2
12
18
28
12
12
1a
14
e
12
16
a
a
2
2
a
20
32
1a
2a
19
Faculty
61 16
19
1
49
2
2
1a
32
34
1b
1d
18
39
6f
1d
2 29
1d
25
Hamideh Parhiz, PharmD, PhD
78
6f
Assistant Professor of Systems Pharmacology and Translational Therapeutics
7
8a
Department: Systems Pharmacology and Translational Therapeutics
4
1
23
1f
Graduate Group Affiliations
8
a
b
1d
46
Contact information
41
4
3
3
3
2
4
b
1f
41
421 Curie Boulevard
35 Biomedical Research Building II/III Room 1256
59 University of Pennsylvania Perelman School of Medicine
Philadelphia, PA 19104
26
35 Biomedical Research Building II/III Room 1256
59 University of Pennsylvania Perelman School of Medicine
Philadelphia, PA 19104
35
ab
12
13
Education:
21 b PharmD 15 (Pharmacy) c
45 Mashhad University of Medical Sciences, Iran, 2005.
21 8 PhD 29 (Pharmaceutical Biotechnology) c
45 Mashhad University of Medical Sciences, Iran, 2011.
c
3
3
3
3
92
Permanent link21 b PharmD 15 (Pharmacy) c
45 Mashhad University of Medical Sciences, Iran, 2005.
21 8 PhD 29 (Pharmaceutical Biotechnology) c
45 Mashhad University of Medical Sciences, Iran, 2011.
c
2 29
21
1e
1d
24
76
18 Nano-engineering
29 Targeted delivery of nanomedicine
19 mRNA therapeutics
14 Autoimmunity
2b Cancer Immunology and Immunotherapy
8
1b Research Interests:
2fd Our lab develops novel nucleic acid delivery systems, including a new generation of targeted lipid nanoparticle (tLNP), for in vivo cellular reprogramming. We leverage these systems for mRNA-based therapeutics in a variety of non-vaccine applications such as inherited diseases, acquired or congenital hematopoietic conditions, cancers, fibrosis, and acute inflammatory conditions. We also investigate the mechanisms underlying the enhancement of delivery systems such as the ones related to more favorable pharmacokinetic profile, to apply those principles in designing more effective gene and mRNA therapeutics. Currently, the targeted LNP-mRNA platform we design serves as the foundation for ongoing academic programs and industrial product developments.
e 29
27
Description of Research Expertise
30 Nucleic acid-based therapeutics18 Nano-engineering
29 Targeted delivery of nanomedicine
19 mRNA therapeutics
14 Autoimmunity
2b Cancer Immunology and Immunotherapy
8
1b Research Interests:
2fd Our lab develops novel nucleic acid delivery systems, including a new generation of targeted lipid nanoparticle (tLNP), for in vivo cellular reprogramming. We leverage these systems for mRNA-based therapeutics in a variety of non-vaccine applications such as inherited diseases, acquired or congenital hematopoietic conditions, cancers, fibrosis, and acute inflammatory conditions. We also investigate the mechanisms underlying the enhancement of delivery systems such as the ones related to more favorable pharmacokinetic profile, to apply those principles in designing more effective gene and mRNA therapeutics. Currently, the targeted LNP-mRNA platform we design serves as the foundation for ongoing academic programs and industrial product developments.
e 29
23
15a Papp TE, Zeng J, Shahnawaz H, Akyianu A, Breda L, Yadegari A, Steward J, Shi R, Li Q, Mui BL, Tam YK, Weissman D, Rivella S, Shuvaev V, Muzykantov VR, Parhiz H.: CD47 peptide-cloaked lipid nanoparticles promote cell-specific mRNA delivery. Mol Ther 33: 3195-3208, Jul 2025.
133 Nakamichi S, von Muhlinen N, Yamada L, Melamed JR, Papp TE, Parhiz H, Weissman D, Horikawa I, Harris CC.: SRSF3 knockdown-induced cellular senescence as a possible therapeutic strategy for non-small cell lung cancer. bioRxiv May 2025.
172 Reyes-Esteves S, Majumder A, Marzolini N, Zamora M, Wang Y, Espy C, Papp TE, Akyianu A, Nong J, Messe L, Omo-Lamai S, Parhiz H, Myerson J, Marcos-Contreras O, Brenner J.: Targeted lipid nanoparticles containing IL-10 mRNA improve outcomes in experimental intracerebral hemorrhage. Res Sq Apr 2025.
186 Yashaswini CN, Cogliati B, Qin T, To T, Williamson T, Papp TE, Li K, Rasul R, Chen L, Lightstone A, Aghajanian H, Parhiz H, Wang S, Rurik JG, Epstein JA, Friedman SL.: In vivo anti-FAP CAR T therapy reduces fibrosis and restores liver homeostasis in metabolic dysfunction-associated steatohepatitis. bioRxiv Feb 2025.
135 Kimura K, Aicher A, Niemeyer E, Areesawangkit P, Tilsed C, Fong KP, Papp TE, Albelda SM, Parhiz H, Predina JD.: In Situ Tumor Vaccination Using Lipid Nanoparticles to Deliver Interferon-β mRNA Cargo. Vaccines (Basel) 13: 178, Feb 2025.
184 Castruccio Castracani C, Breda L, Papp TE, Guerra A, Radaelli E, Assenmacher CA, Finesso G, Mui BL, Tam YK, Fontana S, Riganti C, Fiorito V, Petrillo S, Tolosano E, Parhiz H, Rivella S.: An erythroid-specific lentiviral vector improves anemia and iron metabolism in a new model of XLSA. Blood 145: 98-113, Jan 2025.
26d Omo-Lamai S, Wang Y, Patel MN, Milosavljevic A, Zuschlag D, Poddar S, Wu J, Wang L, Dong F, Espy C, Majumder A, Essien EO, Shen M, Channer B, Papp TE, Tobin M, Maheshwari R, Jeong S, Patel S, Shah A, Murali S, Chase LS, Zamora ME, Arral ML, Marcos-Contreras OA, Myerson JW, Hunter CA, Discher D, Gaskill PJ, Tsourkas A, Muzykantov VR, Brodsky I, Shin S, Whitehead KA, Parhiz H, Katzen J, Miner JJ, Trauner D, Brenner JS.: Limiting endosomal damage sensing reduces inflammation triggered by lipid nanoparticle endosomal escape. Nat Nanotechnol 2025.
21c Chappell ME, Breda L, Tricoli L, Guerra A, Jarocha D, Castruccio Castracani C, Papp TE, Tanaka N, Hamilton N, Triebwasser MP, Ghiaccio V, Fedorky MT, Gollomp KL, Bochenek V, Roche AM, Everett JK, Cook EJ, Bushman FD, Teawtrakul N, Glentis S, Kattamis A, Mui BL, Tam YK, Weissman D, Abdulmalik O, Parhiz H, Rivella S.: Use of HSC-targeted LNP to generate a mouse model of lethal α-thalassemia and treatment via lentiviral gene therapy. Blood 144: 1633-1645, Oct 2024.
152 Mukalel AJ, Hamilton AG, Billingsley MM, Li J, Thatte AS, Han X, Safford HC, Padilla MS, Papp T, Parhiz H, Weissman D, Mitchell MJ.: Oxidized mRNA Lipid Nanoparticles for In Situ Chimeric Antigen Receptor Monocyte Engineering. Adv Funct Mater 34: 2312038, Jul 2024.
2c
7
1d
1f
Selected Publications
258 Shuvaev VV, Tam YK, Lee BW, Myerson JW, Herbst A, Kiseleva RY, Glassman PM, Parhiz H, Alameh MG, Pardi N, Muramatsu H, Shuvaeva TI, Arguiri E, Marcos-Contreras OA, Hood ED, Brysgel TV, Nong J, Papp TE, Eaton DM, Riley R, Palanki R, Musunuru K, Brenner JS, Mitchell MJ, Ferrari VA, Mui BL, Semple SC, Weppler SA, Atluri P, Margulies KB, Weissman D, Muzykantov VR.: Systemic delivery of biotherapeutic RNA to the myocardium transiently modulates cardiac contractility in vivo. Proc Natl Acad Sci U S A 122: e2409266122, Jul 2025.15a Papp TE, Zeng J, Shahnawaz H, Akyianu A, Breda L, Yadegari A, Steward J, Shi R, Li Q, Mui BL, Tam YK, Weissman D, Rivella S, Shuvaev V, Muzykantov VR, Parhiz H.: CD47 peptide-cloaked lipid nanoparticles promote cell-specific mRNA delivery. Mol Ther 33: 3195-3208, Jul 2025.
133 Nakamichi S, von Muhlinen N, Yamada L, Melamed JR, Papp TE, Parhiz H, Weissman D, Horikawa I, Harris CC.: SRSF3 knockdown-induced cellular senescence as a possible therapeutic strategy for non-small cell lung cancer. bioRxiv May 2025.
172 Reyes-Esteves S, Majumder A, Marzolini N, Zamora M, Wang Y, Espy C, Papp TE, Akyianu A, Nong J, Messe L, Omo-Lamai S, Parhiz H, Myerson J, Marcos-Contreras O, Brenner J.: Targeted lipid nanoparticles containing IL-10 mRNA improve outcomes in experimental intracerebral hemorrhage. Res Sq Apr 2025.
186 Yashaswini CN, Cogliati B, Qin T, To T, Williamson T, Papp TE, Li K, Rasul R, Chen L, Lightstone A, Aghajanian H, Parhiz H, Wang S, Rurik JG, Epstein JA, Friedman SL.: In vivo anti-FAP CAR T therapy reduces fibrosis and restores liver homeostasis in metabolic dysfunction-associated steatohepatitis. bioRxiv Feb 2025.
135 Kimura K, Aicher A, Niemeyer E, Areesawangkit P, Tilsed C, Fong KP, Papp TE, Albelda SM, Parhiz H, Predina JD.: In Situ Tumor Vaccination Using Lipid Nanoparticles to Deliver Interferon-β mRNA Cargo. Vaccines (Basel) 13: 178, Feb 2025.
184 Castruccio Castracani C, Breda L, Papp TE, Guerra A, Radaelli E, Assenmacher CA, Finesso G, Mui BL, Tam YK, Fontana S, Riganti C, Fiorito V, Petrillo S, Tolosano E, Parhiz H, Rivella S.: An erythroid-specific lentiviral vector improves anemia and iron metabolism in a new model of XLSA. Blood 145: 98-113, Jan 2025.
26d Omo-Lamai S, Wang Y, Patel MN, Milosavljevic A, Zuschlag D, Poddar S, Wu J, Wang L, Dong F, Espy C, Majumder A, Essien EO, Shen M, Channer B, Papp TE, Tobin M, Maheshwari R, Jeong S, Patel S, Shah A, Murali S, Chase LS, Zamora ME, Arral ML, Marcos-Contreras OA, Myerson JW, Hunter CA, Discher D, Gaskill PJ, Tsourkas A, Muzykantov VR, Brodsky I, Shin S, Whitehead KA, Parhiz H, Katzen J, Miner JJ, Trauner D, Brenner JS.: Limiting endosomal damage sensing reduces inflammation triggered by lipid nanoparticle endosomal escape. Nat Nanotechnol 2025.
21c Chappell ME, Breda L, Tricoli L, Guerra A, Jarocha D, Castruccio Castracani C, Papp TE, Tanaka N, Hamilton N, Triebwasser MP, Ghiaccio V, Fedorky MT, Gollomp KL, Bochenek V, Roche AM, Everett JK, Cook EJ, Bushman FD, Teawtrakul N, Glentis S, Kattamis A, Mui BL, Tam YK, Weissman D, Abdulmalik O, Parhiz H, Rivella S.: Use of HSC-targeted LNP to generate a mouse model of lethal α-thalassemia and treatment via lentiviral gene therapy. Blood 144: 1633-1645, Oct 2024.
152 Mukalel AJ, Hamilton AG, Billingsley MM, Li J, Thatte AS, Han X, Safford HC, Padilla MS, Papp T, Parhiz H, Weissman D, Mitchell MJ.: Oxidized mRNA Lipid Nanoparticles for In Situ Chimeric Antigen Receptor Monocyte Engineering. Adv Funct Mater 34: 2312038, Jul 2024.
2c
4d
22
22
7
10
a
a
2
2
19
18
10
22
10
11
c
5b © The Trustees of the University of Pennsylvania | Site best viewed a in a supported browser. | Site Design: 57 PMACS Web Team. 3 22
10
c