Xiaolu Yang, Ph.D.

faculty photo
Professor of Cancer Biology
Department: Cancer Biology

Contact information
421 Curie Boulevard
University of Pennsylvania School of Medicine
Philadelphia, PA 19104-6160
Office: (215) 573-6739
Fax: (215) 573-6725
B.Sc. (Physical Chemistry)
Tsinghua University, Beijing, China, 1985.
M.Phil. (Genetics & Development)
Columbia University, New York, NY, 1992.
Ph.D. (Genetics & Development)
Columbia University, New York, NY, 1994.
Permanent link
> Perelman School of Medicine   > Faculty   > Details

Description of Research Expertise

Research Interests
The molecular and cellular mechanisms that protect against cancer and neurodegeneration.

Key words:
Cancer, neurodegenerative diseases, apoptosis, caspases, p53, tumor metabolism, cellular senescence, metastasis, removal of misfolded proteins, signal transduction, SUMOylation, ubiquitination

Description of Research
The Yang Lab studies the molecular and cellular mechanisms that protect against major diseases, including cancer and neurodegeneration. Our current projects are focused on three areas: 1) apoptosis pathways, 2) the tumor suppressor p53, and 3) the cellular systems that degrade misfolded proteins. Our experimental strategies include molecular and cell biology techniques, biochemical techniques, metabolic analysis, cell culture, genomics, mouse disease models, and human patient samples.

Apoptosis is a physiological process of cell auto-destruction that eliminates unwanted, damaged, or harmful cells. Dysregulation of apoptosis is associated with many diseases such as cancer, neurodegeneration, and immunodeficiency. Apoptosis is executed by the caspase family of cysteine proteases. We previously pioneered a paradigm for the activation of caspases, whereby initiator caspase activation is controlled by oligomerization. We are investigating the regulation of caspase activation in various apoptosis pathways. Paradoxically, some caspases are also involved in cell proliferation. We are studying the proliferative role of caspases to better understand the interplay between cellular life and death processes.

p53 plays a preeminent role in blocking tumor formation and is the single most frequently mutated gene in human tumors. p53 is activated by various tumor-promoting stresses and effectuates a range of anti-proliferative and repair responses. We are investigating the regulation and functions of p53, as well as its structural homologue p73. We previously identified a complex that stabilizes the principal p53 antagonist Mdm2 and are now examining how this complex controls p53 activation. We also revealed a role for p53 family proteins in modulating cellular metabolism, particularly the production of NADPH, the reducing equivalent required for biosynthesis and anti-oxidant defense. We are further studying how these proteins act as both sentinels and regulators for metabolism, coordinating metabolism with cell fate decision, and how these functions may be compromised in tumor cells. We are also investigating other metabolic alterations in tumor cells that enable their survival, proliferation, and metastasis.

Proteins are the most abundant macromolecules in the cell and are critical to virtually all physiological processes. However, proteins are prone to misfolding, and accumulation of misfolded proteins is genetically and pathologically linked to neurodegenerative diseases and cancer. Cells ultimately rely on degradative systems to maintain protein quality. We recently identified a cellular system that selectively degrades misfolded proteins through sequential SUMOylation and ubiquitination, and protects against neurodegeneration. We are further defining the mechanism of this novel protein quality control system, as well as its dysregulation in human diseases.

Lab personnel:
Lyndsey Makinen, Administrative Coordinator
Shivani Ghaisas, Postdoctoral Researcher
Lianqian Huang, Postdoctoral Researcher
Yi Xu, Postdoctoral Researcher
Hao Zhang, Postdoctoral Researcher
Yang Zhang, Postdoctoral Researcher
Sixiang Yu, Graduate Student
Janet Zhou, Research Specialist
Caitlin Frazee, Undergraduate Researcher
Jacob Huang, Undergraduate Researcher
Kimberly Taing, Undergraduate Researcher
Ivy Wong, Undergraduate Researcher
Steven Wren, Undergraduate Researcher

Selected Publications

Xu Y, Zhang Y, García-Cañaveras JC, Guo L, Yu S, Blair IA, Rabinowitz JD, and Yang X.* (*Corresponding author) : Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science 369(6502): 397-403, July 2020 Notes: commented on in this issue.

Chen L, Zhu G, Johns EM, Yang X: TRIM11 activates the proteasome and promotes overall protein degradation by regulating USP14. Nature Communications 9(1): 1223, March 2018.

Chen L., Brewer M., Guo L., Wang R., Jiang P., Yang X.: Enhanced Degradation of Misfolded Proteins Promotes Tumorigenesis. Cell Reports 18(13): 3143-3154, March 2017.

Guo L., Giasson B.I., Glavis-Bloom A., Brewer M.D., Shorter J., Gitler A.D., and Yang X.: A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol Cell 55: 15-30, 2014 Notes: Cover story and commented on in this issue.

Du W., Jiang P., Mancuso A., Stonestrom A., Brewer M.D., Minn A.J., Mak T.W., Wu M., and Yang X: TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Bio 15: 991-1000, 2013 Notes: Cover story and commented on in this issue.

Jiang P., Du W., Mancuso A., Wellen K. and Yang X.: Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493: 689-93, 2013.

Jiang P., Du W., Wang X., Mancuso A., Gao X., Wu M., and Yang X.: p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol. 13: 310-18, 2011 Notes: cover story and commented on in this issue.

Chu Y. and Yang X.: SUMO E3 activity of TRIM proteins. Oncogene 30: 1108-16, 2011.

Mei Y., Yong J., Liu H., Shi Y., Meinkoth J., Dreyfuss G., and Yang X.: tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37: 668-78, 2010 Notes: Cover story and commented on in this issue. Highlighted in Science Signaling and Chemical & Engineering News.

Kawadler H., Riley J. L., and Yang X.: The paracaspase MALT1 control caspase-8 activation during lymphocyte proliferation. Mol Cell 31: 415-21, 2008 Notes: Highlighted in Science Signaling.

back to top
Last updated: 08/13/2020
The Trustees of the University of Pennsylvania