Perelman School of Medicine at the University of Pennsylvania

Section for Biomedical Image Analysis (SBIA)

Multimodal Brain Tumor Segmentation Challenge 2017

ScopeRelevance • Tasks • DataEvaluationParticipation SummaryRegistrationPrevious BraTSPeople


Tasks


• Task 1: Segmentation of gliomas in pre-operative scans.

The participants are called to address this task by using the provided clinically-acquired training data to develop their method and produce segmentation labels of the different glioma sub-regions. The sub-regions considered for evaluation are: 1) the "enhancing tumor" (ET), 2) the "tumor core" (TC), and 3) the "whole tumor" (WT) [see figure below]. The ET is described by areas that show hyper-intensity in T1Gd when compared to T1, but also when compared to “healthy” white matter in T1Gd. The TC describes the bulk of the tumor, which is what is typically resected. The TC entails the ET, as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the tumor. The appearance of the necrotic (NCR) and the non-enhancing (NET) tumor core is typically hypo-intense in T1-Gd when compared to T1. The WT describes the complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper-intense signal in FLAIR.
The labels in the provided data are: 1 for NCR & NET2 for ED4 for ET, and 0 for everything else.
The participants are called to upload their segmentation labels into CBICA's Image Processing Portal for evaluation.


• Task 2: Prediction of patient overall survival (OS) from pre-operative scans.

Once the participants produce their segmentation labels in the pre-operative scans, they will be called to use these labels in combination with the provided multimodal MRI data to extract imaging/radiomic features that they consider appropriate, and analyze them through machine learning algorithms, in an attempt to predict patient OS. The participants do not need to be limited to volumetric parameters, but can also consider intensity, morphologic, histogram-based, and textural features, as well as spatial information, and glioma diffusion properties extracted from glioma growth models.
The participants are called to upload a .csv file with the subject ids and the predicted survival values into CBICA's Image Processing Portal for evaluation.


Fig.1: Glioma sub-regions. Shown are image patches with the tumor sub-regions that are annotated in the different modalities (top left) and the final labels for the whole dataset (right). The image patches show from left to right: the whole tumor (yellow) visible in T2-FLAIR (Fig.A), the tumor core (red) visible in T2 (Fig.B), the enhancing tumor structures (light blue) visible in T1Gd, surrounding the cystic/necrotic components of the core (green) (Fig. C). The segmentations are combined to generate the final labels of the tumor sub-regions (Fig.D): edema (yellow), non-enhancing solid core (red), necrotic/cystic core (green), enhancing core (blue). (Figure taken from the BraTS IEEE TMI paper.)

Feel free to send any communication related to the BraTS challenge to brats@miccai2017.org