Department of Otorhinolaryngology

Otorhinolaryngology
faculty photo

Robert J. Lee, Ph.D.

Assistant Professor of Otorhinolaryngology: Head and Neck Surgery
Department: Otorhinolaryngology: Head and Neck Surgery

Contact information
Location:
Biomedical Research Building
Room 1222/1223 (lab) and 1209 (office)
Mailing Address:
UPHS, Department of ORL-HNS
3400 Spruce Street, 5 Ravdin
Suite A
Philadelphia, PA 19104
Office: 215-573-9766
Lab: 215-573-9775
Graduate Group Affiliations
Education:
BS (Molecular Biology)
University of Pittsburgh, Pittsburgh, PA, 2003.
PhD (Cell and Molecular Biology)
University of Pennsylvania School of Medicine, Philadelphia, PA, 2008.
Post-Graduate Training
Postdoctoral Research Fellow, Department of Physiology, University of Pennsylvania, 2009-2010.
Medical Writer, MedErgy Scientific, Yardley, PA, 2010-2011.
Postdoctoral Research Fellow, Department of Otorhinolaryngology, University of Pennsylvania, 2011-2014.
Permanent link
 
> Perelman School of Medicine   > Faculty   > Details

Description of Research Expertise

General Scientific Interests

Airway cell biology and physiology, Extra-oral taste receptors, Regulation of motile cilia in the airway, Epithelial ion transport and fluid secretion, Bicarbonate secretion and intracellular pH regulation, Epithelial innate immunity

Keywords: signal transduction, chronic rhinosinusitis, cystic fibrosis, live cell imaging, calcium signaling, nitric oxide signaling, cAMP signaling, antimicrobial peptides, g protein-coupled receptors

Description of Research

We study the physiology of the epithelial cells lining the upper airway (nose and sinuses) and the lower airway (lung) to understand how they sense and respond to pathogens. We combine biochemistry and molecular biology with real-time optical measurements of airway cell signaling and associated physiological responses, including ciliary beating, calcium signaling, fluid secretion, ion transport, nitric oxide production, and antimicrobial peptide secretion. Our goal is to better understand the cellular and molecular bases of airway diseases to identify novel molecular targets for new therapies.

There are two major diseases we focus on. The first is chronic rhinosinusitis (CRS), which affects 8-10% of the US population with direct healthcare costs of over 6 billion dollars annually. CRS has a major impact on individual quality of life as well as on public health; CRS accounts for 1 out of every 5 antibiotic prescriptions in adults in the US, making its treatment a major contributor to the emergence of antibiotic-resistant organisms. A continuing goal of our research is to identify new and better therapies to treat CRS and other airway diseases without the use of antibiotics, particularly through the stimulation of endogenous innate immune pathways. We also focus on cystic fibrosis (CF), the most common lethal genetic recessive disease in the US characterized by defective mucociliary transport due to altered ion transport and fluid secretion. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Our goal is to better understand the molecular basis of CF and identify novel targets to restore or enhance airway function.

The close partnership we have with physicians at the Hospital of the University of Pennsylvania and the Philadelphia VA Medical Center allows ideas generated in our lab to be directly tested or evaluated in a real clinical setting, giving our research high translational potential.

Specific Areas of Focus

Regulation of Mucociliary Clearance: The primary physical defense of the airway is mucociliary clearance. Inhaled bacteria and viruses are trapped by mucus secreted by airway epithelial cells. Motile cilia line the airway, and coordinated ciliary beating transports debris-laden mucus from the respiratory passages toward the pharynx (throat), where it is cleared by swallowing or expectoration. Efficient mucociliary clearance requires the proper regulation of ciliary beating as well as mucus secretion and fluid homeostasis. When mucociliary clearance is not enough, it is complemented by the secretion of antimicrobial peptides and the generation of reactive oxygen and nitrogen species (ROS/RNS) that have direct antibacterial and antiviral effects.

These mechanisms are tightly regulated by G protein-coupled receptors (GPCRs) that respond to host and environmental cues. Our goal is to understand the basic science of airway epithelial cell GPCR signaling pathways and the receptors that activate them.

Role of Taste Receptors in Motile Cilia: How do airway epithelial cells detect the presence of invading pathogens? We recently discovered that this occurs partly through T2R bitter “taste” receptors in the cilia of epithelial cells in the nose and sinuses. T2Rs are G-protein–coupled receptors originally identified in type II taste cells of the tongue, where they function to protect against the ingestion of harmful compounds, including toxic bacterial products. One specific bitter taste receptor, T2R38, detects quorum-sensing compounds from invading bacteria and stimulates a nitric oxide-mediated innate immune defense response. Our observations suggest that bitter taste receptors are an “early warning” arm of airway innate immunity, activating responses within seconds to minutes of sensing these bitter bacterial products.

Because T2Rs have a uniquely high density of naturally-occurring, well-characterized genetic variants (polymorphisms) which underlie the complex individual variations in human taste preferences, we hypothesize that individual genetic differences in T2Rs may create variation in how efficiently airway cells from different individuals “sense” bacteria and contribute to varying susceptibility to respiratory infections.

Sweet Taste Receptor in Airway Physiology: Sweet taste (T1R) receptors are expressed in specialized solitary chemosensory cells in the sinonasal epithelium, where they inhibit innate defense responses stimulated by T2R bitter receptors. These receptors are activated by glucose in airway surface liquid as well as D-amino acids secreted by bacteria.

The sweet receptor in the nose may have important clinical relevance for CRS in patients with diabetes mellitus. Increased blood glucose levels are known to increase airway mucus glucose levels. CRS patients also have elevated nasal mucus glucose, likely due to increased leak from damage to their epithelial tissues as a result of chronic infection and inflammation. Diabetics are more prone to airway infections than non-diabetics, and this may potentially be due to higher nasal mucus glucose that overly-inhibits the airway solitary chemosensory cell defensive response.

Airway Submucosal Gland Bicarbonate Secretion: We also use optical methods to study fluid secretion, driven by chloride and bicarbonate transport, from living primary submucosal gland serous acinar cells. Our major focus is on defects in bicarbonate secretion due to defective CFTR ion channel

Potential Graduate Student Rotation Projects
Interested students should contact Rob to discuss a potential rotation project, which can be individually designed to fit the student’s interests within the context of active projects in the lab. Some example projects could be
1) Determining how inflammation and/or infection affects airway taste receptor expression
2) Examining the effects of hyperglycemia on airway cell physiology and innate immune mechanisms
3) Determining the signal transduction mechanism(s) and function(s) of chemosensory receptors within motile cilia
4) Examining if taste receptors regulate airway epithelial ion transport and/or fluid secretion
5) Elucidating mechanisms of nitric oxide generation by sinonasal epithelial cells in response to pathogens

Selected Publications

McMahon, D.B., Workman, A.D., Kohanski, M.A., Carey, R.M., Freund, J.R., Hariri, B.M., Chen, B., Doghramji, L.J., Adappa, N.D., Palmer, J.N., Kennedy, D.W., and Lee, R.J.: Protease-Activated Receptor 2 Activates Airway Apical Chloride Permeability and Increases Ciliary Beating. The FASEB Journal Feb 2018 [expected] Notes: In Press. PMID: 28874459.

Hariri, B.M., McMahon, D.B., Chen, B., Adappa, N.D., Palmer, J.N., Kennedy, D.W., and Lee, R.J. : Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa. PLOS One 12(9): e0185203, Sept. 2017 Notes: PMID: 28931063

Lee, R.J.,* Hariri, B.M., McMahon, D.B., Chen, B., Doghramji, L.D., Adappa, N.D., Palmer, J.N., Kennedy, D.W., Jiang, P., Margolskee, R.F., Cohen, N.A.* : Bacterial D-Amino Acids Suppress Sinonasal Innate Immunity Through Sweet Taste Receptors in Solitary Chemosensory Cells. Science Signaling 10(495): eaam7703, Sept. 2017 Notes: PMID: 28874606; *Co-corresponding.

Hariri, B.M., McMahon, D.B., Chen, B., Freund, J.R., Mansfield, C.J., Doghramji, L.J., Adappa, N.D., Palmer, J.N., Kennedy, D.W., Reed, D.R., Jiang, P., and Lee, R.J.: Flavones Modulate Respiratory Epithelial Innate Immunity: Anti-Inflammatory Effects and Activation of the T2R14 Receptor. Journal of Biological Chemistry 292(20): 8484-8497, May 2017 Notes: PMID: 28373278.

Lee, R.J. and Cohen, N.A.: Bitter Taste Bodyguards. Scientific American 314(2): 38-43, February 2016 Notes: PMID: 26930826.

Hariri, B.M., Payne, S.J., Chen, B., Mansfield, C., Dogrhamji, L.J., Adappa, N.D., Palmer, J.N., Kennedy, D.W., Niv, M.Y., and Lee, R.J.: In Vitro Effects of Anthocyanidins on Sinonasal Epithelial Nitric Oxide Production and Bacterial Physiology. American Journal of Rhinology and Allergy 30(4): 261-268, July 2016 Notes: PMID:27456596; PMCID:PMC4953345.

Lee RJ, Cohen NA: Taste Receptors in Innate Immunity. Cellular and Molecular Life Sciences 72(2): 217-36, Jan 2015 Notes: PMID:25323130 PMCID:PMC4286424.

Lee RJ, Foskett JK: Ca2+ Signaling and Secretion in Airway Epithelia. Cell Calcium 55(6): 325-36, Jun 2014 Notes: PMID: 24703093.

Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, Kreindler JL, Margolskee RF, Cohen NA: Bitter and Sweet Taste Receptors Regulate Human Upper Respiratory Innate Immunity. Journal of Clinical Investigation 124(3): 1393-1405, Mar 2014 Notes: PMID:24531552; PMCID:PMC3934184.

Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, Abraham V, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Beauchamp GK, Doulias PT, Ischiropoulos H, Kreindler JL, Reed DR, Cohen NA: T2R38 Taste Receptor Polymorphisms Underlie Susceptibility to Upper Respiratory Infection. Journal of Clinical Investigation 122(11): 4145-59, Nov 2012 Notes: PMID:23041624; PMCID:PMC3484455

back to top
Last updated: 12/07/2017
The Trustees of the University of Pennsylvania