PEEP ≤ 5.
 2. PEEP and FiO₂ ≤ values of previous day.
 3. Patient has acceptable spontaneous breathing efforts. (May decrease vent rate by 50% for 5 minutes to detect effort.)
 4. Systolic BP ≥ 90 mmHg without vasopressor support.
 5. No neuromuscular blocking agents or blockade.

B. SPONTANEOUS BREATHING TRIAL (SBT):
 If all above criteria are met and subject has been in the study for at least 12 hours, initiate a trial of UP TO 120 minutes of spontaneous breathing with FiO₂ ≤ 0.5 and PEEP ≤ 5:
 1. Place on T-piece, trach collar, or CPAP ≤ 5 cm H₂O with PS ≤ 5
 2. Assess for tolerance as below for up to two hours.
 a. SpO₂ ≥ 90: and/or PaO₂ ≥ 60 mmHg
 b. Spontaneous V̇₁ ≥ 4 ml/kg PBW
 c. RR ≤ 35/min
 d. pH ≥ 7.3
 e. No respiratory distress (distress = 2 or more)
 ➢ HR > 120% of baseline
 ➢ Marked accessory muscle use
 ➢ Abdominal paradox
 ➢ Diaphoresis
 ➢ Marked dyspnea
 3. If tolerated for at least 30 minutes, consider extubation.
 4. If not tolerated resume pre-weaning settings.

Definition of UNASSISTED BREATHING
(Different from the spontaneous breathing criteria as PS is not allowed)

1. Extubated with face mask, nasal prong oxygen, or room air, OR
2. T-tube breathing, OR
3. Tracheostomy mask breathing, OR
4. CPAP less than or equal to 5 cm H₂O without pressure support or IMV assistance.
COVID-19 with mild ARDS

- **Do:**
 - Vt 4-8 ml/kg and $P_{plat} < 30$ cm H$_2$O

- **Do:**
 - Investigate for bacterial infection

- **Do:**
 - Target SPO2 92% - 96%

- **Consider:**
 - Conservative fluid strategy

- **Consider:**
 - Empiric antibiotics

- **Uncertain:**
 - Systematic corticosteroids

COVID-19 with Mod to Severe ARDS

- **Consider:**
 - Higher PEEP

- **Consider:**
 - NMBA boluses to facilitate ventilation targets

- **Consider:**
 - If PEEP responsive
 - Traditional Recruitment maneuvers

- **Consider:**
 - Prone ventilation 12-16 h

- **Consider:**
 - If proning, high P_{plat}, asynchrony
 - NMBA infusion for 24 h

- **Consider:**
 - If proning, high P_{plat}, asynchrony
 - NMBA infusion for 24 h

- **Consider:**
 - Prone ventilation 12-16 h

- **Consider:**
 - STOP if no quick response
 - A trial of inhaled Nitric Oxide

- **Consider:**
 - V-V ECMO or referral to ECMO center

Rescue/Adjunctive therapy

- **Uncertain:**
 - Antivirals, chloroquine, anti-IL6

- **Consider:**
 - If proning, high P_{plat}, asynchrony
 - NMBA infusion for 24 h

- **Consider:**
 - Prone ventilation 12-16 h

- **Consider:**
 - STOP if no quick response
 - A trial of inhaled Nitric Oxide

- **Consider:**
 - If proning, high P_{plat}, asynchrony
 - NMBA infusion for 24 h

- **Consider:**
 - V-V ECMO or referral to ECMO center

- **Don’t do:**
 - Staircase Recruitment maneuvers

- **Consider:**
 - Short course of systemic corticosteroids

- **Uncertain:**
 - Antivirals, chloroquine, anti-IL6