Natali L Chanaday, PhD

faculty photo
Presidential Assistant Professor
Department: Physiology

Contact information
726 Clinical Research Building
415 Curie Blvd
Department of Physiology
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA 19104
PhD (Chemistry)
Universidad Nacional de Cordoba (Argentina), 2015.
Permanent link

Description of Research Expertise

Research Interests:
We investigate how neurons communicate at the single synapse level.

Synaptic vesicles, neurotransmission, electrophysiology, neurotransmitter release, endocytosis, calcium imaging, live imaging, calcium signaling, endoplasmic reticulum, store operated calcium entry, extracellular vesicles

Research Details:
We study molecular mechanisms of neuron communication via fast modes, i.e. action potentials, neurotransmitter release, neurotransmission. And also via slow modes, for example slow calcium signals that set basal synaptic properties and shape plastic changes, and inter-neuronal communication via extracellular vesicles. We use live fluorescence imaging and electrophysiology. We are mainly a basic science lab, but are also interested in understanding how synapses are altered during neurodegeneration.

Selected Publications

Chanaday, N. L., & Kavalali, E. T. : Role of the endoplasmic reticulum in synaptic transmission. Current opinion in neurobiology 73: 102538, Apr 2022.

Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, Bezprozvanny I, Kavalali ET.: Presynaptic store-operated Ca(2+) entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 109: 1314-1332, Apr 2021.

Vilcaes AA, Chanaday NL, Kavalali ET.: Interneuronal exchange and functional integration of synaptobrevin via extracellular vesicles. Neuron 109: 971-983, Mar 2021.

Chanaday NL, Kavalali ET.: Synaptobrevin-2 dependent regulation of single synaptic vesicle endocytosis. Mol Biol Cell 32: 1818-1823, Sep 2021.

Wang, C. S., Chanaday, N. L., Monteggia, L. M., & Kavalali, E. T.: Probing the segregation of evoked and spontaneous neurotransmission via photobleaching and recovery of a fluorescent glutamate sensor. eLife 11: e76008, April 2022.

Chanaday NL, Kavalali ET.: Presynaptic origins of distinct modes of neurotransmitter release. Current opinion in neurobiology 51: 119–126, Aug 2018.

Chanaday NL, Kavalali ET.: Time course and temperature dependence of synaptic vesicle endocytosis. FEBS letters 592(21): 3606–3614, Nov 2018.

Chanaday NL, Kavalali ET.: Optical detection of three modes of endocytosis at hippocampal synapses. Elife 7: e36097, Apr 2018.

Lin PY, Chanaday NL, Horvath PM, Ramirez DMO, Monteggia LM, Kavalali ET.: VAMP4 Maintains a Ca(2+)-Sensitive Pool of Spontaneously Recycling Synaptic Vesicles. J Neurosci 40: 5389-5401, Jul 2020.

Afuwape OAT, Chanaday NL, Kasap M, Monteggia LM and Kavalali ET: Persistence of quantal synaptic vesicle recycling following dynamin depletion. bioRxiv Page: 2020.2006.2012.147975, 2020 Notes: https://www.biorxiv.org/content/10.1101/2020.06.12.147975v1.

back to top
Last updated: 04/18/2024
The Trustees of the University of Pennsylvania