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Abstract— Epigenetic landscapes reveal how cells regulate genes 

in a cell-type or condition specific manner. Genome-wide surveys 

using histone modification showed cell-type specific regulatory 

regions. A number of computational methods were designed to 

identify cell-type specific regulatory regions using epigenome 

data. Most of them were designed to identify the enrichment of 

histone modification or their changes. However, they did not 

consider the shape of epigenetic signals, which represents the 

condition for protein binding at gene regulatory regions.  

We present a computational method to detect epigenetic 

changes using the shape of the signals for histone modification. 

Employing a Gaussian Derivative Wavelet (CGDWavelet) 

approach, the proposed method models a nucleosome with a 

Gaussian and detects the peak and the edges of the Gaussian. 

Using the detected parameters across two samples, CGDWavelet 

classifies epigenetic changes. We applied CGDWavelet to the 

histone modification data from mouse embryonic stem cells 

(mESCs) and neural progenitor cells (mNPCs) and identified 

four groups of epigenetic changes. Associating each group with 

gene expression, we found that gene expression is affected by 

chromatin structure as well as the intensity of histone 

modification. We found that Smad1, Sox2 and Nanog but not 

Oct4 bind to the epigenetically variable regions for H3K4me3. 

Software is available at http://wonk.med.upenn.edu/CGDWavelet 
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I. INTRODUCTION  

Gene regulation is orchestrated by many factors including 

transcription factors (TFs), their co-factors, RNA polymerase 

as well as epigenetic status. The epigenetic landscapes, 

represented by modifications to histones, DNA methylation 

and other proteins that package the genome, regulate the 

function of cells by activating or repressing gene activity [1, 2]. 

Epigenetic changes represent the changes in the environment 

for gene regulation. Epigenetic changes during cell 

differentiation reflect the commitment to a lineage, leading to 

cell-type specific gene regulation [4, 5]. Environmental 

changes also affect the epigenetic landscapes. Treatment of 

androgen receptor agonist to the prostate cancer cells changed 

the positions of nucleosomes as well as the associated histone 

modification patterns [6].  

Large portion of genomic regions are enriched for various 

epigenetic marks. Promoters, regulatory regions around gene 

transcription start sites (TSSs) are associated with active 

histone mark such as tri-methylation of Lys4 of H3 

(H3K4me3) and histone acetylation when it is active. 

Enhancers, distal regulatory region for gene regulation, are 

enriched for mono-, di-, and tri-methylation of Lys4 of H3 

(H3K4me1/2) and histone acetylation [7, 8]. Repressed genes 

are enriched for repressive histone modification marks such as 

H3K27me3, H3K9me3 and H3K20me3. Histone modifications 

were used to predict regulatory regions and transcription factor 

binding sites (TFBSs) [9-12]. At TFBSs, bimodal histone 

modification patterns were observed, showing a nucleosome 

free region at the center. DNaseI hypersensitive sites, therefore, 

were successfully used to predict TFBSs. He et al. successfully 

identified dynamic nucleosome changes using H3K4me2 and 

found FoxA1 binding sites [6]. At promoters, a dynamic 

equilibrium switch mechanism suggests the competition 

between nucleosomes and TFs [13-15]. These lines of evidence 

suggest the importance of epigenetic changes for condition-

dependent gene regulation. Also, it is required to develop  

computational algorithms to identify epigenetic changes to 

understand condition-specific gene regulation.  

In this paper, we suggest a method, called CGDWavelet, 

one extension version of our method in [5] , which uses 

Gaussian derivative wavelets to detect epigenetic changes. 

CGDWavelet identifies the shapes of histone modification and 

evaluates their changes across two samples. To focus on the 

epigenetic changes at gene regulatory regions, CGDWavelet 

uses active histone marks such as H3K4me1/2/3 or any histone 

acetylation and identifies bimodal peaks and their changes. 

Previously, we developed AWNFR which detects nucleosome 

position based on histone modification data using wavelet 

transform [5]. Inherited from AWNFR, CGDWavelet uses 

wavelet to identify the parameters of a Gaussian function that 

models a nucleosome. Compared with AWNFR which uses 

mixture of Gaussian to model a nucleosome [5], CGDWavelet 

uses a simple Gaussian to improve the speed of 

implementation. Algorithmically, CGDWavelet is equipped 

with 1-dimensional (1D) scalogram to detect bimodal peaks 

more efficiently and provide more parameters for subsequent 

classification of epigenetic changes.  

A number of algorithms were developed to detect 

nucleosome positions or nucleosome free regions (NFRs) using 

histone modification [9, 16-18]. Compared with them, 

CGDWavelet was designed to detect dynamic changes of 



nucleosome without any post-processing. Compared with [6], 

which detects dynamic nucleosome positions using signal 

intensities, CGDWavelet employed wavelet transform for 

accurate prediction of nucleosome positions.  ChIPDiff, DHMS 

and diffReps were developed to detect the region with 

epigenetic changes [19-21]. While they focused on the 

differential level of histone modification signals at certain 

regions, CGDWavelet is focused on the changes of the 

epigenetic patterns.  

Using CGDWavelet, we investigated the epigenetic 

changes from mouse embryonic stem cell (mESCs) to mouse 

neural progenital cells (mNPCs).  Based on the obtained 

Gaussian parameters, CGDWavelet classifies epigenetic 

changes into 4 groups: 1) loss of bimodal peak, 2) only the 

histone modification levels are changed  (or no substantial 

changes) 3) slight closure of the chromatin structure and 4) full 

closure of the chromatin structure. We found that gene 

expression was closely related with opening of chromatin 

structure. We also studied TFs associated with each group of 

epigenetic changes. 

.   

II. METHOLODY 

CGDWavelet uses a Gaussian derivative wavelet method to 

detect nucleosome positions marked by histone modifications. 

CGDWavelet decomposes the histone modification data and 

converts them into the wavelet domain. After assuming a 

Gaussian for a nucleosome, CGDWavelet calculates the edges 

and the peaks of the Gaussian using zero-crossing lines and 

1D wavelet [3, 22]. The obtained parameters of the Gaussians 

are used to detect nucleosomes and their dynamic changes.  

A. One-directional wavelet scholargram 

The wavelet transform of histone modification signal can be 

rewritten as a multi-scale differential operator  
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The first derivative of (3) is 
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  and �)�� + 1� − �)��� = 0	 for 

any scale s. The zero points, �), across scales result in zero-

crossing lines whose positions is corresponding to the peaks of 

histone modification signals. If the zero-crossing line is a 

continuous line with length N, the positions of the peaks are  
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The scalogram in 2D is   
�1��, �� = 100 × �345�6,��√� ��

∑ �345�6,��√� ��7�84
.   (5)  

        

     However, detecting breakpoints with 2D scalogram is 

computationally exhaustive. To solve this, we changed the 2D 

scalogram into 1D scalogram.  For this, ridge lines [23] were 

identified by linking the local maxima of 2D scalogram at 

each scale level. We denote 9: and ;��� as linking line length 

and a vector for linked maxima at for 	u.  Also in this step, the 

ridge line with a length smaller than a certain threshold is set 

to zero.  
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Then, 1D scalogram can be described as 
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1D scalogram is used to detect the strength and the position of 

the edges of the Gaussians.  

 

B. The procedure of CGDwavetlet  

In CGDWavelet, the left and the right peak of bimodal 

histone modification signals are modelled with two separated 

Gaussians. A nucleosome free region is the region located 

between the two imaginary Gaussians.  Figure 1 summarizes 

the procedure used for CGDWavelet. First, deep sequencing 

(ChIP-seq) signals for histone modification are decomposed to 

multi sub-bands in the wavelet domain. The first Gaussian 

derivative wavelet is applied to detect the position of the left 

and the right peak as well as the valley. 1D wavelet scalogram 

is used to estimate the edges of the imaginary Gaussian. We 

defined a bimodal peak if the distance between the two 

Gaussians is larger than 150 base pairs (bps) and smaller than 

1500 bps.  In the quantification step, we also removed the 



bimodal peaks with their heights of the Gaussians were below a 

certain threshold. After quantification, we received a list of 

bimodal peaks.  

To identify the dynamic nucleosome changes, we 

investigated the intensity levels of histone modification from 

two samples. CGDWavelet applies correlation to the obtained 

Gaussian parameters and classifies epigenetic changes.  

Figure 2 demonstrates how CGDWavelet identifies the 

Gaussian parameters from histone modification signals. The 

input data (H3K4me1, top panel) is decomposed to the wavelet 

domain by using Gaussian derivative wavelet (the second 

panel). Zero-crossing lines detect local maxima that represent 

the peaks and the valleys of the histone modification signals 

(the third panel). The length of zero-crossing lines represents 

the frequency of the corresponding Gaussian peaks. In Figure 

2, five blue lines and four green lines were obtained after zero-

crossing. Applying 1D wavelet scalogram (the bottom panel), 

we receive the edges of the Gaussians. After quantification, the 

lines below a certain threshold are ignored and two bimodal 

peaks were obtained.  

 

CGDWavelet calculates a binding score from the obtained 

Gaussian parameters. A binding score is defined as  

a binding score = l(left peak) + l(right peak) -2*l(valley), 

where l() is the intensity levels for peaks or valleys.  

 

 

C. Clustering  

We applied correlation to the obtained Gaussian parameters 

to identify epigenetic changes. Based on the correlation 

coefficient and the signal levels, we defined 4 groups: 1) loss of 

bimodal peak, 2) only the histone modification levels are 

changed without any changes in their shape 3) a slight closure 

of chromatin structure 4) represents a full closure of chromatin 

structure. 

Figure 1. The procedure of CGDWavelet. CGDWavelet

is composed a number of steps to identify the parameters 

of a Gaussian that models a nucleosome. After the entire 

steps, CGDWavelet produce a list of bimodal peaks and 

their variations.  

Figure 2. CGDWavelet identifies the Gaussian parameters using 
zero-crossing and 1D scalogram. Histone modification data (the top 

panel) is converted into the wavelet domain (the second panel). The 

vertical axis in the wavelet domain represents the wavelet scale. The 

zero-crossing lines detect the corresponding peak positions (the third 

panel). The green lines represent the positive Gaussian peaks 

(concave) and the blue lines are corresponding to negative Gaussian 

peaks (convex). The fourth panel shows the detected edges of the 

bimodal peaks after applying the 1D wavelet scalogram [3]. 



III. RESULT 

A. Identifying bimodal peaks 

Inherited from AWNFR [5], CGDWavelet has the 

performance as good as AWNFR. Even though the purpose of 

CGDWavelet is to identify epigenetic variations, we compared 

the performance of CGDWavelet with the hidden Markov 

model (HMM) based supervised learning method developed by 

us previously [9]. For this, we used histone modifications 

(H3K4me1/2/3) in mESC [24, 25] and evaluated the 

performance using the known binding sites of 13 TF in mESC 

[26].  

 

 Figure 3. Performance assessment of CGDWavelet against 

the HMM based method [9]. We defined a prediction as TP 

when a prediction is located within 500 for the HMM based 

method and CGDWavelet. We also defined a prediction as TP 

only when a prediction overlaps with any known TFBS (only 

for CGDWavelet). CGDWavelet showed superior performance 

to the HMM-based method. 

Using the binding score as a threshold we calculated true 

predicative rate (TPR) over false predicative rate (FPR) and 

drew receiver operating characteristic (ROC) curve. A 

prediction is regarded as a true positive (TP) if it is within 500 

bps of any known TFBSs. CGDWavelet showed a better 

performance compared with the HMM based models [9] 

(Figure 3). We also used more strict criteria for CGDWavelet 

by regarding a prediction as true only when the predicted 

binding site overlaps with any known TFBSs. We found that 

CGDWavelet outperformed the HMM based approach [9] even 

when using more strict criteria. This at least suggests that 

CGDWavelet can be used to identify bimodal peaks.  

 

 

 

Figure 4. Dynamic epigenetic changes identified using 

CGDWavelet. We investigated the epigenetic variation using 

H3K4me3 in mESCs and mNPCs. Group 1: loss of bimodal 

peak; Group 2: level changes; Group 3: a slight closure of 

chromatin structure; Group 4: a full closure of chromatin 

structure.  

B. Classifying epigenetic changes 

Using CGDWavelet we searched for the epigenetic 

changes. [9]. For this, we used H3K4me1 and H3K4me3 in 

mESC [24, 25].  

We identified total 22,129 and 24,739 bimodal patterns for 

H3K4me1 and H3K4me3, respectively (FPR 0.025). At these 

identified bimodal peaks, we calculated correlation coefficient 

to identify dynamic epigenetic variations. Figure 4 shows the 4 

groups identified by CGDWavelet when we used H3K4me3 in 

mESCs and mNPCs. H3K4me3 signal is lost in Group 1. 

Group 2 is when the correlation coefficient is close to 1, 

suggesting that the bimodal pattern does not change in this 

group. Group 3 and 4 have bimodal peaks to uni-modal peaks. 



The chromatin structure is closed slightly in Group 3 

(correlation coefficient is close to 0), but significantly in Group 

4 (correlation coefficient is close to -1) (Figure 5). This 

suggests that CGDWavelet effectively identifies the epigenetic 

changes of the bimodal peaks. 

    We further investigated the expressions of the associated 

genes for each group. We found that gene expressions become 

significantly reduced in all four groups including Group 4 

where dynamic nucleosome positions were observed.  

 

Figure 5. Epigenetic changes and the associated gene 

expression levels. The average profiles of H3K4me3 for each 

group identified in Figure 4 are shown. We evaluated the gene 

expression of the associated genes. The differences of gene 

expression were significant for all four groups.  

 

C. TFs at the epigenetic changes  

We further investigated TFBSs for each group (Table 1). 

Majority portion of Smad1, Sox2 and Nanog binding sites were 

observed in Group 1, while other TFs were associated with 

Group 2. Smad1, Sox2 and Nanog tend to bind at enhancers 

[10]. This shows that the genomic regions for these enhancer 

binding factors undergo more epigenetic variation than the 

other factors in the H3K4me3 enriched regions. Interestingly, 

majority of Oct4 binding sites were in Group 2, while Sox2, 

which has been known to form a complex [26], has more 

binding sites for Group 1.  

For the bimodal peaks identified using H3K4me1, 

majorities were belonged to Group 1 for all factors (Table 2), 

confirming again that H3K4me1, a histone modification 

marker for enhancer, is more dynamic than H3K4me3 [27]. 

Also, the percentages of binding sites to each group were 

similar in H3K4me1. More than 70% of TFBSs belonged to 

Group 1 for all TFs.  

 

Table 1. The number of TFBSs belong to each group. 

H3K4me3, a marker for active promoter, is used.  

TFs 

Number of 

TFBSs 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Smad1 86 70% 17% 13% 0 

Sox2 335 50% 37% 12% 1% 

Nanog 498 45% 44% 10% 0% 

STAT3 399 40% 48% 11% 1% 

Esrrb 1804 36% 51% 13% 0% 

CTCF 937 35% 50% 15% 1% 

Tcfcp2l1 2392 29% 56% 14% 0% 

Oct4 592 27% 60% 13% 0% 

Klf4 2610 22% 67% 11% 1% 

E2f1 5839 19% 68% 12% 1% 

Zfx 3088 13% 76% 10% 1% 

n-Myc 2908 13% 75% 12% 1% 

c-Myc 1508 11% 75% 13% 0% 

 

Table 2. The number of TFBSs belong to each group. 

H3K4me1, a marker for enhancer, is used.  

TFs 

Number 

of TFBSs  
Group 

1 

Group 

2 

Group 

3 

Group 

4 

Smad1 160 83% 10% 7% 1% 

Klf4 472 80% 10% 10% 1% 

Nanog 577 79% 10% 11% 1% 

E2f1 725 78% 12% 9% 1% 

Esrrb 799 78% 10% 11% 1% 

Sox2 379 77% 11% 11% 1% 

Tcfcp2l1 751 76% 13% 10% 1% 

STAT3 191 75% 12% 13% 1% 

c-Myc 53 74% 15% 11% 0% 

Oct4 261 74% 11% 12% 2% 

Zfx 262 74% 15% 11% 0% 

n-Myc 111 73% 14% 12% 1% 

CTCF 178 71% 16% 12% 1% 

 

IV. CONCLUSION 

 

As we accumulate more histone modification data than 

ever, computational approaches to exploit their landscapes will 

be of great value. We present an approach to detect epigenomic 

changes at gene regulatory regions.  For this we used active 

histone modification marks. Because our interest lies in gene 



regulatory regions, we focused on the change of the epigenetic 

shape, which is clearly different from other approaches that 

only consider the changes in the level of epigenetic signals [19-

21]. In contrast, CGDWavelet cannot be used to other marks 

enriched at gene body (such as H3K36me3) or repressed 

regions (such as H3K27me3 or H3K20me3).  

Changes in active histone marks (H3K4me1 and 

H3K4me3) were studied genome-widely as well as in 

association with TF binding.  More specifically, we searched 

for the bimodal peaks with epigenetic changes. We observed 

that TFBSs associated with the H3K4me1 bimodal peaks were 

more variable than the H3K4me3 bimodal peaks, confirming 

previous observation that enhancers are more cell-type specific 

[27]. We also observed that the changes of chromatin structure 

in the promoter region affect gene expression. The expression 

levels were higher when the chromatin structure was open. 

Previous study shows that both epigenetic pattern as well as its 

level is important to predict gene expression [28]. Our results 

also suggest that the position of nucleosome is important for 

gene regulation.  

Our strategy identified cell-type specific enrichment of 

epigenetic signals (Group 1) and dynamic nucleosome 

positions (Group 4). As we applied CGDWavelet to the histone 

modification data during neural development, it may be natural 

that most of the TFBSs were belonged to Group 1 or 2 because 

there are cell-type specific as well as common enrichment of 

histone modification. As a result, we did not find many TFs for 

Group 4. However, Group 4 will be useful in investigating the 

dynamic nucleosome positions affected by external signals, 

where epigenetic landscapes do not change drastically to 

commit to a certain cell-type.  
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