2
12
18
28
12
12
1a
14
e
12
16
a
a
2
2
a
20
32
1a
2a
19
Faculty
61 16
19
1
49
2
2
1a
32
34
1b
1d
18
32
45
1d
2 29
1d
25
Toshinori Hoshi, PhD
78
45
Emeritus Professor of Physiology
7
61
Department: Physiology
4
1
23
1f
Graduate Group Affiliations
8
b
-
64
- Neuroscience e
1d
46
Contact information
35
4
3
3
1d
35
605 CRB
16 415 Curie Blvd
3b Department of Physiology
Philadelphia, PA 19104
26
16 415 Curie Blvd
3b Department of Physiology
Philadelphia, PA 19104
33
Office: 215-573-7305
30
99
30
Email:
hoshi@pennmedicine.upenn.edu
12
hoshi@pennmedicine.upenn.edu
18
Publications
23 a
3
2
4
b
1f
23 a
13
Education:
21 9 B.A. 17 (Psychology) c
34 University of New Hampshire, 1981.
21 a Ph.D. 17 (Physiology) c
28 Yale University, 1985.
c
3
27
21 9 B.A. 17 (Psychology) c
34 University of New Hampshire, 1981.
21 a Ph.D. 17 (Physiology) c
28 Yale University, 1985.
c
Links
1fc Search PubMed for articles
3f Neuroscience graduate group faculty
51 Laboratory webpage
53 The Hoshi Laboratory
c
5
3
3
90
Permanent link1fc Search PubMed for articles
3f Neuroscience graduate group faculty
51 Laboratory webpage
53 The Hoshi Laboratory
c
2 29
21
1e
1d
24
5e
107 Ion channel modulation such as that of calcium-dependent potassium channels by heme, heme breakdown products such as CO, and lipid messengers including PIP2 and omega-3 fatty acids and of TMEM16A anion channels by small molecules produced by gut microbes.
8
12 KEY WORDS:
112 neuronal excitability, ion channel gating, oxidation, methionine, aging, blood, heme, CO, brain hemorrhage, lipids, PIP2, omega-3 fatty acids, fish oil, BK channel, Slo1, KCNMA1, KCNMB, KCa1.1, LRRC, potassium channels, voltage sensor, Shaker channels, EAG, Kv, KCNH
8
1b RESEARCH TECHNIQUES
df Electrophysiology (patch clamp, voltage-clamp, extracellular recording, optical recording); molecular biology; tissue culture; vascular smooth muscle physiology; gut physiology; microbiota; physiology and behavior.
8
18 RESEARCH SUMMARY
1ad We study modulation of ion channels such as large-conductance calcium- and voltage-gated potassium channels and TMEM16A anion channels by different signaling molecules. The modulators/modulatory processes being examined include: oxidation/reduction of amino acids, carbon monoxide, heme, bilirubin oxidation end products, PIP2 and omega-3 fatty acids. Our recent focus includes the small molecules produced gut microbes.
26 29
27
Description of Research Expertise
23 RESEARCH INTERESTS107 Ion channel modulation such as that of calcium-dependent potassium channels by heme, heme breakdown products such as CO, and lipid messengers including PIP2 and omega-3 fatty acids and of TMEM16A anion channels by small molecules produced by gut microbes.
8
12 KEY WORDS:
112 neuronal excitability, ion channel gating, oxidation, methionine, aging, blood, heme, CO, brain hemorrhage, lipids, PIP2, omega-3 fatty acids, fish oil, BK channel, Slo1, KCNMA1, KCNMB, KCa1.1, LRRC, potassium channels, voltage sensor, Shaker channels, EAG, Kv, KCNH
8
1b RESEARCH TECHNIQUES
df Electrophysiology (patch clamp, voltage-clamp, extracellular recording, optical recording); molecular biology; tissue culture; vascular smooth muscle physiology; gut physiology; microbiota; physiology and behavior.
8
18 RESEARCH SUMMARY
1ad We study modulation of ion channels such as large-conductance calcium- and voltage-gated potassium channels and TMEM16A anion channels by different signaling molecules. The modulators/modulatory processes being examined include: oxidation/reduction of amino acids, carbon monoxide, heme, bilirubin oxidation end products, PIP2 and omega-3 fatty acids. Our recent focus includes the small molecules produced gut microbes.
26 29
23
11c Ojha, N. K., Leipold, E., Schonherr, R., Hoshi, T., Heinemann, S. H.: Non-photonic sensing of membrane-delimited reactive species with a Na+ channel protein containing selenocysteine Sci Rep 7: 46003, 2017.
13a Han, B., He, K., Cai, C., Tang, Y., Yang, L., Heinemann, S. H., Hoshi, T., Hou, S.: Human EAG channels are directly modulated by PIP2 as revealed by electrophysiological and optical interference investigations. Sci Rep 6: 23417, 2016.
134 Schink, M., Leipold, E., Schirmeyer, J., Schonherr, R., Hoshi, T., Heinemann, S. H.: Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons. Pflügers Arch 468(1): 99-110, 2016.
fb Hoshi, T., Heinemann, S. H.: Modulation of BK channels by small endogenous molecules and pharmaceutical channel openers. Int Rev Neurobiol. C. Contet (eds.). 128: 193-237, 2016.
156 Tian, Y., Aursnes, M., Hansen, T. V., Tungen, J. E., Galpin, J. D., Leisle, L., Ahern, C. A., Xu, R., Heinemann, S. H., Hoshi, T.: Atomic determinants of BK channel activation by polyunsaturated fatty acids. Proc Natl Acad Sci U S A 113(48): 13905-13910, 2016.
b0 Hoshi, T., Armstrong, C. M.: The Cole-Moore Effect: Still Unexplained? Biophys J 109(7): 1312-6, 2015.
19d Golder, F. J., Dax, S., Baby, S. M., Gruber, R., Hoshi, T., Ideo, C., Kennedy, A., Peng, S., Puskovic, V., Ritchie, D., Woodward, R., Wardle, R. L., Van Scott, M. R., Mannion, J. C., MacIntyre, D. E.: Identification and characterization of GAL-021 as a novel breathing control modulator. Anesthesiology 123(5): 1093-104, 2015.
119 Tian, Y., Ullrich, F., Xu, R., Heinemann, S. H., Hou, S., Hoshi, T.: Two distinct effects of PIP2 underlies auxiliary subunit-dependent modulation of Slo1 BK channels. J Gen Physiol 145(4): 331-43, 2015.
95 Horrigan, F. T., Hoshi, T.: Models of ion channel gating. Handbook of ion channels. Zheng, J. 48 Trudeau, M. C. (eds.). CRC Press, Page: 81-99, 2015.
2c
7
1d
1f
Selected Publications
174 Gessner, G., Sahoo, N., Swain, S. M., Hirth, G., Schonherr, R., Mede, R., Westerhausen, M., Brewitz, H. H., Heimer, P., Imhof, D., Hoshi, T., Heinemann, S. H.: CO-independent modification of K+ channels by tricarbonyldichlororuthenium(II) dimer (CORM-2). Eur J Pharmacol 815: 33-41, 2017.11c Ojha, N. K., Leipold, E., Schonherr, R., Hoshi, T., Heinemann, S. H.: Non-photonic sensing of membrane-delimited reactive species with a Na+ channel protein containing selenocysteine Sci Rep 7: 46003, 2017.
13a Han, B., He, K., Cai, C., Tang, Y., Yang, L., Heinemann, S. H., Hoshi, T., Hou, S.: Human EAG channels are directly modulated by PIP2 as revealed by electrophysiological and optical interference investigations. Sci Rep 6: 23417, 2016.
134 Schink, M., Leipold, E., Schirmeyer, J., Schonherr, R., Hoshi, T., Heinemann, S. H.: Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons. Pflügers Arch 468(1): 99-110, 2016.
fb Hoshi, T., Heinemann, S. H.: Modulation of BK channels by small endogenous molecules and pharmaceutical channel openers. Int Rev Neurobiol. C. Contet (eds.). 128: 193-237, 2016.
156 Tian, Y., Aursnes, M., Hansen, T. V., Tungen, J. E., Galpin, J. D., Leisle, L., Ahern, C. A., Xu, R., Heinemann, S. H., Hoshi, T.: Atomic determinants of BK channel activation by polyunsaturated fatty acids. Proc Natl Acad Sci U S A 113(48): 13905-13910, 2016.
b0 Hoshi, T., Armstrong, C. M.: The Cole-Moore Effect: Still Unexplained? Biophys J 109(7): 1312-6, 2015.
19d Golder, F. J., Dax, S., Baby, S. M., Gruber, R., Hoshi, T., Ideo, C., Kennedy, A., Peng, S., Puskovic, V., Ritchie, D., Woodward, R., Wardle, R. L., Van Scott, M. R., Mannion, J. C., MacIntyre, D. E.: Identification and characterization of GAL-021 as a novel breathing control modulator. Anesthesiology 123(5): 1093-104, 2015.
119 Tian, Y., Ullrich, F., Xu, R., Heinemann, S. H., Hou, S., Hoshi, T.: Two distinct effects of PIP2 underlies auxiliary subunit-dependent modulation of Slo1 BK channels. J Gen Physiol 145(4): 331-43, 2015.
95 Horrigan, F. T., Hoshi, T.: Models of ion channel gating. Handbook of ion channels. Zheng, J. 48 Trudeau, M. C. (eds.). CRC Press, Page: 81-99, 2015.
2c
4d
22
22
7
10
a
a
2
2
19
18
10
22
10
11
c
5b © The Trustees of the University of Pennsylvania | Site best viewed a in a supported browser. | Site Design: 57 PMACS Web Team. 3 22
10
c
