Maria Neimark Geffen, Ph.D.

faculty photo
Assistant Professor of Otorhinolaryngology: Head and Neck Surgery
Department: Otorhinolaryngology: Head and Neck Surgery
Graduate Group Affiliations

Contact information
Department of Otorhinolaryngology
University of Pennsylvania School of Medicine
5 Ravdin
3400 Spruce St.
Philadelphia, PA 19104
Office: 215.898.0782
Fax: 215.898.9994
Lab: 215.573.7691
A.B. (Molecular Biology)
Princeton University, 2001.
Ph.D. (Biophysics)
Harvard University, 2006.
Permanent link

Description of Research Expertise

For more information, please visit

Neuronal circuits facilitating hearing in complex acoustic environments.

Adaptation to stimulus context is a ubiquitous property of cortical neurons, thought to enhance efficiency of sensory coding. Yet the specific neuronal circuits that facilitate cortical adaptation remain unknown. In the primary auditory cortex, the vast majority of neurons exhibit stimulus-specific adaptation, responding weakly to frequently repeated tones and strongly to rare tones. We are investigating the hypothesis that a complex circuit composed of several subtypes of cortical interneurons facilitates stimulus-specific adaptation. We use optogenetic methods to up-or down-activate the activity of parvalbumin-positive or somatostatin-positive interneurons and test the effect of their manipulation on responses of principal cortical neurons. By reducing responses to frequent sounds, complex inhibitory networks may enhance cortical sensitivity to rare sounds that may represent unexpected events.

Cortical mechanisms driving changes in auditory perception following emotional learning

Traumatic events lead to changes in the emotional response to the environment, and to changes in the way the environment is perceives. Identifying the brain circuits that link emotional responses and sensory perception is of crucial importance to learning the causes and developing treatments for anxiety and post-traumatic stress disorder (PTSD). We recently discovered a new link between emotional learning, a model of anxiety acquisition, and changes in perceptual acuity, and found that the auditory cortex plays a crucial in facilitating this plasticity. We are presently investigating the neuronal mechanisms that support dynamic changes in sensory perception driven by emotional learning, as well as identifying the source for individual variability in specificity of emotional learning. In order to achieve that, we combine behavioral, electrophysiological, computational and optogenetic tools. Our results will shed light on the circuits that are likely disrupted in PTSD and anxiety disorders and will eventually lead to development of novel tools for prevention and treatment of these devastating mental conditions.

Specialization of the auditory cortex for processing of natural sounds

Sensory systems are thought to have evolved to efficiently encode and represent the full range of sensory stimuli encountered in the natural world. The statistics of natural environmental sounds have an intricate spectro-temporal structure, yet how populations of neurons encode and process information about such complex statistics is only beginning to be elucidated. We recently identified a new form of statistical dependence in environmental sounds: In sounds of running water, a subset of environmental sounds, the temporal modulation spectrum across spectral bands scales with the center frequency of the band. In a psychophysical study, we found that sounds that obeyed the invariant scaling relation, but which varied in cyclo-temporal coefficients and spectro-temporal sound density evoked different percepts, ranging from pattering of rain to sound of a waterfall to artificial ringing. We are presently exploring changing spectro-temporal statistical properties of water-like sounds affects responses of neurons in the primary auditory cortex.

An essential task of the auditory system is to tell apart different communication signals, such as vocalizations. We recently found that neuronal populations in the auditory cortex are specialized for encoding con-specific vocalizations. We are presently investigating the neuronal mechanisms for creating an invariant representation of vocalizations in the auditory pathways, which would allow the brain to preserve the ability to tell apart vocalizations produced by different speakers or in the presence of noise. We are testing the hypothesis that invariant representations are created gradually through hierarchical transformation within the auditory pathway.

Computation in the auditory system

Throughout our studies we combine electrophysiological investigation of the neuronal pathways with computational approaches. Our goal is to understand the principles of encoding of information by populations of neurons, the function of specific cortical circuits comprised of inhibitory and excitatory neurons in learning and perception, and the mechanisms driving development of auditory perception and speech comprehension.

Selected Publications

Aizenberg Mark, Mwilambwe-Tshilobo Laetitia, Briguglio John J, Natan Ryan G, Geffen Maria N: Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons. PLoS biology 13(12): e1002308, Dec 2015.

Natan Ryan Gregory, Briguglio John J, Mwilambwe-Tshilobo Laetitia, Jones Sara, Aizenberg Mark, Goldberg Ethan M, Geffen Maria Neimark: Complementary control of sensory adaptation by two types of cortical interneurons. eLife 4, Oct 2015.

Carruthers Isaac M, Laplagne Diego A, Jaegle Andrew, Briguglio John, Mwilambwe-Tshilobo Laetitia, Natan Ryan G, Geffen Maria Neimark: Emergence of invariant representation of vocalizations in the auditory cortex. Journal of neurophysiology Page: jn.00095.2015, Aug 2015.

Gervain Judit, Werker Janet F, Geffen Maria N: Category-specific processing of scale-invariant sounds in infancy. PloS one 9(5): e96278, 2014.

Mwilambwe-Tshilobo Laetitia, Davis Andrew J O, Aizenberg Mark, Geffen Maria N: Selective Impairment in Frequency Discrimination in a Mouse Model of Tinnitus. PloS one 10(9): e0137749, 2015.

Zaidi Qasim, Victor Jonathan, McDermott Josh, Geffen Maria, Bensmaia Sliman, Cleland Thomas A: Perceptual spaces: mathematical structures to neural mechanisms. The Journal of neuroscience : the official journal of the Society for Neuroscience 33(45): 17597-602, Nov 2013.

Aizenberg, M. and Geffen, M.N.: Bidirectional effects of aversive learning on perceptual acuity are mediated by the sensory cortex. Nature Neuroscience 16: 994-6, Aug 2013.

Carruthers, I.M., Natan, R.G., Geffen, M.N.: Encoding of ultra-sonic vocalizations in the auditory cortex. Journal of Neurophysiology 109(7): 1912, April 2013.

Geffen Maria N, Gervain Judit, Werker Janet F, Magnasco Marcelo O: Auditory perception of self-similarity in water sounds. Frontiers in integrative neuroscience 5: 15, 2011.

Geffen Maria N, Broome Bede M, Laurent Gilles, Meister Markus: Neural encoding of rapidly fluctuating odors. Neuron 61(4): 570-86, Feb 2009.

Geffen Maria Neimark, de Vries Saskia E J, Meister Markus: Retinal ganglion cells can rapidly change polarity from Off to On. PLoS biology 5(3): e65, Mar 2007.

back to top
Last updated: 12/03/2015
The Trustees of the University of Pennsylvania