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Abstract
Background: The prediction of the secondary structure of proteins is one of the most studied
problems in bioinformatics. Despite their success in many problems of biological sequence analysis,
Hidden Markov Models (HMMs) have not been used much for this problem, as the complexity of
the task makes manual design of HMMs difficult. Therefore, we have developed a method for
evolving the structure of HMMs automatically, using Genetic Algorithms (GAs).

Results: In the GA procedure, populations of HMMs are assembled from biologically meaningful
building blocks. Mutation and crossover operators were designed to explore the space of such
Block-HMMs. After each step of the GA, the standard HMM estimation algorithm (the Baum-
Welch algorithm) was used to update model parameters. The final HMM captures several features
of protein sequence and structure, with its own HMM grammar. In contrast to neural network
based predictors, the evolved HMM also calculates the probabilities associated with the
predictions. We carefully examined the performance of the HMM based predictor, both under the
multiple- and single-sequence condition.

Conclusion: We have shown that the proposed evolutionary method can automatically design the
topology of HMMs. The method reads the grammar of protein sequences and converts it into the
grammar of an HMM. It improved previously suggested evolutionary methods and increased the
prediction quality. Especially, it shows good performance under the single-sequence condition and
provides probabilistic information on the prediction result. The protein secondary structure
predictor using HMMs (P.S.HMM) is on-line available http://www.binf.ku.dk/~won/pshmm.htm. It
runs under the single-sequence condition.

Background
Prediction of protein secondary structure is an important
step towards understanding protein structure and func-
tion from protein sequences. This task has attracted con-

siderable attention and consequently represents one of
the most studied problems in bioinformatics. Early pre-
diction methods were developed based on stereochemical
principles [1] and statistics [2,3]. Since then the prediction
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rate has steadily risen due to both algorithmic develop-
ment and the proliferation of the available data. The first
machine learning predictions of secondary structure were
done using neural networks [4,5]. Later methods using
neural networks include PHD [6], PSIPRED [7], SSpro [8],
SSpro8 [9] and YASPIN [10]. Support vector machines
have also been used and show promising results [11].
Recently, the prediction accuracy has been improved by
cascading a second layer of support vector machines
[12,13]. The currently used machine learning methods
typically improve their performance by combining several
predictors and using evolutionary information obtained
from PSI-BLAST [14]. Combining results from different
predictors has been shown to improve the performance of
secondary structure prediction [15,16].

Even though Hidden Markov Models (HMMs) have been
successfully applied to many problems in biological
sequence modelling, they have not been used much for
protein secondary structure prediction. Asai et al. sug-
gested the first HMM for the prediction of protein second-
ary structure [17]. Later, an HMM with a hierarchical
structure was suggested [18]. However, both predictors
had limited accuracy.

HMMSTR [19] is a successful HMM predictor for this
problem. It was constructed by identifying recurring pro-
tein backbone motifs (called invariant/initiation sites or I-
sites) and representing them as a Markov chain. Conse-
quently, the topology of HMMSTR can be interpreted as a
description of the protein backbone in terms of consecu-
tive I-sites. YASPIN [10], which is one of the most recent
methods, builds on a combination of hidden Markov
models and neural networks [20].

In this paper, we report a new method for optimizing the
structure of HMMs for secondary structure prediction.
Over the last couple of years we have developed a method
for optimizing the structure of HMMs automatically using
Genetic Algorithms (GAs) [21,22]. In previous work, we
applied this method to promoter finding in DNA. Here,
we use the evolutionary method to optimize the structure
of an HMM for secondary structure prediction. During the
evolutionary optimization, the HMM's structure is assem-
bled from biologically meaningful building blocks [22].
Hence, we call our evolutionary method Block-HMM. The
evolved HMM using the Block-HMM remodels the train-
ing protein sequences and shows the prediction probabil-
ity of the secondary conformations calculated for each
amino acid.

In the literature, we have found a few HMM structure
learning methods. Stolcke developed a state merging
method, which starts from an HMM with a large number
of states [23]. On the other hand, a state splitting method

was suggested in [24,25]. A structure evolving method
using GAs was first suggested to change the structure of a
TATA box HMM [26]. Later, they upgraded the HMM
structure learning method considering statistical signifi-
cance [27]. A structure evolving method using a genetic
programming was also suggested, in which the HMM
structures is represented by probabilistic trees [28,29]. The
evolving method was also applied to protein secondary
structure prediction. Thomsen suggested a GA very similar
to Yada et al. and achieved 49% prediction accuracy [30].

Our structure learning method is different from previous
methods in that we use block models inspired by HMM
applications used in biological sequence analysis. Instead
of crossing over arbitrary number of states, we cross a
number of blocks over. This enables different number of
states to be exchanged through the crossover operation.
Mutation occurs in a limited area that adding or deleting
transitions do not break the property of blocks. As a result,
our approach makes use of characteristics of HMM mod-
ularity more strategically than previously suggested
genetic methods. Genetic programming methods [28,29]
encode HMM networks with probabilistic trees. Linguistic
representations were derived from each particular HMM
topology. Similar to genetic programming method, our
approach encodes several types of blocks into linguistic
forms [22]. The basic shapes of linguistic blocks are differ-
ent each other in both of the methods. The encoding dif-
ferences effect the searching space of a topology
evolution. It also suggests that various types of topological
encoding may be useful for other problems.

We analyze one of the evolved HMM structure under the
single-sequence condition. We also test it under the mul-
tiple-sequence condition after designing a whole predic-
tor using an ensemble of three independently trained
predictors as well as simple neural networks.

Results
Block-HMM for labelled sequences
Block-HMM restricts its search to a subset of HMM topol-
ogies made up of blocks of states. Each block is assigned a
label that corresponds to one of the three secondary struc-
ture classes. The states that make up the blocks emit
amino acid symbols. Secondary structure prediction is
done by inferring the values of the hidden states for a
given amino acid sequence, and examining the secondary
structure labels of the blocks these states belong to. Four
types of blocks are used: linear, self-loop, forward-jump
blocks and zero blocks (figure 1).

Linear blocks consist of N states (labelled from 1 to N)
where state n is only connected to state n + 1 (with 1 ≤ n
<N). Self-loop blocks are linear blocks in which each state
has an additional loop to itself. A forward-jump block is a
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linear block where the first state is also connected to the
last M states (with 1 <= M <N). Zero blocks are empty
blocks with no states: they can replace other block types
during the GA procedure and thus allow the exploration
of simpler topologies.

The self-loop and forward-jump blocks can be either tied
(in the figures, tied blocks are shaded) or untied. When a
block is tied all the emission and transition probabilities
of states inside the block are equal. In the case of linear
blocks we did not consider tying because tying a linear
blocks is equivalent to a single-state self-loop block.

The various blocks can model different types of sequence
fragments. A linear block can model a particular con-
served sequence pattern. The self-loop block can model a
sequence of any length, while the forward-jump block can
be used to represent subsequences with varying length up
to some fixed length. Initially, the blocks are fully linked
to form HMM architectures. In this context, fully linked
means that the end state of each block is connected to the
starting states of all other blocks and itself. Each block is
labelled with one of the three protein structure classes 'H'
(helix), 'E' (strand), or 'C' (coil). Figure 2 shows a simple
example of HMM structure. The HMM structure is com-
posed of 3 blocks. From the left it has blocks labelled with
'H','C' and 'E'. Each block also can be tied. After training,
most of the transition probabilities are close to zero,
resulting in a final structure that is typically much simpler
than the fully connected HMM shown in the figure.

Genetic operators for Block-HMM
Genetic algorithms evolve a population of solutions with
genetic operators. Inside the genetic cycle, genetic opera-
tors select members of the population (called parents)
and evolve them to produce new members (called chil-

dren). New children after the genetic operators along with
the remaining old members in a population are evaluated
to calculate fitness. According to the fitness selection pro-
cedure select a number of members in a population for
the next genetic cycle.

We used three genetic operators in Block-HMM: crossover,
mutation and type-mutation. The number of blocks is
kept fixed but the number of the states of an HMM can be
changed by the genetic operators. Crossover swaps a
number of blocks in two parents to create two children.
The crossover points and the number of blocks are chosen
randomly. Figure 3 shows an example of the crossover
scheme. The last block of the first child crosses with the
first block of the second child. To simplify the diagram,
transitions between blocks are not shown here. The cross-
over operator enables HMMs to exchange states without
breaking basic blocks. Several blocks can be chosen to be
crossed, which allows GA to search broad area of solution
space. Mutations can take place inside any block of the
HMM. A forward-jump block can have 6 different types of
mutation, which are illustrated in figure 4. It can delete or
insert transition (figure 4(a),(b)), delete one state (figure
4(c),(d)), and add one state (figure 4(e),(f)). For linear
and self-loop blocks, only adding and deleting a state are
possible.

In addition to changing the length of a block and its tran-
sitions, we also allow another form of mutation, called
type-mutation, that changes the type or label of a block.
Type-mutation to a zero block is also allowed (figure 5).
When a type mutation transforms the type of a block, new
transition probabilities are generated randomly. Self-loop
and forward-jump blocks can type-mutate between tied
and untied versions. Zero-blocks can be type-mutated to
any of the other block forms.

HMM blocks that compose the whole HMM structureFigure 1
HMM blocks that compose the whole HMM structure. (a) linear block (b) self-loop block (tying is optional) (c) forward-
jump block (tying is optional) (d) zero block.
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We ran the GA that hybridize the parameter learning
method with these genetic operators that train the struc-
ture of HMMs. The detailed description of the whole pro-
cedure is on Methods.

Analysis of the evolved HMM
The evolved model
Figure 6 illustrates the structure of the best result of Block-
HMMs. The simulation used 30 blocks, but the result
shows only 26 blocks: the remaining 4 are zero blocks.
Figure 7 shows the full HMM structure. Assigned with
each state is one of the label of 3 states of secondary struc-
ture l ∈ {H, E, x}. It is composed of 22 states for helix (H),

15 for β-strand (E), and 15 for coil (x) region. Each state
emits a set of symbols of 20 amino acids according to the

Mutation in Block-HMMFigure 4
Mutation in Block-HMM. Six possible types of mutations 
from a 5-state forward-jump block: (a) a transition from the 
first to the fourth state is deleted (b) a transition from the 
first to the third state is added (c) the second or the third 
state is deleted (d) the fourth state is deleted (e) a state is 
added between the fourth and the fifth state (f) a state is 
added between the first and the fourth state.
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An example of an HMM composed of blocks resulting from the Block-HMM procedureFigure 2
An example of an HMM composed of blocks resulting from the Block-HMM procedure. Three blocks are used in 
this model and all the blocks are fully connected to each other. The blocks are divided by dotted lines. The states in tied blocks 
are shaded in grey.
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Crossover in Block-HMMFigure 3
Crossover in Block-HMM. Crossover swaps the HMM 
states without changing the properties of an individual HMM 
block. Here, the last block of the first child crosses with the 
first block of the second child. To simplify the diagram, tran-
sitions between blocks are not shown.
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given probability. The full HMM structure is trained using
1662 sequences (see Methods).

The evolved model contains the information of the pro-
tein secondary sequences in its structure and parameters.
Firstly, we checked the distribution of emission probabil-

ities to see how well the evolved model learned biological
information. Table 1 summarizes the characteristics of 51
states, presenting the probabilities of emitting hydropho-
bic, hydrophilic amino acids, Gly and Pro. In this table, the

Table 1: Information of all the trained states

state AA H-
phobic

H-philic G P

state0 H 1.4% 77.8% 21.7% 0.5% 0.0%
state1 H 1.3% 65.3% 24.6% 8.6% 1.5%
state2 H 0.9% 80.1% 14.2% 4.8% 0.9%
state3 H 1.3% 64.6% 27.4% 7.4% 0.6%
state4 E 2.1% 36.6% 53.2% 4.8% 5.5%
state5 E 0.5% 70.3% 28.8% 0.2% 0.7%
state6 E 2.1% 90.4% 9.2% 0.3% 0.1%
state7 E 1.7% 92.7% 1.5% 5.5% 0.3%
state8 E 1.6% 48.5% 47.8% 3.3% 0.5%
state9 E 1.7% 84.8% 10.8% 3.8% 0.6%
state10 x 2.8% 82.2% 17.8% 0.0% 0.0%
state11 x 2.8% 8.7% 50.8% 12.8% 27.7%
state12 H 0.9% 16.3% 79.4% 1.8% 2.5%
state13 H 0.7% 53.8% 44.9% 1.2% 0.2%
state14 H 0.9% 86.1% 13.8% 0.0% 0.0%
state15 x 10.5% 26.1% 50.7% 10.1% 13.1%
state16 x 2.9% 24.9% 45.9% 16.3% 13.0%
state17 H 1.5% 27.1% 62.8% 7.7% 2.3%
state18 H 1.5% 35.7% 59.3% 5.0% 0.0%
state19 E 1.0% 28.1% 56.2% 6.2% 9.5%
state20 E 1.5% 66.4% 27.3% 5.1% 1.2%
state21 E 1.1% 11.8% 75.0% 11.0% 2.2%
state22 H 2.2% 97.8% 2.1% 0.1% 0.0%
state23 H 2.2% 43.2% 51.1% 5.5% 0.1%
state24 H 1.2% 92.4% 6.8% 0.7% 0.1%
state25 H 1.2% 38.9% 60.1% 0.8% 0.2%
state26 H 1.2% 19.3% 79.0% 1.7% 0.0%
state27 E 2.4% 62.0% 33.0% 4.9% 0.1%
state28 x 2.0% 24.7% 54.8% 12.6% 7.9%
state29 x 2.0% 29.6% 45.0% 17.1% 8.4%
state30 H 1.3% 75.4% 20.8% 3.7% 0.0%
state31 x 4.6% 22.5% 63.0% 6.1% 8.5%
state32 H 1.8% 20.2% 45.7% 10.5% 23.5%
state33 E 1.0% 63.2% 33.7% 2.3% 0.8%
state34 E 1.0% 95.4% 2.9% 1.7% 0.0%
state35 E 1.0% 18.0% 65.5% 11.0% 5.5%
state36 x 1.6% 23.6% 65.9% 7.4% 3.1%
state37 x 1.4% 3.5% 40.3% 53.7% 2.5%
state38 x 1.6% 30.0% 57.4% 11.2% 1.4%
state39 H 1.7% 15.7% 71.9% 2.8% 9.6%
state40 H 1.7% 27.8% 67.1% 2.7% 2.3%
state41 H 1.5% 76.5% 21.0% 2.6% 0.0%
state42 H 1.4% 58.7% 40.8% 0.2% 0.2%
state43 E 2.0% 60.4% 34.5% 5.1% 0.0%
state44 E 2.0% 30.5% 57.0% 5.6% 6.9%
state45 x 0.6% 0.6% 35.1% 64.3% 0.0%
state46 x 0.6% 77.6% 19.4% 0.0% 2.9%
state47 x 0.6% 14.6% 71.2% 2.1% 12.2%
state48 H 3.6% 21.9% 74.3% 3.0% 0.7%
state49 H 3.5% 62.1% 34.9% 3.0% 0.1%
state50 x 4.7% 51.4% 32.0% 12.9% 3.7%
state51 x 3.2% 27.6% 57.0% 15.4% 0.0%

The best HMM topologyFigure 6
The best HMM topology. The best HMM topology 
evolved using Block-HMM. It is composed of 26 non-zero 
blocks and 52 states. Transitions between blocks are not 
shown here (including the transition from a block to itself). 
On each state a label is assigned ('H' for helices, 'E' for β-
strands and 'x' for coils). Helix states are red colored and β-
strand states are blue colored.

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51

Type-mutation in Block-HMMFigure 5
Type-mutation in Block-HMM. A forward jump block is 
type mutated (a) to a tied block (b) to a block with a different 
label (c) to a zero block (d) to a self loop block or a linear 
block.
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linear blocks for β-strand (i.e. state43-state44, state7-state8-
state9, state34-state35) shows the periodic hydrophilic and
hydrophobic characteristics.

At state11 and state32 we found a strong probability of Pro.
Among 13637 visits on state11 we found Pro 3765 times

(= 27.6%) in the generated sequences, which closely
matches with the emission probability of 27.7%. State11
usually modelled 'xxx' (2783 times, 73.9%), 'xxH' (685
times, 18.2%), 'xxE' (286 times, 7.6%), and at the end of
the sequence ('xx', 11 times). This indicates that state11 is
used to link a coil with other compositions. In the case of
state 32, Pro was usually used to model 'xHH' (1828 cases
out of 2084, 87.7%) or 'HHH' (205 cases out of 2084,
9.8%).

Gly was found strong on state37 and state45. We found Gly
on state37 is only between two coil conformations (3570
times). Gly on state45 worked in the apposite way to Pro
on state11, producing 'Hxx' (710 times out of 2018,
35.2%), 'xxx' (1300 times, 64.4%), 'Exx' (2 times 0.1%),
and at the end of the sequences.

We examined overall distribution of the emission proba-
bilities in the evolved HMM. We averaged the emission
probabilities of all the states assigned to the same second-
ary label. Figure 8 shows the average distribution of emis-
sion probabilities for helix, β-strand and coil states. For
helices Ala and Leu are stronger than other amino acids.
Gly and Pro are shown prominently in coils and Val is
strong in β-strands.

The HMM's grammar
We evaluated how well the evolved HMM models general
features of protein structure. We generated 1662 (the
number of training sequences) random sequences from
the evolved HMM. We set the length of the generated
sequences to be the average length of the training
sequences. The third column of Table 2 shows how much
each state is used to generate the random sequence. In the
generated sequence the overall secondary structure con-
tents are 35.5% of helices, 23.5% of β-strands, and 44.5%

The full HMM structureFigure 7
The full HMM structure. The full structure of the best 
HMM topology. Transitions over 0.1 are only shown. States 
for helix (H), β-strand (E) coil (x) are colored with red, blue 
and white, respectively.

The averaged emission probabilities of all the statesFigure 8
The averaged emission probabilities of all the states. 
The averaged emission probabilities of all the states. Emission 
probabilities from the states that share the same secondary 
structural label are averaged.
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of coils. This shows that the evolved HMM closely remod-
els the training sequences composed of 35.3% of helices,
22.8% of β-strands, and 41.9% of coils. Figure 9 shows the
length distributions of helices, β-strands, and coils in the
training dataset and the generated set. The distributions
closely match each other for three of the cases. The length
distribution confirms that a block or a group of blocks
model the grammar of protein secondary structure quite
closely. We checked how the evolved HMM expresses the
grammar of protein sequence in its structure. From the
generated sequences we counted the transitions from one
block to the other blocks. Table 2 shows summarizes the
number of times each block transition is used in the gen-
erated sequences and the probability of the transition to

be made on each state. We showed only dominant gram-
mars that have been visited more than 2000 times. This
result shows how the blocks are used to model the
sequences. State0 is in a helix block and usually used with
other helix blocks (state17 and state39 are in helix block).
State14 has a strong transition from helix to coil and
state23 has transitions to a helix block and a coil block. As
a whole the transitions that link blocks with the same

Table 2: The block transition

block transition percentage used 
on each state

number of times 
used in the 

generated sequence

state0 (H) → state17 (H) 36% 2468
state0 (H) → state39 (H) 42% 2867
state3 (H) → state1 (H) 56% 3477
state6 (E) → state33 (E) 24% 2461
state9 (E) → state27 (E) 30% 2377
state9 (E) → state43 (E) 33% 2635
state11 (x) → state15 (x) 30% 4143
state11 (x) → state31 (x) 15% 2093
state11 (x) → state50 (x) 16% 2165
state14 (H) → state51 (x) 60% 2733
state16 (x) → state4 (E) 24% 3310
state16 (x) → state31 (x) 19% 2662
state16 (x) → state50 (x) 35% 4809
state18 (H) → state50 (x) 33% 2359
state19 (E) → state7 (E) 42% 2086
state21 (E) → state7 (E) 55% 2702

state23 (H) → state12 (H) 31% 3347
state23 (H) → state48 (H) 41% 4436
state23 (H) → state51 (x) 21% 2272
state26 (H) → state51 (x) 57% 3394
state27 (E) → state15 (x) 26% 3005
state27 (E) → state28 (x) 34% 3914
state29 (x) → state28 (x) 22% 2193
state29 (x) → state36 (x) 31% 3017
state30 (H) → state48 (H) 75% 4577
state31 (x) → state0 (H) 21% 4564
state31 (x) → state10 (x) 12% 2588
state31 (x) → state31 (x) 16% 3555
state31 (x) → state32 (H) 21% 4551
state31 (x) → state39 (H) 11% 2408
state31 (x) → state50 (x) 13% 2822
state32 (H) → state17 (H) 45% 4062
state38 (x) → state4 (E) 42% 3304

state40 (H) → state41 (H) 66% 5482
state42 (H) → state48 (H) 87% 6105
state44 (E) → state27 (E) 30% 2996
state49 (H) → state22 (H) 39% 6674
state49 (H) → state24 (H) 26% 4508
state49 (H) → state30 (H) 18% 3162
state50 (x) → state10 (x) 13% 2807
state50 (x) → state31 (x) 34% 7362
state50 (x) → state50 (x) 17% 3772
state51 (x) → state15 (x) 14% 2056
state51 (x) → state31 (x) 25% 3597
state51 (x) → state50 (x) 20% 2986
state51 (x) → state51 (x) 20% 2892

Histograms of secondary structure element lengthFigure 9
Histograms of secondary structure element length. 
Histograms of the lengths of the secondary structure ele-
ments in the training set (white bars) and the generated set 
(black bars). It shows the probabilities of secondary structure 
element lengths in the generated sequence.
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label are dominant. This seems to be because the HMM
needs to model long secondary elements with very short
blocks.

We checked if the model has grammar for short secondary
elements. We found 57 'H-x-H' linked helices. For this
sequence grammar we found an HMM grammar of
'state18-state50-state32' 44 times (77.2%). We also
checked how each coil-state contribute to this grammar.
For the coil region State50, state51 and state31 are used 44
time, 6 time and 7 times, respectively. In the case of 666
'H-x-E' in the generated sequences, the dominant gram-
mars is 'state18-state50-state43' (27.6%). For the coil
region State51 and State50 were used 90 times (13.5%)
and 576 times (86.5%), respectively. Interestingly, state31
was not used for this grammar. For the grammar 'E-x-H',
however, state51 was never used on the other hand. About
97.2% of the HMM grammar uses state31 (923 times out
of 950) and 2.8% (27 times) was used by state50. This
indicates that state50, state51 and state31 are used in a dif-
ferent way when they compose a sequence grammar. For
the grammar 'H-xx-H', the dominant HMM grammar used
for coil region was 'state51-state31' (1175 times out of
2146 (54.8%)), 'state50-state31' (19.5%) and 'state10-
state11' (22.2%). We checked how the HMM is organized
to model hairpin structures. For a grammar 'E-x-E', state50
was found dominant (81.1% = 310 out of 382). State51
and state31 covered 3.7% and 15.2%, respectively. For the
structure 'E-xx-E', 'state28-state29' are mostly used (58.2%
= 1830 out of 3142), followed by 'state15-state16' (16.9%)
and 'state36-state38' (11.0%). The single state blocks
(state50, state51 and state31) are instead rarely used. In the
case of the structure 'E-xxx-E', 'state36-state37-state38' cov-
ered 68.2% (1937 out of 2842) and state15-state15-state16
occupied 14.0%. Each of other compositions is less than
5%. We generated no sequence for the grammar 'x-H-x',
which disobeys the grammar of protein secondary struc-
ture.

Prediction results with posterior decoding
The HMM predictor evolved using Block-HMM method
calculates the probability of being in each secondary state.
The posterior label probability (PLP) calculates probabil-
ity of a label of each amino acid. The PLP of a label at posi-
tion t is the sum of posterior probability of all states that
emit the same label. The PLP for label l ∈ {H, E, C} at
position t is

where x is an amino acid sequence and y is a accompany-
ing sequence labels of protein secondary structure confor-

mation. Θ is the evolved HMM, and  is the set of all the
states in the HMM.

We assign each state to one of the classes in the secondary
structure. That is, we take the probability of a label given
a state to be 1 if the state is assigned to that class and 0 oth-
erwise. Thus the sum in equation (1) only gets contribu-
tions from states that have been assigned to class l.

Figure 10 shows the PLP value along part of a protein
sequence 1ciy. The probability of each label is calculated
and drawn in the graph. The dominant label is assigned to
each amino acid as a prediction result.

Prediction under single-sequence condition
Cross-validation results
We conducted 5 cross-validation tests with very stringent
dataset conditions (see Methods). By running Block-
HMM we evolved HMM structures separately from each of
the cross-validation test. Under the single-sequence con-
dition, we achieved a overall prediction rate (QÌ) of 68.3%
using a single HMM predictor (Table 3).

Prediction comparison
We compared performance of the best HMM topology
trained on all the 1662 training sequences with other pre-
dictors under the single-sequence condition. As a test set
we used the data set published on October 2002 on the
EVA server [31]. From this we prepared two sets. Firstly,
from 1828 sequences we deleted the common sequences
with our training set and finally retrieved 1584 sequences
(non-common set). Secondly, we only used the sequences
which are common in our training set and PSIPRED train-
ing set and found 153 sequences (common set). Table 3

P y l p y lq it t t
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The decoding result with posterior decodingFigure 10
The decoding result with posterior decoding. The 
decoding result with posterior decoding. The PLP calculates 
probability of a label of each amino acid. The dominant label 
is assigned as a final prediction
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           H         E         x     label
 P      0.00000   0.00000   1.00000    x
 I      0.20129   0.11062   0.68809    x
 R      0.23255   0.19463   0.57282    x
 T      0.25170   0.27596   0.47233    x
 V      0.53074   0.22475   0.24451    H
 S      0.55495   0.17031   0.27474    H
 Q      0.59406   0.16257   0.24338    H
 L      0.50110   0.16997   0.32892    H
 T      0.49175   0.17020   0.33805    H
 R      0.52255   0.16967   0.30778    H
 E      0.49659   0.24376   0.25966    H
 I      0.47175   0.30341   0.22484    H
 Y      0.28519   0.29690   0.41791    x
        ...         ...         ...
Page 8 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:357 http://www.biomedcentral.com/1471-2105/8/357
shows the comparison with PSIPRED for the two tests.
These tests at least show that Block-HMM has good per-
formance as a secondary structure predictor.

Prediction under multi-sequence condition
We designed a whole secondary structure predictor using
multiple sequences information. Structure-to-Structure
layer is added to get more prediction. See Methods for
more detail.

Cross-validation & comparison
Table 4 shows the result of 5 cross-validation tests. By
using multiple sequence alignment the QÌ value increased
about 6.8% (68.3% under single-sequence condition).

In an attempt to benchmark our method with existing pre-
dictors we compare our prediction results with those of
YASPIN [10] and PSIPRED. We asked Dr. Kuang Lin to
train YASPIN with the same data set we used. The same
dataset is used in running PSIPRED which has been
already trained and publicly available. We used 2 data sets
used in the test under the single-sequence condition.
Table 4 shows the benchmarking result. When we used
non-common dataset the QÌ rate of our method is about
1% better than that of YASPIN, though the SOV of
YASPIN is about 0.5% higher. The QE of YASPIN is
impressive, showing better performance than PSIPRED.
Obviously, PSIPRED showed best performance. Next, we
used the common set. Again, PSIPRED showed best per-
formance, and the performance of Block-HMM is about
1% better than YASPIN. This result is interesting, consid-
ering that the performance of Block-HMM is better using
same dataset under the single-sequence condition.

Discussion
The predictor using HMMs inherited all the advantages of
HMMs. Artificial protein sequence with secondary struc-
ture can be generated. The generated sequences show
matched characteristics with the training dataset in the
contents and the length distributions of the secondary
conformation. Also, it is easy to see probabilistic reason-
ing of the prediction result. The analysis on the evolved

model and the generated sequences shows that the evolv-
ing method successfully interprets the grammar of the
protein sequences and converts it into the grammar of
HMMs. It is more noteworthy considering that the gram-
mar and biological information is constructed automati-
cally without human intervention.

Recently, an HMM based protein secondary predictor was
hand designed and showed good performance in predict-
ing beta-strands under single-sequence condition [32].
Also, structure learning method using Bayesian information
criterion has been introduced [33]. It increases the number
of states while checking the optimal balance between fit-
ting to the data and the HMM size. Our method has more
operations to change HMM structure and we penalised
the number of HMM structure by evaluating the trained
model with the separated set. As shown in the test under
the single-sequence condition, the overall prediction per-
formance of an evolved HMM is quite excellent. We do
not claim that our HMM is better under the single-
sequence condition. The test set we used may be biased to
HMMs. However, the result at least shows that the evolv-
ing method is a good way to design an HMM for this prob-
lem and further applications. In the case of testing under
the multiple sequences condition, the performance of
PSIPRED is obviously better than Block-HMM. The way of
incorporating multiple sequences information as well as
the structure-to-structure layer of PSIPRED works far bet-
ter than our approach. Incorporating multiple sequences
information remains further area of study. However, our
result still comparable to YASPIN's result.

Our method does not require a sliding window as most
other secondary structure prediction methods do. The size
of the window is chosen in order to obtain good perform-
ance (for example, PSIPRED has a window size of 15 [7]).
The evolving HMM method uses the whole sequence as
input, which avoids the use of a fixed sequence window
that might affect performance in specific cases.

At present the Block-HMM method is relatively slow
because it has to train and calculate fitness for all the

Table 3: Prediction under the single-sequence condition

Test QÌ QH QE QC SOV SOVH SOVE SOVC

5-fold cross-
validation

68.3 65.9 56.4 74.8 63.9 63.8 59.8 65.8

Non-common 
(Block-HMM)

68.6 67.6 58.0 74.1 64.1 64.9 61.2 65.4

Non-common 
(PSIPRED)

67.3 65.8 58.9 70.5 63.6 64.2 60.7 63.1

Common 
(Block-HMM)

69.0 66.1 56.6 76.3 63.6 63.4 59.8 66.7

Common 
(PSIPRED)

67.6 63.4 56.0 73.8 63.1 62.8 58.2 63.8
Page 9 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:357 http://www.biomedcentral.com/1471-2105/8/357
HMM members in the population. Fortunately, the
method is suitable for parallel computation. To evolve an
HMM using GAs with 30 members in a population, we
used 31 2.4 GHz P4 processors each with 512 Mb RAM
run in parallel. Each processor trains one HMM. Ideally,
the CPU time consumed in each processor is the time to
train and evaluate an HMM multiplied by the number of
iterations. It took about 7 hours to produce an HMM with
40 states. Prediction using three trained HMMs without
evolutionary information takes about 30 seconds.

Conclusion
Optimizing HMM structures using an evolutionary algo-
rithm has several benefits. First of all, the structure of an
HMM is automatically evolved without prior knowledge.
The success is remarkable given that other methods for
secondary structure prediction require considerable cali-
bration. Compared to the hand-designed HMMSTR [19],
the evolutionary method produced good results with a

smaller number of states. In the case of neural networks,
the selection of the number of units needs careful atten-
tion. Here again, the evolving HMM method is an attrac-
tive alternative.

Compared to other HMM structure evolving methods, our
approach shows excellences. Thomsen's results for the sec-
ondary structure prediction (49%) indirectly tells that our
method is very effective for the secondary structure predic-
tion problem.

The P.S.HMM (Protein Secondary structure predictor
using HMMs)server is online, providing secondary struc-
ture prediction and probability of each secondary struc-
ture conformation. Protein dataset used in the test is
found at http://binf.ku.dk/~won/proseq.tar.gz.

Methods
Data set
The SABMark Twilight Zone data set (version 1.63) [34]
provides a set of representative structures. This data set
consists of 2230 high quality structures partitioned into

Overview of protein secondary structure predictorFigure 12
Overview of protein secondary structure predictor. 
Schematic overview of predicting secondary structure with 
three HMMs evolved with Block-HMM.

submitted
sequence

homologous
sequence

ATVFKLGLFKSFHDTRLFKNDKTTN

ATVFKLGLF - SFHDTRLFKNDKTTN

ATVQKLGLFKSFHDTRLFNHDKTTN

ATVFKLPLFKSQTDTR- - -NPDKTTN

. . .

HMM1

HMM2

HMM3

H:0.2
E:0.3
C:0.5

w1

wk

w1

w1

wk

wk

NN1

NN2

NN3

Extract homologous sequence from the database Alignment with
weights

Sequence to
structure HMM

Structure to
structure network

Table 5: Block-HMM parameters used in the experiment

Parameter value

Population size 30
Iteration 400
Number of blocks in an HMM 26–35
The initial length of a block 1–4
Number of crossovers per 
iteration

2

Number of mutations per 
iteration

2

Number of type-mutations per 
iteration

2

Table 4: Prediction under the multiple sequences condition

Test QÌ QH QE QC SOV SOVH SOVE SOVC

5-fold 
cross-

validation

75.1 67.8 70.8 77.5 71.7 68.4 73.4 69.6

Non-
Common 
(PSIPRED)

78.9 76.7 74.5 77.3 75.6 76.3 75.6 71.3

Non-
Common 
(YASPIN)

73.4 68.8 83.0 68.9 71.1 70.1 76.5 65.8

Non-
Common 
(BLOCK-

HMM)

74.5 70.3 69.6 76.2 70.6 69.5 72.7 68.2

Common 
(PSIPRED)

79.5 74.6 71.7 79.6 75.8 74.4 73.2 72.6

Common 
(YASPIN)

74.6 68.2 80.1 71.0 71.3 68.4 74.7 67.2

Common 
(BLOCK-

HMM)

75.0 67.4 67.2 78.7 70.5 67.7 68.6 69.7

The structure-to-structure layerFigure 11
The structure-to-structure layer. The structure-to-
structure layer is composed of simple 3-layer neural net-
works.

H : 0.35

E : 0.20

C :0.45

H : 0.3

E : 0.1

C : 0.6
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236 folds. Although many proteins in the data set share a
common fold, no pair of protein sequences can be aligned
with a BLAST E-value below 1 or a sequence identity
above 25%. For the proteins with a common fold in the
data set, it is not possible to identify a traceable evolution-
ary common origin.

Structures that caused problems with the DSSP program
(see below) or that had chain breaks were removed, which
resulted in a final data set of 1662 structures belonging to
234 fold groups. Two fold groups are removed by this
process because no structures remained in these groups.
With these 234 groups we performed a five fold cross-val-
idation test. In order to create a stringent test set we made
sure that proteins with a common fold do not appear in
both the training and test sets.

The secondary structure was calculated using the program
DSSP [35]. DSSP assigns secondary structure to eight dif-
ferent classes: α-helix (H), isolated β-bridge (B), β-strand
(E), 310-helix (G), Π-helix (I), turn (T), bend (S) and
other. In this study, we used three classes: helix (consist-
ing of DSSP classes H and G), strand (classes B and E) and
coil (all other classes). The DSSP results were retrieved
using the DSSP front end in the Biopython toolkit [36].

Training with Block-HMM
We have used a hybrid GA with traditional GA operators
to explore the space of HMM topologies in combination
with Baum-Welch optimization of the transition and
emission probabilities.

To obtain suitable HMM architectures we tested various
numbers of blocks between 26 and 35. Labels are allo-
cated randomly to each of the blocks. The size of the
block, that is the number of states in a block, is randomly
assigned between 1 and 4. Table 5 shows the parameters
used in the simulation.

To find an HMM that does not overfit the training data, we
divide our training set into a set used for the Baum-Welch
training (5/7 of the data) and a set for fitness evaluation
(2/7 of the data). The fitness value is calculated from the
fitness evaluation set only. Given an HMM (with parame-
ters Θ), we take the reciprocal of the negative log-likeli-
hood as the fitness value:

where li is the length of a sequence xi and µ labels the dif-
ferent HMMs (with parameters Θµ) of the population. A
member of the population is selected with a Boltzmann
probability

where σ is the standard deviation of the fitness in the pop-
ulation and s is a constant that controls the strength of the
selection. In the work reported here, we used a value of s
equal to 0.3.

The best member of a population is always selected, and a
subset of other members are selected by using stochastic
universal sampling [37]. Some of the members are
mutated or subjected to crossover. Then, all the members
of the generation undergo Baum-Welch optimization
using the training data set.

We saved the best HMM at each of the 400 generations,
i.e. during the whole run of the GA. At the end of the run,
the best HMM is selected and trained again with the
Baum-Welch algorithm, this time using all the sequences
used for training and evaluation. This is done because the
last HMM is not always the best HMM generated during
the whole GA run. Finally, the HMM is trained further
using the discriminative training method [38]. The Baum-
Welch algorithm maximizes the likelihood of the training
sequences (in our case containing amino acid and second-
ary structure labels). However, we are more interested in
maximizing the probability of obtaining correct second-
ary structure labels for the amino acid sequences (rather
than maximizing the probability of the full sequences
themselves). Discriminative training is used to increase
the probability of obtaining correct labels given the
sequences and a specific HMM structure.

Incorporating evolutionary information
Secondary structure prediction rates can be boosted by
using evolutionary information. In most systems, the
position specific scoring matrix (PSSM) is used as an input
of the predictor. Instead of using PSSM, we ran our predic-
tor on a set of homologous sequences and then combined
the results. To obtain the homologous sequences we ran
PSI-BLAST [14] against the UniProt 90 protein sequence
database [39] downloaded on Feb. 17th 2005. We used 3
iterations of PSI-BLAST and an E-value threshold of 0.001.
The posterior label probabilities (PLPs) were calculated by
decoding each of the homologous sequences against the
trained HMM. After aligning the decoding results, we cal-
culated the weight of each sequence according to the posi-
tion-based sequence weight [40].

The second (structure-to-structure) layer
To improve the performance even further we used a 3-
layer perceptron consisting of 3 input nodes, 3 hidden
nodes and 3 output nodes. This network is shown in fig-
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ure 11. The profile averaged PLPs of the HMM are used
directly as input to the neural network. This network is
quite simple compared to other structure-to-structure lay-
ers published in the literature. To train the neural net-
works the gradient descent method with a momentum
term was used [41].

To increase the prediction rate further we used an ensem-
ble of three independently trained HMM predictors. The
three HMM structures are different because they were
found by different runs of Block-HMM. This approach
improves the prediction rate more than combining
HMMs that have the same structure but different parame-
ters. The outputs of the structure-to-structure layer are
summed up and the dominant label is used as our final
prediction of the secondary structure. The final predictor
is shown in figure 12.
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