University of Pennsylvania
Perelman School of Medicine
High-Throughput Screening Core

Sara Cherry, Ph. D.
David C. Schultz, Ph. D.
dschultz@mail.med.upenn.edu
(215) 573-9641
67 John Morgan Building
Mission

- Provide the PSOM community with HTS resources to identify genes or organic small molecule modulators of signaling pathways, cellular phenotypes, and protein function in models of human disease.
 - To educate and assist with HTS assay development, optimization, miniaturization, and validation
 - To provide laboratory robotics infrastructure and technically trained staff for HTS
 - To provide libraries of small molecule and genetic tools for HTS
 - To facilitate small-scale screens from user-defined gene-sets
- Develop novel technology to support HTS at Penn (e.g. new assays, unusual cell types, unique biology)
- Seed collaborative research programs in thematic areas of unmet medical challenge.
- Educate the SOM on utility and uses of HTS
SOM Screening Core Equipment

- **Automated pipetting workstations**
 - Janus MDT/Verispan 8-tip
 - Bulk reagent dispensers
 - ELx405 microplate washer

- **Detection**
 - EnVision multi-mode microplate reader
 - ImageXpress Micro
 - FLPR screening system

- **BSL2 Tissue Culture capabilities**

- **Informatics**
 - Screensaver, ChemAxon, CeuticalSoft-OpenHTS,
SOM Screening Core Library Resources

Chemical Libraries
Bioactives, FDA approved, and FDA-like compounds
- Microsource Spectrum Collection (2000)
- LOPAC (1280)
- The Prestwick Chemical Library (1120)
- NIH Clinical Collection (~800)

Diversity sets
- TBD

Genetic Libraries - Large scale and user-defined

siRNA
- human genome-wide, human GO categories, user-defined human and mouse

Non-coding RNAs
- IncRNAs (human)
- miRNA mimics/antagonists (human)

Lentivirus shRNAs
- Screening pools: genome-wide; GO categories; user-defined sets
- Order groups/individuals

MGC cDNA collection (CMV-driven)
- 18,000 full length, sequenced, mouse and human (arrayed); user-defined sets
- Order groups/individuals
What services will we provide?

- **Assay Development** (biochemical, cell, & high-content)
 - Consultation, technology assessment, assay design, optimization, miniaturization

- **Small-scale screening**
 - User-defined sets of genes
 - User-defined cell-types across small libraries of bioactive compounds/inhibitors
 - Synergy screening with smaller libraries

- **High-throughput screening**
 - Pharmacologically active cmpds, diversity collections, focused libraries (e.g. annotated inhibitors), siRNA, cDNA, shRNA

- **Pharmacological profiling**
 - Pathway inhibitor screening, structure-activity relationship studies, mechanism of action

- **Grant preparation**
 - Letters of support, experimental design section
Small scale screening

• Phenotypic profiling of tumor lines
 – FDA and FDA-likes
 – Annotated gene family (e.g. kinome)
 – Synergy studies (combinations gene-gene; gene-drug; drug-drug)

• Functional studies of ‘OMICs gene sets
 – Over-expression of gene-sets
 – Loss-of-function of gene-sets

• Validation of GWAS ‘hits’ or Exome ‘hits’
Assays

• Reporter Gene Assays (e.g. luciferase)
• Signaling
• Survival
• Microscopy (cell biology)
• Infection
• Anything you can read in a plate reader or microscope
Cell types

• Transformed lines
 – almost all routinely used cell lines
• Primary cells
 – macrophages, DCs, epithelial, etc
• Not lymphoid cells
 – hard to transduce
• BUT…can mix cells where perturb one cell and read out in another
 – eg. siRNA in macrophage but read T cell biology out
The Assay Development Process

Design
- Idea
- Phenotypes
- Reporters, cell types
- Controls
- Existing infrastructure

Development
- Controls: Z-factors, S/N, CVs
- Solvent; Timing; TX reagents
- Cell type, numbers
- Day to day; Plate to plate

POC
- Test set (e.g. 1K set)
- Data analysis
- Scale up

~ 1 hr to a month

~ 1-6 months
Automation: Screening

Automated pippeting station → 384w plates spotted with cDNAs or siRNAs → Dispenser

"Hit"
Services

• **Consultations** (per hour)
 – Assay development
 – Assay optimization
 – Assay validation
 – Grant submissions

• **Equipment usage** (per hour)
 – With help
 – Without help

• **Small scale screens**
 – User-defined (siRNAs, shRNAs, cDNAs, chemicals)
 – Library plates (e.g. kinome)

• **Large scale screens**
 – Library plates

• **Data Analysis**
 – Normalization, annotation
 – HCA analysis sequence dev.
 – Screen reports

• **Reagents**
 – Transfection
 – Plastics
 – Tips
 – Arraying

• **siRNAs, shRNAs, cDNAs**
 – User defined small sets
 – Individual clones
Funding Opportunities

- **NIH**
 - PAR-13-364, Development of Assays for High-Throughput screening for use in Probe and Pre-therapeutic Discovery (R01)
 - PAR-14-283/PAR-14-284, High Throughput Screening (HTS) to Discover Chemical Probes (R21/R01)
 - PAR-14-279, Discovery of *in vivo* Chemical Probes (R01)
 - PAR-14-006, Seeding Collaborations for Translational Research to Discover and Develop New Therapies for Diseases and Conditions within NIDDK's Mission (RO1)
 - PAR-13-267, Novel NeuroAIDS Therapeutics: Integrated Preclinical/Clinical Program (P01)
 - PAR-15-041, Targeting Persistent HIV Reservoirs (TaPHIR) (R21/R33)

- **NCAT/TRND opportunities**

- **Foundations** (e.g. Welcome Trust, Melanoma Research Foundation, Leukemia/Lymphoma Society, Gates)

- **Institute/Center Pilot project funds**
HOW TO GET STARTED?

- Contact David Schultz at dschultz@mail.med.upenn.edu for an initial consultation
 - Define the project
 - Determine if the facility has relevant expertise/technology to pursue the project
 - Develop a management plan
 - Set expectations
 - Get started!