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SUMMARY

The clinical benefit of T cell immunotherapies remains limited by incomplete understanding of T cell differ-
entiation and dysfunction.We generated an epigenetic and transcriptional atlas of T cell differentiation from
healthy humans that included exhausted CD8 T cells and applied this resource in three ways. First, we iden-
tified modules of gene expression and chromatin accessibility, revealing molecular coordination of differ-
entiation after activation and between central memory and effector memory. Second, we applied this
healthy molecular framework to three settings—a neoadjuvant anti-PD1 melanoma trial, a basal cell carci-
noma scATAC-seq dataset, and autoimmune disease-associated SNPs—yielding insights into disease-
specific biology. Third, we predicted genome-wide cis-regulatory elements and validated this approach
for key effector genes using CRISPR interference, providing functional annotation and demonstrating
the ability to identify targets for non-coding cellular engineering. These studies define epigenetic and tran-
scriptional regulation of human T cells and illustrate the utility of interrogating disease in the context of a
healthy T cell atlas.

INTRODUCTION

T cells have become a major target of immunotherapies
including checkpoint blockade and engineered cellular thera-
pies. However, the design of optimal T cell therapeutics is limited
by an incomplete understanding of epigenetic and transcrip-
tional mechanisms controlling human T cell differentiation and
function. Although some T cell differentiation states are thought
to be more relevant for therapeutics than others (Huang et al.,
2017; Gattinoni et al., 2011), the ability to manipulate the differ-

entiation trajectory of human T cells to a specific outcome re-
mains limited. Defining the epigenetic and transcriptional land-
scape of T cell differentiation in healthy humans can inform the
mechanisms of T cell dysfunction in diseases and improve
T cell therapies.
Studies in mice have revealed key insights into transcriptional

and epigenetic mechanisms underlying T cell differentiation.
Models of acutely resolved infections have provided insights
into naive T cell activation and differentiation into effector
and/or long-lived memory T cells (Kaech and Cui, 2012).
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Next-generation sequencing approaches have connected the
phenotype and function to the underlying transcriptional pro-
grams and epigenetic changes of effector and memory T cells,
as well as exhausted T cells found in chronic infections and can-
cer (Crompton et al., 2016; Pauken et al., 2016; Best et al., 2013;
He et al., 2016; Scharer et al., 2013; Yu et al., 2017; Scott-
Browne et al., 2016; Scharer et al., 2017; Sen et al., 2016). These
studies inmice have provided a foundation for understanding the
key steps in transcriptional and epigenetic control of T cell differ-
entiation. Chromatin accessibility and transcriptional profiling
also support the idea of discrete human T cell differentiation
states and have identified potential roles for transcription factors
(TFs) discovered in mouse models (Araki et al., 2009; Abdel-
samed et al., 2017; Ucar et al., 2017; Qu et al., 2015). Epigenomic
and transcriptional profiling of human antiviral CD8 T cells
(Akondy et al., 2017; Sen et al., 2016), tumor-infiltrating T cells
(Satpathy et al., 2019), or follicular helper CD4 T cells (Vella
et al., 2019) have defined the patterns of chromatin accessibility
associated with individual human T cell subtypes and/or specific
disease settings. Nevertheless, the transcriptional circuits and
epigenomic changes associated with distinct states of human
T cell differentiation remain poorly defined, and a comprehensive
epigenetic and transcriptional landscape map does not yet exist
for human T cells. A framework built on canonical human T cell
subsets would enable the identification of the underlying epige-
nomic mechanisms that control differentiation and function as
well as provide a reference atlas for T cell states in diseases,
including single-cell profiles. Such a foundation could aid in
developing optimal T-cell-targeted therapeutics, including
checkpoint blockade and chimeric antigen receptor (CAR)
T cells, for the treatment of cancer and other diseases.

We generated RNA-sequencing (RNA-seq) and assay for
transposase-accessible chromatin sequencing (ATAC-seq)
data from 14 circulating T cell subsets from healthy human do-
nors (HDs) and constructed a transcriptional and epigenetic hu-
man T cell atlas. We applied this atlas in three ways to link the
subset phenotype and function to the underlying transcriptional
and epigenetic regulation. First, we investigated the transcrip-
tional and epigenetic programs in HD CD8 T cell subsets and
identified the gene expression and chromatin accessibility mod-
ules associated with differentiation states and state transitions.
Second, we applied this HDmolecular framework tomultiple dis-
ease datasets including a melanoma clinical trial, single-cell
ATAC-seq (scATAC-seq) from basal cell carcinoma (BCC), and
single-nucleotide polymorphisms (SNPs) associated with im-
mune diseases from genome-wide association studies
(GWASs). Third, we used machine learning to translate the HD
transcriptional and epigenetic information into a genome-wide
resource of predicted cis-regulatory elements for human T cell
gene expression across differentiation states. Lastly, we exper-
imentally validated the function of the predicted enhancers for
CXCR3 and GZMB in primary human CD8 T cells using CRISPR
interference (CRISPRi), verifying this approach. By integrating
transcriptomic and epigenetic information built on a set of ca-
nonical human T cell subsets, this human T cell atlas provides
a foundation to dissect transcriptional and epigenetic mecha-
nisms underlying human disease as well as a guide for improving
T cell therapeutics, including genomic engineering of non-coding
regions.

RESULTS

Generation of HD T cell differentiation atlas
We sorted 14 human T cell subsets from the blood of HDs and
generated an atlas of epigenetic and transcriptional data using
ATAC-seq and RNA-seq. This atlas included samples from
young and older HDs (10 donors aged 23–28 years, 14 donors
aged 62–75 years); 4–21 ATAC-seq and 6–21 RNA-seq sam-
ples were sorted per T cell subset (Figure 1A; Table S1). A
high-dimensional cytometry strategy was used to sort major
T cell populations from the blood (Figures 1B–1D). Four subsets
of CD4 T cells were purified: T regulatory T cells (Tregs), T follic-
ular helper cells (Tfh), bulk naive cells, and bulk non-naive cells.
For CD8 T cells, ten subsets were isolated. First, bulk naive and
non-naive CD8 T cells were sorted using CD45RA and CD27.
To capture heterogeneity within these bulk populations, we pu-
rified 8 additional populations.We distinguished a second strin-
gently defined naive population (naive) from stem cell memory
(SCM). Within the SCM population, we separated CXCR3+

and CXCR3! subpopulations (SCM-R3+ and SCM-R3!). Mem-
ory and effector memory CD8 T cell populations from humans
can be defined using CD45RA and CD27 or CCR7 (Hamann
et al., 1997; Sallusto et al., 1999). We used all 3 surface proteins
to define central memory (CM) and effector memory RA (EMRA)
and fractionated the effector memory population into effector
memory 1 (EM1, CD27+) and effector memory 2 (EM2,
CD27!). We also purified a putative exhausted T cell (Tex) pop-
ulation based on the co-expression of PD1 and CD39.
PD1+CD39+ CD8 T cells in chronic viral infection and cancer
are Tex (Gupta et al., 2015; Canale et al., 2018; Bengsch
et al., 2018), but such cells have not been characterized in
HDs. These 14 purified human T cell populations were then
subjected to RNA-seq and ATAC-seq.
We first examined global relationships between human T cell

subsets based on gene expression or chromatin accessibility.
Principal component analysis (PCA) of ATAC-seq and RNA-
seq revealed samples from different subjects clustered accord-
ing to a sorted subset label (Figures 1E and 1F). T cell subsets
formed a gradient across PC1 with naive CD4 and CD8 T cells
located at one extreme, memory subsets (SCM and CM) in the
middle, and EMRACD8 T cells at the opposite end. PD1+CD39+

CD8 T cells were located between memory (SCM-R3+, SCM-
R3!, CM) and effector memory samples (EM1, EM2, and
EMRA). The samples were then clustered using distal acces-
sible chromatin regions (ACRs) from ATAC-seq (> 2kb from
the nearest transcriptional start site [TSS]) (Figure 1G), proximal
ACRs from ATAC-seq (< 2kb from the nearest TSS) (Figure 1H),
or RNA-seq (Figure 1I). Similar to other cell types (Corces et al.,
2016; Yoshida et al., 2019), distal ACRs resulted in clearest dis-
tinctions between subsets. To quantify this difference, we used
information quality ratio (IQR), a normalized entropy metric, to
confirm that distal ACRs contained more information about
T cell subset identity than proximal ACRs or transcriptomic
data (Figure 1J).
We also investigated the effect of age (Figures S1A and

S1B). As expected (Goronzy and Weyand, 2019), there were
fewer naive and more non-naive T cells in older HDs (Fig-
ure S1C). However, comparing purified T cell subsets directly
revealed few differentially expressed genes (DEGs) in young
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Figure 1. Human T cell transcriptional and epigenetic landscape
(A) Experimental schematic.

(B) Sorting strategy. Cells were gated as live singlets, then CD8+, or CD4+.

(C and D) Enumeration of cells gated in (B) for CD8 T cells (C) and CD4 T cells (D).

(E and F) PCA of ATAC-seq (E) and RNA-seq (F).

(G–I) Sample-to-sample Pearson correlation and hierarchical clustering using (G) ATAC-seq distal ACRs (R 2kb from the nearest TSS), (H) ATAC-seq proximal

ACRs (% 2kb from the nearest TSS), or (I) RNA-seq.

(J) Information quality ratio (IQR) comparing sorted subset label with cluster label. p values are determined by calculating null distribution. See also

Figure S1.
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versus older subjects (Figure S1D). Bulk naive cells had the
greatest number of DEGs, but few changes were observed
comparing the more stringently defined naive subset in young
versus older subjects. In the bulk naive comparison, activa-
tion-related genes, such as TBX21, PRF1, and GZMA, were
increased in older HDs (Figure S1E). These transcriptional dif-
ferences likely reflect more antigen-experienced cells in this
less rigorously defined population. Although larger numbers
of samples could reveal subtle age-related changes in each
T cell subset, these data suggest that major age-related
changes in human T cell biology reflect different proportions
of circulating T cell subpopulations rather than large age-
dependent transcriptional differences within specific T cell
subsets.

Defining transcriptional and epigenetic regulatory
landscape of human CD8 T cell differentiation
We first applied this HD epigenomic atlas to investigate the
molecular programs of human CD8 T differentiation states. We
identified differentially accessible peaks (DAPs) and DEGs in all
pairwise comparisons (Figures 2A and 2B; Tables S2 and S3).
Naive CD8 T cells had an equivalent number of DEGs and
DAPs that were increased or decreased, suggesting that naive
T cells are not simply quiescent but actively maintain the naive
state through specific transcriptional and epigenetic programs.
There were few transcriptional or epigenetic differences
between SCM-R3+, SCM-R3!, and CM, indicating that these
subsets were relatively similar in HDs. There were also few indi-
vidual differences between EM1 and EM2, although EM1 had
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Figure 2. Global analyses reveal overlapping epigenetic regulation and gene expression in CD8 T cell subsets
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higher expression of genes such as CD28 and TCF7, whereas
EM2 upregulated ZEB2 and GZMB. Many of the differences be-
tween EM2 and EMRA were killer cell family genes (KLRC2,
KLRF1, KIR3DL1, etc.), indicating that EMRA T cells express
genes for cytotoxic pathways associated with NK cells. Similar
genes have been reported in tumor-infiltrating T cells in glioblas-
toma (Mathewson et al., 2021), but these data suggested that the
expression of these genes is not disease-specific but reflects
effector programs used in HD CD8 T cells. PD1+CD39+ cells
were most similar to EM2 but had higher expression of genes
involved in progenitor biology (LEF1), cell cycle (TOP2A and
CDC7A), and exhaustion (TOX and TOX2), consistent with Tex
(McLane et al., 2019).

Next, we used an unbiased global approach to determine the
overall structure of chromatin accessibility data for these purified
human CD8 T cell populations. We used bi-clustering to simulta-
neously cluster ACRs (rows) and samples (columns). This
method revealed the local patterns of chromatin accessibility
across sample groups (Figure 2C). Most sample clusters (a–h;
horizontal axis) contained samples from the same T cell subset
(IQR analysis, p < 0.00005). Most ACR clusters (1–8; vertical
axis) had a gradient of chromatin accessibility across sample
clusters (a–h) and exhibited two primary patterns (Figure 2C).
One pattern contained ACR clusters (1–3) that were most acces-
sible in sample cluster a (containing naive cells), decreased in
accessibility in sample clusters b–g (containing memory,
exhaustion, and effector memory CD8 T cells, respectively),
and were least accessible in sample cluster h (containing
EMRA cells). The second major pattern, which included ACR
clusters 4–8, was the opposite. This unbiased clustering re-
vealed unique combinations of ACRs which could distinguish
even closely related CD8 T cell subsets, indicating that subset-
specific cellular and functional properties were driven by
different combinatorial sets of regulatory chromatin regions.

We then applied the same bi-clustering method to our RNA-
seq data. Consistent with the IQR analysis in Figure 1, sample
clusters generated with transcriptional information contained a
greater diversity of sorted subsets (Figure 2D) compared with
the ATAC-seq data (Figure 2C) (RNA IQR = 0.410, ATAC IQR =
0.526, p < 0.0001). As with the ATAC-seq analysis, we found
that most gene clusters (1–8) were expressed bymultiple sample
clusters (a–h). Thus, applying the patterns from this epigenomic
atlas for different subtypes of CD8 T cells should allow the iden-
tification of associated biological features in T cell populations
even when the surface phenotype or transcriptional signatures
of cell type identity are less clear.

We next integrated gene expression and chromatin accessi-
bility information to infer TF activity in each CD8 T cell subset
(Figure 2E). Similar to the pattern of individual ACRs and genes,
many TFs were used by multiple CD8 T cell subsets. This anal-
ysis revealed both known and novel TFs for each differentiation
state. For example, GATA3 and FOXP1weremost active in naive

T cells and have been reported to preserve naive T cell quies-
cence in mice (Wang et al., 2013; Wei et al., 2016). We also found
several novel TFs with the predicted activity in naive T cells,
including SOX4, KLF3, KLF12, and HSF2. CM was predicted to
heavily use NFkB family members; EM1 ranked the highest for
RORA and RORC; bZIP family TFs were predicted to have high
activity across non-naive subsets. EMRA had high scores for
TBX21, IKZF1, TP53, and BACH1, along with several zinc finger
TFs not previously reported in T cells. PD1+CD39+ had the high-
est score for E2F2, whereas the closely related E2F4 was the
highest in naive. E2F4 is a transcriptional repressor required to
engage and maintain cell cycle arrest in G0/G1 (Trimarchi and
Lees, 2002). In contrast, E2F2 triggers entry into cell cycle. Diver-
gent activity scores in naive and PD1+CD39+ cells suggest that
these cells are at opposite ends of the proliferative spectrum.
Thus, by integrating epigenetic and transcriptional data, we
identified known and novel TFs predicted to regulate different
stages of human CD8 T cell differentiation.

Molecular trajectories in human CD8 T cell
differentiation identify coordinated epigenetic and
transcriptional control
We next investigated how gene expression and chromatin
accessibility changed along a putative differentiation trajectory.
Since multiple models of human CD8 T cell differentiation have
been proposed (Ahmed et al., 2009; Restifo and Gattinoni,
2013), we took a data-driven approach to order the CD8 T cell
subsets, first by using the Pearson correlation of each subset
relative to the naive subset based on distal chromatin accessi-
bility. This approach revealed a predicted developmental rela-
tionship: naive / SCM-R3+ / CM / EM1 / EM2 / EMRA
(Figure 3A), consistent with PC1 above (Figure 1) and a previ-
ously proposed model (Restifo and Gattinoni, 2013). A second
approach using pseudotime resulted in the same trajectory (Fig-
ures 3B and 3C) although other models, including those with
branches, cannot be ruled out. Indeed, we excluded SCM-R3!

and PD1+CD39+ because these subsets may represent alterna-
tive differentiation branches (Pauken et al., 2016; Chen et al.,
2019; Yao et al., 2016). Using this proposed order, the relative
change of each ACR or gene was determined between each
subset along the trajectory; ACRs or genes that followed the
same pattern were considered a module (Figure 3D).
Analyzing the relative cumulative change of ACRs and genes

along this trajectory revealed two major epigenetic and tran-
scriptional inflection points: (1) between naive and SCM-R3+
and (2) between CM and EM1 (Figures 3E and 3F). These inflec-
tion points were also apparent in the pseudotime analysis (Fig-
ures 3B and 3C). Approximately, 82% of ACRs and 79% of
genes that changed were captured in the first six modules that
had a change at one or both of these points (Figures 3G and
3H). This transcriptional and epigenetic regulation in human
CD8 T cell differentiation was exemplified by GZMB, a key

(D–F) (D) Analysis schematic. Relative cumulative change determined from differential analysis of ACRs (E) or genes (F) that follow the same pattern. The number

of genes or ACRs per module is indicated on the plot and reflected by color as indicated by heat scale. Top enriched transcription factor (TF) motifs or TF families

in ACR modules are indicated in (E).

(G and H) Cumulative percent of total changed ACRs (G) or genes (H) in each module.

(I and J) ATAC-seq signal tracks and RNA expression for (I)GZMB and (J) LEF1. The number of ACRs per module associated with GZMB or LEF1 is summarized

on top. RNA module of GZMB and LEF1 is indicated on top.
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(B) Hierarchical clustering of DEGs from pairwise comparisons to the PD1+CD39+ subset. Gene clusters are indicated by the number and color block.

(legend continued on next page)
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effector gene, and LEF1, a critical naive and memory TF. The
GZMB locus contained ACRs that increased in accessibility at
both inflection points (Figure 3I). All 28 ACRs in the LEF1 locus
decreased in accessibility between naive and SCM-R3+ and
from CM to EM1 (Figure 3J). Defining ACRmodules revealed po-
tential regulatory TFs (Figure 3E), including a central role for
NFkB family TFs in SCM-R3+ and CM CD8 T cell subsets and
ROR TFs in EM subsets. The Fli1 motif was enriched in ACRs
that lose accessibility in the naive to SCM-R3+ transition con-
firming in humans the role of Fli1 in restraining effector CD8
T cell differentiation discovered in mice (Chen et al., 2021).
Thus, these analyses identified a putative differentiation trajec-
tory of human CD8 T cell populations and defined transcriptional
and epigenetic modules that may regulate differentiation and/or
subset-specific biologic functions. Moreover, we uncovered two
major inflection points in gene expression and chromatin acces-
sibility and identified TFs that may have key roles in transitions
between CD8 T cell subsets.

PD1+CD39+ CD8 T cells from the blood of HDs have
characteristics of Tex CD8 T cells
One goal of this HD atlas is the investigation of the underlying
molecular framework of disease-relevant CD8 T cell subsets in
healthy subjects. For example, although Tex have been
described in chronic infections and cancer (McLane et al.,
2019; Thommen and Schumacher, 2018), their molecular regula-
tion in humans remains poorly understood. To test whether
PD1+CD39+ from HD had features of exhaustion, we first exam-
ined the expression of key naive/memory-, effector-, cytotoxic-,
or exhaustion-associated genes (Figure 4A). PD1+CD39+ had
increased expression of genes encoding inhibitory receptors
as well as exhaustion-associated genes, such as TRIB1 (Rome
et al., 2020) and TOX (Alfei et al., 2019; Khan et al., 2019; Scott
et al., 2019; Seo et al., 2019; Yao et al., 2016). The PD1+CD39+

subset also had intermediate expression of naive, memory,
and effector genes, such as TCF7, CCR7, TBX21, and GZMB
(Figure 4A), consistent with the data from Tex in mice (McLane
et al., 2019). We further investigated the relationship between
PD1+CD39+ and the other human CD8 T cell subsets using
unbiased clustering (Figure 4B). Cluster 12 was specific to
PD1+CD39+ and contained genes related to cell cycle, including
MKI67 (Figures 4B–4D). Data from mice demonstrate extensive
proliferation of progenitor and/or intermediate Tex, giving rise
to post-mitotic yet transiently Ki67+ terminal Tex (Beltra et al.,
2020; Paley et al., 2012; Blackburn et al., 2008; Im et al., 2016;
Utzschneider et al., 2016; Wu et al., 2016). The cycling Tex sub-
set in mice can be found in circulation and may be analogous to
PD1+CD39+ CD8 T cells in the HD blood. This observation is

consistent with recent studies in human cancer, including the
identification of proliferating progenitor Tex in melanoma (Li
et al., 2018). To directly compare PD1+CD39+ CD8 T cells from
the blood of HD with human tumor infiltrating lymphocytes
(TIL), we used existing single-cell RNA-seq data (Li et al., 2018;
Guo et al., 2018). Of all subsets in the HD blood, PD1+CD39+

cells had the highest enrichment for tumor Tex gene sets (Fig-
ure 4E). Thus, PD1+CD39+ CD8 T cells from the blood of HDs
have a distinct transcriptional signature, including the enrich-
ment for exhaustion-associated genes, and transcriptional evi-
dence of recent proliferation—characteristics of an intermediate
Tex population.
We next analyzed the chromatin landscape of PD1+CD39+

CD8 T cells (Figure 4F). Three ACR clusters (clusters 3, 5,
and 6) were most accessible in PD1+CD39+ CD8 T cells; cluster
4 was shared between EM1, EM2, EMRA, and PD1+CD39+, but
there was a striking lack of overlap for the PD1+CD39+ subset
with the ACR cluster most accessible in EMRA (cluster 1). On
the other hand, cluster 7 was accessible in SCM and CM as
well as in PD1+CD39+ cells. Cluster 7 may represent a shared
epigenetic program of durability or survival. Indeed, one gene
with several ACRs contained in cluster 7 was CD27 (Figure 4G),
a costimulatory receptor associated with T cell activation, differ-
entiation, and survival (Croft, 2014). Collectively, chromatin re-
gions accessible in PD1+CD39+ were enriched in T-box motifs,
a subset of AP-1 family members, as well as NFkB, ETS,
ZEB1/2, E2A, TCF7, and LEF1 motifs, a combination that sug-
gests both longevity and activation (Figure 4H). Therefore, the
epigenetic landscape of PD1+CD39+ T cells in the blood of
HDs exhibits a unique combination of ACRs including elements
shared with long-lived subsets (SCM-R3+, SCM-R3!, CM) and
distinct from terminal effectors (EMRA).
To examine whether these transcriptional and epigenetic

features of PD1+CD39+ CD8 T cells translated to protein expres-
sion, we analyzed the expression of key molecules by flow cy-
tometry and used non-naive CD8 T cells from melanoma tumors
as a control (Figure 4I). PD1+CD39- CD8 T cells were also
included as a representative of recently activated T cells. Consis-
tent with gene expression data, PD1+CD39+ CD8 T cells fromHD
blood expressed intermediate TCF1 and TBET, high CD28, and
moderate GZMB, TIGIT, CTLA4, and TOX. TOX was also ex-
pressed by EMRA and PD1+CD39- CD8 T cells (Figure 4I), in
agreement with recent studies in humans and mice (Sekine
et al., 2020; Khan et al., 2019) and consistent with a potential
role for this TF in repetitively stimulated CD8 T cells as well as
Tex. Furthermore, PD1+CD39+ CD8 T cells had the highest fre-
quency of Ki67+ cells among CD8 T cell subsets in the blood,
and some of these cells expressed HLA-DR (Figure 4I). To

(C) Gene ontology of gene clusters in (B).

(D) RNA expression of MKI67.

(E) Gene set variation analysis (GSVA) for gene sets indicated on top. Gene sets to the left of the dotted line are derived from scRNA-seq from patients with non-

small cell lung cancer (Guo et al., 2018); the tumor dysfunctional set on the right side is derived from patients with melanoma tumors (Li et al., 2018). p values are

from two-tailed t-tests with Benjamini-Hochberg correction comparing PD1+CD39+ with EM1, EM2, and EMRA: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(F) Hierarchical clustering of DAPs from pairwise comparisons to PD1+CD39+ samples.

(G) ATAC-seq signal tracks and RNA expression of CD27. Highlighted ACRs are in cluster 7 in (F).

(H) TF motif enrichment in ACR clusters in (F). No TF motifs were significantly enriched in cluster 5.

(I) Flow cytometry analysis. Cells were first gated as live CD8+ singlets. Tumor samples were gated on live single non-naive CD8 T cells defined by excluding

CD45RA+CD27+ cells. Top, representative histograms from 18 HDs and 4–5 melanoma tumors. Bottom, median fluorescence intensity (MFI) or percent positive

as indicated. See also Figure S2.
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determine whether PD1+CD39+ CD8 T cells were functionally
exhausted, we measured cytokine production after T cell recep-
tor (TCR) stimulation in vitro. Few PD1+CD39+ CD8 T cells ex-
pressed IFNg or TNF, in contrast to the robust production of
these effector molecules by EM1, EM2, and EMRA subsets,
and PD1+CD39- T cells (Figures S2A and S4B). The few
PD1+CD39+ CD8 T cells that were IFNg+ or TNF+ had a signifi-
cantly lower MFI, indicating lower protein production (Fig-
ure S2C). These data show that PD1+CD39+ CD8 T cells in the
blood of HDs have transcriptional, epigenetic, and protein fea-
tures consistent with Tex and are distinct from classical memory
and effector memory CD8 T cell subsets.

Application of the HD T cell atlas reveals biologic
patterns and Tex-specific ACRs in TILs
One major application of this epigenomic atlas is to provide a
framework for analyzing independent datasets. T cell RNA-seq
and/or ATAC-seq data from disease settings can be ‘‘projected’’
onto the HD atlas to define cellular states and provide insights
into the underlying biology. To test this idea, we used two cancer
datasets and investigated whether new insights could be gained.

First, we used an anti-PD1 neoadjuvant/adjuvant melanoma
dataset (Huang et al., 2019) to determine whether the HD epige-
nomic atlas could correctly identify predominant TIL differentia-
tion state(s) (Figure 5A). We sorted non-naive CD8 T cells from
tumor and PMBCs after treatment and performed RNA-seq
and ATAC-seq (Table S1). We first compared genes that were
increased or decreased in the tumor with the transcriptional pro-
files of each HD subset. Consistent with the results in Figure 4,
blood-derived PD1+CD39+ T cells from the HD atlas had the
greatest enrichment of TIL-specific genes compared to other
HD subsets (Figure 5B). Comparing the chromatin regions that
were differentially accessible in CD8 TIL revealed that the epige-
netic landscape of CD8 TILs was also most similar to that of
PD1+CD39+ CD8 T cells (Figure 5C). For example, prominent
ACRs in the ENTPD1 locus (encoding CD39) in TILs were found
only in PD1+CD39+ CD8 T cells in the HD atlas (Figure 5D). These
results indicate that TILs from post anti-PD-1-treated human
melanoma tumors not only are transcriptionally similar to
PD1+CD39+ Tex in HD blood but also share epigenetic features
including ACRs that may control key genes including inhibitory
receptors.

We next sought to define the predominant differentiation
state of CD8 TIL from each individual patient. We built a Unifold
Manifold Approximation Projection (UMAP) from the HD non-
naive CD8 T cell subset atlas using distal ACRs and projected

the ATAC-seq data from melanoma CD8 TILs into this UMAP
(Figure 5E). Assigning each TIL sample to the nearest HD sub-
set centroid revealed a significant number of TIL samples
(16/18; p value = 0.001) that overlapped with the region popu-
lated by PD1+CD39+ CD8 T cells from the HD atlas (Fig-
ure 5E), identifying melanoma TIL as Tex Tex (Huang et al.,
2017, 2019; Kamphorst et al., 2017; Li et al., 2018). Although
TIL may exhibit some effector-like phenotypic properties
(e.g., expression of cytotoxic molecules), this projection of TIL
signatures into the HD atlas pointed to the distinction between
more effector-like HD subsets (e.g., EMRA and EM2) and
PD1+CD39+ Tex cells.
Notably, TILs from two patients (13 and 17) who experienced

tumor recurrence mapped closest to SCM and CM HD subsets
in HD UMAP space, prompting us to further compare all clinical
responder and non-responder patients. This analysis revealed
37 differentially expressed genes in 5 of 6 non-responders
including an increase in quiescence-associated genes CCR7
and LEF1 (Figure S3A). Patients 13 and 17 had the highest
expression of these two genes. We then tested for potential
signatures of clinical response versus non-response. Two sig-
natures that emerged were cytotoxicity, consistent with previ-
ous studies (Rooney et al., 2015; Fridman et al., 2012), and
WNT signaling. WNT signaling has a negative association
with T cell inflammation in melanoma and other cancers
(Spranger et al., 2015; Luke et al., 2019; Li et al., 2019), and,
in mice, WNT signaling can block effector T cell differentiation
through LEF1 and TCF7 activity (Gattinoni et al., 2009). Four
out of six progressors had decreased cytotoxicity signatures,
including patients 13 and 17, and 5 of 6 progressors had
increased signatures of WNT signaling (Figure S3B). Previous
clinical analysis of this cohort found a strong association be-
tween positive clinical response and pathologic assessment
of ‘‘brisk’’ immune cell infiltration. Although there was no asso-
ciation between the cytotoxicity signature and brisk infiltration,
patients with tumors that were not brisk (i.e., had few infiltrating
immune cells) had transcriptional evidence of increased WNT
signaling in TILs (Figure S3C). Thus, the HD epigenomic atlas
demonstrated that TILs were similar to PD1+CD39+ Tex. This
approach also identified cytotoxic and WNT signaling signa-
tures associated with a positive or negative clinical response,
respectively.
We next examined a scATAC-seq dataset of CD8 TILs isolated

from anti-PD1-treated BCC (Satpathy et al., 2019; Figure 5F;
Data S1). Three clusters of Tex CD8 T cells were previously
defined in the BCC TIL: early, intermediate, and terminal Tex. It

Figure 5. Application of HD T cell atlas identifies cellular phenotypes and conserved T cell epigenetic programs in CD8 TIL
(A) Analysis schematic.

(B and C) Single sample enrichment (GSVA) of (B) ACRs or (C) genes increased or decreased by fold change > 2 in tumors compared to PBMCs in non-naive CD8

T cells after treatment.

(D) ATAC-seq signal tracks of ENTPD1.

(E) UMAP created using top 2k distal differentially accessible peaks (DAPs) from pairwise comparisons of included HD CD8 T cell subsets; tumor non-naive CD8

T cells of patients with melanoma overlaid.

(F) Analysis schematic.

(G) Percent overlap of ACRs identified in scATAC-seq from BCC TIL Tex DAPs compared to the HD epigenetic atlas.

(H) ACR set enrichment (GSVA) of Tex BCC TIL ACR sets calculated for each HD subset. p values are from two-tailed t-tests with Benjamini-Hochberg correction

comparing PD1+CD39+ with every other subset: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

(I) Median accessibility and hierarchical clustering of the terminal Tex BCC TIL ACRs in HD subsets.

(J) ATAC-seq signal tracks of indicated genes. Tex BCC-specific ACRs are highlighted in gray. Tracks are group scaled per dataset. See also Figure S3.
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Figure 6. Predicting cis gene regulatory elements in human CD8 T cells
(A) Analysis schematic. Multiple regression was used to predict cis-regulatory elements that control gene expression.

(B) Summary of gene models: number of genes tested, significant gene models, and those that produced significant correlation in held-out testing datasets.

(legend continued on next page)
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is unclear if these scATAC-seq Tex profiles are also found in HD
CD8 T cells. To investigate this question, we identified DAPs
from these 3 Tex scATAC-seq clusters and compared them to
those of the HD CD8 T cell atlas. First, we determined what frac-
tion of ACRs from each BCC subset overlapped with that in the
HD atlas. Most ACRs from the early Tex cluster (98.7%) were
also present in the HD data; 85.1% of the intermediate Tex
ACR overlapped, whereas the BCC terminal Tex cluster had
70.1% overlap (Figure 5G). Global comparison revealed the
enrichment of the BCC Tex intermediate ACRs in the HD
PD1+CD39+ subset (Figure 5H), consistent with PD1+CD39+

CD8 T cells from the HD blood being analogous to intermediate
Tex population discovered in mice (Beltra et al., 2020; Zander
et al., 2019; Hudson et al., 2019). Unlike BCC intermediate
Tex, ACRs from BCC terminal Tex had more broad overlap
with HD atlas populations (Figure 5H), indicating that many of
these Tex ACRs were not exhaustion specific but also used in
other CD8 T cells from HDs. To deconvolve the mixture of non-
coding elements, we projected the ACRs from BCC terminal
Tex across the HD CD8 T cell subsets (Figure 5I). This analysis
identified the subsets of terminal Tex ACRs that were accessible
in naive cells (cluster 2); EM1, EM2, and EMRA (cluster 1); or the
PD1+CD39+ HD subset (cluster 3)—revealing a composite pic-
ture of the underlying biology in BCC-infiltrated CD8 T cells.
ACRs in cluster 3 contained four ACRs near TRIB1, consistent
with a role for TRIB1 in Tex differentiation in mice (Rome et al.,
2020) and expression of this gene in HD PD1+CD39+ CD8
T cells (Figure 4A). Cluster 1, accessible in effector-like HD sub-
sets, included several ACRs located near effector-related genes,
such asGZMB, GNLY, CCR6, and IL23R (Figures 5I and 5J). This
cluster may represent non-coding regulatory regions used by
effector and Tex. Indeed, studies in mice have demonstrated
effector-like properties within the mouse equivalent of the termi-
nal Tex subset (Beltra et al., 2020). ACRs from BCC terminal Tex
that were accessible in HD naive CD8 T cells (cluster 2), such as
the KLF7 locus (Figures 5K and 5L), may reflect new T cell prim-
ing as reported in this BCC immunotherapy setting (Yost et al.,
2019) or point to regulatory programs that contribute to active
repression of effector mechanisms used in both naive CD8
T cells and Tex, such as LAYN (Zheng et al., 2017). Thus, appli-
cation of the HD atlas to this BCC dataset not only confirmed the
ability of this HD CD8 T cell atlas to correctly identify known
biology, including the similarity of the BCC Tex intermediate
population with the HD PD1+CD39+ subset, but also provided
a resource to deconvolve overlapping modules of ACRs used
by BCC terminal Tex.

Identifying functional enhancers in human CD8 T cells
and application of the HD T cell ACR atlas to association
with immune disease-associated genetic variants
We next integrated the transcriptional and epigenetic data from
the HD T cell atlas to predict the function of non-coding ele-
ments.We applied amachine learning approach to predict which
ACRs function as cis-regulatory elements in controlling gene
expression across CD8 T cell subsets. The cohort was divided
into two sets: one set to build gene regulation models and a
second set to test these models (Figure 6A). Using multiple
regression, we identified ACRs within 250 kb upstream and
downstream of the TSS that best explained gene expression
and then determined the relative contribution of each predicted
cis-element (Figure 6A). We generated models for 10,338 genes
and then tested how well these models predicted gene expres-
sion with the held-out dataset. Approximately, half of all models
predicted gene expression that significantly correlated with
measured gene expression (Figure 6B). Most genes were pre-
dicted to have 6–10 enhancers that contributed to their regula-
tion (Figure 6C), and most ACRs were predicted to regulate
only 1 gene (Figure 6D). The top predicted regulatory region
contributed an average of 25% to gene expression (Figure 6E).
However, distinct patterns could be observed for individual
genes. For example, regulation ofGZMB expression was distrib-
uted across several ACRs, suggesting additive and complex
control that would allow fine tuning of expression across CD8
T cells subsets (Figures 6F–6H). In contrast, for CXCR3, the
top two ACRs were predicted to control over 50% of gene
expression variance (Figures 6I–6K). Gene regulation models
for genes of potential translational interest, such as LEF1,
IFNG, PRF1, and PDCD1, are shown in Figures S4A–S4P.
Thus, by integrating transcriptional and epigenetic information,
we identified specific ACRs controlling expression of individual
genes in human CD8 T cell subsets. These models constructed
from HD T cell data accurately predicted expression patterns of
LEF1, IFNG, PRF1, and PDCD1 in the blood and CD8 TILs of pa-
tients with melanoma (Figure S4Q). These results demonstrated
that gene regulation models built from the HD T cell atlas can be
used to predict gene expression patterns in an unrelated dataset
from a disease setting.
The data described above provided a unique opportunity to

askwhether thesepredicted cis-regulatory regions have relation-
ships to genetic associations in human disease. Most disease-
associated SNPs reside in non-protein-coding regions, and the
mechanisms by which these SNPs result in biologic conse-
quence often remain poorly defined.We therefore askedwhether

(C) The number of predicted enhancers per gene.

(D) The number of genes associated with each ACR.

(E) Relative importance of predicted enhancers by rank.

(F–M) Model building and testing results shown for two genes: GZMB and CXCR3. (F and I) ATAC-seq signal tracks of genomic test regions: top five predicted

enhancers are noted on top. (G and J) Relative contribution of top five predicted enhancers. (H and K) Chromatin accessibility of top ACRs and gene expression

for each sample (column represents one donor). (L and M) Predicted compared to measured gene expression from two testing datasets as indicated. Pearson

correlation as shown.

(N) Experimental strategy using CRISPRi to validate candidate enhancers. Relative expression determined by quantitative PCR from sorted cells for GZMB (O)

and CXCR3 (P) or non-target gene. Each bar represents a different guide. Significance for each guide is determined by two-tailed t-test: *p < 0.05, **p < 0.01.

Average percentage decrease across significant individual guides to a single target compared to control is shown. Bar represents mean of 3–5 independent

experiments shown as points.

(Q) Flow cytometry as indicated with reporter expression (dCas9-KRAB-mCherry and sgRNA-GFP) in the top row and protein of target gene, CXCR3, in the

bottom row. See also Figures S4 and S5.

ll
Resource

568 Immunity 55, 557–574, March 8, 2022



cis-regulatory ACRs identified in diverse human HD CD8 T cell
subsets could help provide insights into immune-related GWAS
SNPs. GWAS SNPs are usually defined using SNP arrays, and
most reported SNPs are sentinel SNPs that indicate a causal
SNPwithin a certain linkage disequilibrium (LD) region.We there-
fore investigated a 25kb window around each GWAS SNP (Zhu
et al., 2004) and found 2,997 SNP windows overlapping with
ACRs in the HD T cell atlas (Figure S5A). In some settings,
SNPs are found in cell type-specific regions of open chromatin
(Farh et al., 2015), for example, asthma-associated SNPs in
Th2-specific enhancer elements (Seumois et al., 2014). Indeed,
theHDatlas revealed T cell subset-biasedpatterns of ACR-asso-
ciated SNPs that may implicate distinct subsets in different im-
mune-related diseases. While non-naive CD4 T cells had broad
potential involvement, we identified disease-biased associations
particularly of EM1, EM2, and PD1+CD39+ CD8 T cells (Fig-
ure S5B). Next, we searched within the immune disease-associ-
ated SNP windows for ACRs with predicted regulatory function
and found 2,896 such ACRs. For example, the top predicted
ACR for controlling IFNG expression pattern was located within
agenomicwindow that overlappedwith several SNPsassociated
with ulcerative colitis (UC), psoriasis, and ankylosing spondylitis
(AS) (Figure S5C). This result suggested that the causal SNP(s)
responsible for these GWAS-identified SNPs were located in or
near an enhancer that positively regulates IFNG in more
effector-like CD8 T cells (EM1, EM2, and EMRA). Furthermore,
the IL23R/IL12RB2 locus contained 24 SNPs associated with
more than 12 autoimmune diseases. The top four ACRs that
collectively control 88% of IL23R gene expression in CD8
Tcells residewithin theseSNP regions, andoneACR, highlighted
in red, was also predicted to control IL12RB2 gene expression
(Figure S5D). The IL-12/23 pathway regulates the differentiation
of Th17 CD4 T cells and IL-17 production in CD8 T cells; IL-17
has a pathogenic role in several mouse models of autoimmune
diseases. SNPs within these predicted regulatory elements
may alter the expression level of IL23R and ultimately the amount
of IL-17 produced. These analyses demonstrate how genome-
wide annotation of cis-regulatory regions across multiple CD8
T cell differentiation states could be applied to provide the
context for genetic disease associations.

Functional validation of causal T cell cis-regulatory
elements controlling gene expression using CRISPRi
Finally, we sought to validate our in silico predictions with func-
tional perturbation of ACRs in primary human CD8 T cells. We
employed CRISPR interference (CRISPRi) using single guide
RNAs (sgRNAs) to target catalytically inactive Cas9 (dCas9)
fused with a transcriptional repressor domain (Kr€uppel-associ-
ated box; KRAB) to specific ACR elements (Gilbert et al., 2013;
Fulco et al., 2016; Thakore et al., 2016; Klann et al., 2017; Gas-
perini et al., 2019). We used this approach to test ACRs that
were predicted to highly contribute to control of gene expres-
sion. Human CD8 T cells were stimulated in vitro and co-trans-
duced with lentiviruses (LVs) expressing dCas9-KRAB (mCherry)
and a sgRNA (GFP; Figure 6N). If the ACR targeted by the sgRNA
acted as a regulatory element, the expression of the predicted
gene target would change in cells transduced with both LVs
(dCas9-KRAB-mCherry+ and sgRNA-GFP+) but not in the singly
transduced (mCherry only or GFP only) cells.

We used this system to test the function of predicted ACRs for
GZMB and CXCR3. In addition to the candidate enhancers, the
promoter of each gene was targeted as a positive control. We
tested the top four ACRs predicted to regulate the GZMB
expression (Figure 6F). The ACR predicted to have the greatest
impact on gene expression, A, is located in the promoter region.
The other three (D, B, and C) lay upstream at !26, !31.5,
and !36.6 kb, respectively, from the TSS (Figure 6F). Targeting
the promoter-proximal ACR A nearly ablated gene expression
but had no effect on a non-targeted control gene (Figure 6O).
Targeting ACRs B and C resulted in 45% and 41% reductions
in GZMB expression compared to control sgRNA, respectively
(Figure 6O), whereas targeting ACR D had no significant effect.
For CXCR3, there were two major predicted enhancers, ACR B
and ACR A (Figure 6J). ACRBwas not tested due to its proximity
to the promoter. Targeting the CXCR3 promoter resulted in sub-
stantial reduction in gene expression, as expected (Figure 6P).
However, targeting a single candidate enhancer B, located "4
kb upstream, also led to a similar decrease in the expression
of CXCR3 (Figure 6P). Furthermore, targeting the promoter or
candidate enhancer led to the downregulation of the surface
CXCR3 protein on mCherry+GFP+ cells (Figure 6Q), indicating
that targeting this enhancer is sufficient to modulate both
mRNA and protein expression. Thus, the HD T cell atlas identi-
fied cis-regulatory elements for CXCR3 and GZMB that
controlled gene expression.

DISCUSSION

We constructed a transcriptional and epigenetic atlas of T cell
differentiation from HDs to identify the molecular programs
that control human T cell differentiation state, fate, and func-
tion. This atlas enabled us to define relationships between
CD8 T cell subsets and identify underlying epigenetic and
transcriptional mechanisms associated with key transitions
in differentiation. These studies also provided insights into
the biology of PD1+CD39+ Tex in HDs. We applied this atlas
to the analysis of three disease datasets, validating the utility
of this resource and gaining new insights into disease-specific
biology. Lastly, we identified cis-regulatory elements and vali-
dated predicted enhancers for CXCR3 and GZMB using
CRISPRi, providing a guide for future non-coding genome en-
gineering of T cells.
One unique feature of this atlas is the inclusion of a putatively

exhausted CD8 T cell population. T cell exhaustion represents a
considerable barrier to successfully treat cancer and chronic
viral infections. Co-expression of PD1 and CD39 is a hallmark
of Tex in diseases (Gupta et al., 2015; Canale et al., 2018), but
this population had not been examined in HDs. Although HD
PD1+CD39+ CD8 T cells were most similar to TILs compared
to other CD8 T cell subsets, they also displayed gene expression
and chromatin accessibility features that partially overlapped
with memory and effector CD8 T cells. This observation is
consistent with Tex in mice that employ transcriptional modules
of both memory (e.g., TCF7) and effector (e.g., GZMB) CD8
T cells (McLane et al., 2019). The blood-derived PD1+CD39+

subset represents a proliferative intermediate Tex population
similar to that described in humans and mice during chronic
infection or cancer (Beltra et al., 2020; Zander et al., 2019;
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Hudson et al., 2019; Li et al., 2018). In HDs, the ontogeny and
functional role of these Tex are unknown, although one possibil-
ity is that this subset contains cells specific for persisting viruses
such as EBV, HSV-1/2, VZV, anelloviruses, or others. Tex in HDs
could also reflect cells with self-reactivity, consistent with signa-
tures of exhaustion in human autoimmune diseases (McKinney
et al., 2015). T cell exhaustion, as an alternative fate to deletion
for autoreactive T cells, could enable the host to maintain a
greater diversity of T cell specificities. Future studies will be
necessary to further investigate the biology of these Tex in
HDs, but their presence in HDs indicates that T cell exhaustion
is not restricted to pathogenic situations of chronic infection or
cancer.

Amajor goal of generating this HD T cell atlas was to develop a
molecular framework from canonical human T cell subsets that
could provide insights into other human T cell datasets. We
applied this HD epigenomic atlas to two cancer and one autoim-
mune-related dataset. First, we analyzed scATAC-seq data from
BCC that included 3 populations of Tex CD8 T cells. PD1+CD39+

T cells contained ACRs that significantly overlapped with the in-
termediate BCC Tex population, but the other two BCC Tex pop-
ulations also contained chromatin accessibility sharedwith other
HD T cell subsets. We distinguished which epigenomic pro-
grams might be co-opted from normal effector-like and naive
T cell programs from those that were unique to terminal Tex.
Furthermore, these results reinforced the concept that many
transcriptional and epigenetic modules are shared among
different cell types. Second, we applied this HD atlas to pub-
lished data from a melanoma PD1 immunotherapy trial (Huang
et al., 2019). Previous analyses of this cohort defined broad im-
mune signatures of anti-PD1 response or failure but only identi-
fied potential treatment resistance mechanisms in a minority of
patients. Although the patient number was small, we identified
treatment-resistant patients whose TILs clustered with quies-
cent memory T cell subsets (CM and SCM). Increased expres-
sion of naive and memory genes, CCR7 and LEF1, and the
evidence of WNT signaling were prominent in progression pa-
tients. WNT signaling has been implicated in negative outcomes
in cancer through direct effects on cancer cells (Jung and Park,
2020) and antigen-presenting cells that then limit T cell activation
(Spranger et al., 2015; Spranger et al., 2017; Luke et al., 2019; Li
et al., 2019). Here, we provide evidence for a potential direct role
in CD8 T cells. This signaturemay be specific for earlier stage pa-
tients compared to those with metastatic melanoma (stage IV)
since, in the latter, increased CM CD8 T cells may be associated
with response to anti-PD1 blockade (Krieg et al., 2018). The
immune mechanisms necessary to prevent recurrence after sur-
gical resection in the patients studied here may be distinct from
those required to control advanced disease, although reinvigo-
rated Tex have been implicated in clinical response in other
studies (Huang et al., 2017). These data point to a potential direct
effect ofWNT signaling onCD8 T cells inmelanoma and highlight
the utility of applying a high-resolution T cell atlas to deconvolute
complex T cell differentiation signatures to reveal specific bio-
logical modules and pathways.

Genome engineering for cellular and gene therapy is a clinical
reality for cancer and other diseases. It is now possible to envi-
sion, rather than only targeting protein-coding genes in T cells,
targeting non-coding elements including cis-regulatory en-

hancers to achieve the T cell state-specific regulation of gene
expression or tailored differentiation trajectories. Indeed, we
now provide proof-of-concept for epigenomic engineering and
a landscape map of non-coding elements with their linkage to
gene expression control. Strategies that manipulate the non-
coding genome have several advantages. First, altering regula-
tory elements that enhance or suppress transcription would
allow fine tuning of target gene expression. For example,
although genetic loss of PD1 has an initial benefit during chronic
infection, permanent loss of PD1 also limits the durability of the
response in mice (Odorizzi et al., 2015). Similarly, in human pa-
tients with cancer, CRISPR-engineered CAR T cells lacking
PD1 were less abundant at later time points (Stadtmauer et al.,
2020), likely due to effects on progenitor CD8 T cells during acti-
vation (Chen et al., 2019; Johnnidis et al., 2021) and/or T cell
memory (Pauken et al., 2020). These observations suggest that
reducing but not ablating PD1 expression through targeting
T cell subset-biased enhancers may be advantageous. Similar
principles likely exist for other relevant genes. Second, regulato-
ry elements can control expression of multiple genes directly or
indirectly by altering spatial genome organization (Mumbach
et al., 2016, 2017). Thus, targeting a limited number of enhancers
may have broad transcriptional effects. Third, using enhancers
known to regulate gene expression in a particular environment
could provide context-specific modulation. For example, pa-
tients with melanoma with WNT-expressing tumors could be
given CAR T cells that re-deploy LEF1- or TCF7-containing en-
hancers downstream of WNT signaling to drive transcription of
effector genes such as GZMB or IFNG. Context-specific en-
hancers may also allow control of gene expression only in
selected T cell subsets. For example, in mice, an exhaustion-
specific cis-regulatory element upstream of Pdcd1 controls
PD1 expression in Tex but not in effector CD8 T cells (Sen
et al., 2016). Here, we identify cell state-specific ACRs in humans
including validated enhancers for GZMB and CXCR3. This
concept of state-specific cis-regulatory elements allows one to
envision genetic engineering strategies that impact a gene of in-
terest only in the relevant T cell subset. This HD atlas provides a
road map for designing such strategies.
Here, we provide a transcriptional and chromatin accessibility

map across human T cell differentiation states and demonstrate
application of this atlas to investigate molecular programs in
health and disease, including the functional annotation and
manipulation of non-coding genomic regions. Connecting spe-
cific chromatin regions to gene expression opens the door for
genetic engineering of human T cells to achieve targeted biolog-
ical outcomes or changes in T cell fate, enabling more optimal
T cell-based therapies for a range of diseases.
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Biological samples
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Total RNA-Seq Kit

Takara cat# #634413

Nextera DNA Library Preparation Kit Illumina cat # FC-121-1031

Deposited data

Raw sequencing data This paper Deposited in GEO: GSE179613

Experimental models: Cell lines

HUMAN HEK293T ATCC CRL-3216

Oligonucleotides

CRISPRi guides (Table S4) N/A

Primers for qPCR (Table S5) N/A

Recombinant DNA

LRG 2.1T Tarumoto et al. 2018 Addgene #108098
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pED9x This study Addgene #163956
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PORT/0.8.4-beta http://bioinf.itmat.upenn.edu/
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https://github.com/itmat/Normalization

Flowjo/10.5.3 Tree Star https://www.flowjo.com/

Python/2.7.5 Python Software Foundation https://www.python.org/

R/3.5.1 The R Foundation https://www.r-project.org/

Taiji/0.2 (Zhang et al. 2019) https://taiji-pipeline.github.io/

Metascape (Zhou et al. 2019) https://metascape.org

scikit-learn/0.21.3 (Pedregosa et al. 2011) N/A

DESeq2/1.22.2 (Love et al., 2014) Bioconductor

umap/0.2.5.0 Konopka (2020) CRAN

sva/3.30.1 (Leek et al., 2012) Bioconductor

pheatmap/1.0.12 Raivo Kolde (2019) CRAN
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, E. John Wherry (wherry@pennmedicine.
upenn.edu).

Materials availability
The pED9x vector is available at Addgene #163956.

Data and code availability
All RNA-seq and ATAC-seq data generated in this study are deposited in GEO under GEO: GSE179613. The ATAC-seq processing
script is provided in Data S2. The IQR and permutation code is available here: https://github.com/wherrylab/statistics_code/blob/
master/MutualInformationMetricsForDiscreteCategoricalComparison.R. Other code can be made available upon reasonable
request. No new algorithms were developed during this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Healthy donor human samples
Healthy donor peripheral blood mononuclear cells (PBMCs) were obtained by the University of Pennsylvania Human Immunology
Core/CFAR Immunology Core or the National Institute of Aging from de-identified healthy donors. PBMCs were purified from whole
blood or leukapheresis products by Ficoll-Hypaque density gradient centrifugation. Donors were self-identified as healthy.

Clinical trial human samples
Melanoma patient PBMC and tumor samples were collected as part of a phase 1b clinical trial (NCT02434354) which was a sin-
gle institution investigator-initiated study sponsored by the University of Pennsylvania. The protocol and its amendments were
approved by the Institutional Review Board at the University of Pennsylvania, and all patients provided written informed consent.
All detailed methods regarding the trial, patients, and sample collection can be found in (Huang et al., 2019). In brief, all patients
underwent a baseline pre-treatment biopsy, then received a neoadjuvant single flat dose of pembrolizumab 200 mg intrave-
nously, followed by complete resection 3 weeks later. Patients also provided paired blood samples at the pre-treatment and
post-treatment time points. After resection and on surgical recovery, patients continued to receive adjuvant pembrolizumab
every 3 weeks for up to 1 year, or until the time of recurrence or any unacceptable treatment-related toxicity. Both biopsies
and resection specimens were processed in the Department of Pathology and Laboratory Medicine, Hospital of the University
of Pennsylvania.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Gviz/1.26.5 (Hahne and Ivanek 2016) Bioconductor

slingshot/1.0.0 (Street et al. 2018) Bioconductor

MASS/ 7.3-51.5 (Venables and Ripley 2002) CRAN

Bedr/1.0.7 Haider et al. (2019) CRAN

relaimpo/ 2.2-3 (Grömping 2006) CRAN

GSEABase/1.44.0 Morgan, M., Falcon, S. and Gentleman,

R. GSEABase: Gene set enrichment

data structures and methods.

R package version 1.30.2.

Bioconductor

GSVA/1.30.0 (H€anzelmann et al., 2013) Bioconductor

SingleCellExperiment/1.4.1 Lun and Risso (2019) Bioconductor

mclust/ 5.4.5 (Scrucca et al., 2016) CRAN

tidyverse/1.3.0 (Wickham et al., 2019) CRAN

reshape2/1.4.3 (Wickham, 2007) CRAN

splitstackshape/1.4.8 Mahto (2019) CRAN

RColorBrewer/1.1-2 Neuwirth (2014) CRAN

Rstatix/ 0.5.0 Kassambara (2020) CRAN
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METHOD DETAILS

Cell sorting for sequencing libraries
Cryopreserved PBMCs were thawed in RPMI-1640 media supplemented with 10% FBS, 1x non-essential amino acids (Gibco
#11140050), and 10mM Hepes (Gibco # 15630080), 2mM L-glutamine (Gibco # 25030081), 100U/mL penicillin/streptomycin (Gibco
# 15140122) (cRPMI). DNAase and MgCl2 were included for cryopreserved tumor samples. Cells were washed with 13 PBS and
stained with an amine–reactive dye (Invitrogen) for 20 minutes at room temperature to assess cell viability, followed by an antibody
cocktail in cRPMI for 45 minutes at room temperature. Samples were sorted on a BD FACSAria II machine into RPMI-1640 media
supplemented with 50% FBS, 1% Hepes, 1% L-glutamine, 1% penicillin/streptomycin. A small aliquot of all sorted samples were
run to check purity. Voltages on the machine were standardized using fluorescent targets and Spherotech rainbow beads
(#URCP-50-2F). Not all T cell subsets were captured from each donor due to limitations in cell number, 2500-68000, average
"45000, cells were sorted per subset for each assay.

Flow cytometry for HD PBMCs
Cells were thawed in staining media (SM) consisting of PBS with 3% FCS, 5mM EDTA, and 1% penicillin/streptomycin. Cells were
washed with 13 PBS and stained with an amine–reactive dye (Invitrogen #L34966) for 20 minutes to assess cell viability, followed by
an antibody cocktail in SM for 45 minutes, then streptavidin-Brilliant Blue 790 (BD Biosciences) in SM for 20 minutes. Permeabiliza-
tionwas performed using the Foxp3 Fixation/Permeabilization Concentrate andDiluent kit (eBioscience #00-5521-00) for 20minutes.
Intracellular staining with antibody cocktails was done for 2 hours. All steps were performed at room temperature. Samples were run
on a BD Symphony A5 instrument. Voltages on the machine were standardized using fluorescent targets and Spherotech rainbow
beads (#URCP-50-2F). Data were analyzed with FlowJo software (version 10.5.3, TreeStar).

RNA-seq and ATAC-seq libraries preparation and sequencing
To extract RNA, sorted cells were resuspended in buffer RLT supplemented with beta-mercaptoethanol and processed with a Qia-
gen RNeasy Plus Micro Kit (#74034) per manufacturer’s instructions. Total RNA libraries were prepared using a Takara Pico Input
SMARTer Stranded Total RNA-Seq Kit (#634413). Extracted RNA and libraries were assessed for quality on an Agilent TapeStation
2200 instrument (#5067-5579 & #5067-5580, #5067-5592 & #5067-5593, respectively).

ATAC libraries were generated as described with minor changes (Buenrostro et al., 2013). Briefly, nuclei from sorted cells were
isolated using a lysis solution composed of 10mM Tris-HCl, 10mM NaCl, 3mM MgCl2, and 0.1% IGEPAL CA-630 (melanoma pa-
tients) or 0.1%Tween 20 (healthy donors). Immediately following cell lysis, nuclei were pelleted in Eppendorf DNA LoBind 1.5ml tubes
(Fisher #22431021) and resuspended in TD Buffer with Tn5 transposase (Illumina #FC-121-1031). Transposition reaction was per-
formed at 37#C for 30 minutes. DNA fragments were purified from enzyme solution using QiagenMinElute Enzyme Reaction Cleanup
Kit (#28204). Libraries were barcoded (Nextera Index Kit, Illumina # FC-121-1012) and amplified with NEBNext High Fidelity PCRMix
(New England Biolabs # M0541L). Library quality was assessed using a TapeStation instrument (#5067-5584 & # 5067-5585). RNA
and ATAC libraries were quantified using a KAPA Library Quantification Kit (#KK4824) and sequenced on an Illumina NextSeq 550
instrument.

In vitro stimulation assay
Cryopreserved PBMCs were thawed in cRPMI, and CD8 T cells were isolated per manufacturer’s instructions (Stemcell #17953).
CD8 T cells were stimulated with plate-bound anti-CD3 (10ug/mL, UCHT1 clone, Biologend #300402) and soluble anti-CD28
(2ug/mL, CD28.2 clone, Biologend #302902) in cRPMI for 4 hours, then an additional 5 hours with BFA (Biolegend #420601) andMon-
ensin (Biolegend #420701) at 1.5x106/well in a 24-well plate in a 37#C incubator. Flow cytometry was performed as described above,
except Cytofix/Cytoperm (BD Bioscience #554714) was used for fixation and permeabilization.

CRISPR design, cloning, and virus prep
After genomic regions of interest were identified, sgRNAs were designed in Benchling using the hg19 genome and spCas9 species
specifications (Table S4). Guides were selected based on even distribution throughout the region of interest and off-target score as
previously described (Hsu et al., 2013). The control guide is a non-targeting sgRNA with no perfect match in the human genome.
Guides with TTTT were excluded because of decreased binding efficiency (Wong et al., 2015). Three or four sgRNA were selected
for each target region (enhancer or promoter). Bases CACCGwere added to the 5’ end of the forward strand of the sgRNA and bases
AAACwere added to the 5’ end as well as a cytosine to the 3’ end of the reverse strand of the sgRNA to ensure cloning to the cleaved
lentiviral vector. Using these designs, oligos of the forward and reverse strands of the sgRNAs were ordered at a 10 nmole scale from
Eurofins. The forward and reverse oligos were phosphorylated and annealed. Designed sgRNAs were then cloned into the BsmBI-
digested lentiviral vector LRG 2.1T (Addgene #108098) (Tarumoto et al., 2018), after which they were transformed into Stbl3 chem-
ically competent E. coli cells. After overnight growth, individual colonies were picked, cultured, and plasmid DNAwas extracted using
the QIAprep Spin Miniprep kit (#27104) per manufacturer’s instructions. Extracted DNA was then sent for Sanger sequencing veri-
fication. Extracted plasmid DNA, VsVG (Addgene #14888), and psPax2 (Addgene #12260) were transfected into HEK 293T cells with
polyethylenimine in CST media (Gibco #A1048501) supplemented with 1x non-essential amino acids (Gibco #11140050), 10mM
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Hepes (Gibco # 15630080), 2mM L-glutamine (Gibco # 25030081), and 100U/mL penicillin/streptomycin (Gibco # 15140122) (cCST).
Resulting virus was collected and filtered (0.45uM PVDF filter).

In vitro CRISPRi assay
Cryopreserved PBMCs were obtained from the University of Pennsylvania Human Immunology Core/CFAR Immunology Core as
described above. To decrease donor-specific effects and increase consistency, a mix of multiple donors was used for each exper-
iment so that no more than 20% of the total cells were from any one donor. Cells were thawed into cCST media. CD8 T cells were
isolated permanufacturer’s instructions (Stemcell #17953) and stimulatedwith anti-CD3/anti-CD28 Dynabeads (Gibco #11131D) at a
bead:cell 3:1 ratio with 10ng/mL IL-2 (Peprotech #200-02), 5ng/mL IL-7 (Peprotech #200-07), and 5ng/mL IL-15 (Peprotech #200-15)
in 1.5mL of cCST media at 1.5x106/well in a 24-well plate in a 37#C incubator. After 30 hours, 1.25mL of media was removed from
each well and replaced with 1mL dCas9-KRAB-mCherry and 0.5mL sgRNA plus fresh cytokines and polybrene (8mg/ml). Plates were
centrifuged at 2000xg for 75 minutes at 37#C, then returned to the incubator. The next day, 1.5mL of media was removed from each
well and replaced with 1.5mL fresh cCST media plus cytokines. Cell were expanded as necessary until day 5 post-infection when
they were harvested for FACS and flow cytometry.
For qPCR analysis, cells were sorted on a BD FACSAria II machine as single cells that were dCas-KRAB-mCherry+ sgRNA-GFP+,

dCas-KRAB-mCherry+ sgRNA-GFP-, dCas-KRAB-mCherry- sgRNA-GFP+, dCas-KRAB-mCherry- sgRNA-GFP- into cCSTwith 50%
FCS in 1.5mL Eppendorf DNA LoBind tubes (Fisher # 22431021). To extract RNA, sorted cells were spun down and resuspended in
buffer RLT supplemented with b-mercaptoethanol and processed with a Qiagen RNeasy Plus Micro Kit (#74034) per manufacturer’s
instructions. RNA quantity and quality were checked on a Thermo Scientific Nanodrop 2000c. Equal amounts of RNA were used as
input for cDNA synthesis, performed using the Applied BiosystemHigh-Capacity cDNAReverse Transcription Kit (Thermo #4368814)
per manufacturer’s guidelines. qPCR reactions used iTaq Universal SYBR Green Supermix (Bio-Rad #1725121) and primers listed in
Table S5 and were run on an Applied Biosystems QuantStudio 6 Flex. All reactions were performed in triplicate. For flow cytometry
analysis, cells were stained for 30 mins at room temperature with anti-CXCR3 BV421(clone G025H7, Biolegend #353716). Samples
were run on a BD Symphony A5 instrument. Voltages on the machine were standardized using fluorescent targets and Spherotech
rainbow beads (#URCP-50-2F). Data were analyzed with FlowJo software (version 10.5.3, TreeStar).

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data processing and analysis
FASTQ files were aligned using STAR 2.5.2a with the hg19 human reference genome. Aligned files were processed using PORT
(https://github.com/itmat/Normalization). Batch correction for sample location and process group was done with using the Combat
function in the sva R package. PCA was done with the prcomp function in R using the top twenty percent most variable genes. PC1
and PC3 are shown in Figures 1F and S1B; PC2 from RNA-seq did not map to any known biologic or technical variable andmay cap-
ture an element of unknown subject immunological history. UMAP analysis was performed using the umap function from the R pack-
age umap. Differentially expressed genes (DEGs) were identified with DESeq2 (DESeq function) using adjusted p value < 0.05; genes
were first filtered on minimum expression (median reads per group% 5). For pairwise comparisons between HD CD8 T cell subsets,
donor type, sample location, and sample preparation group were included in the model formula to adjust for statistical confounding;
for older versus young donor analysis, sample location and sample preparation group were included; in the melanoma cohort,
sample preparation group was included. All plots with RNA expression are shown as normalized, log2 transformed, and batch
corrected.

ATAC-seq data processing and analysis
The script used for processing raw ATAC-seq FASTQ provided in Data S2. In brief, samples were aligned to the hg19 human
reference genome with Bowtie2. Unmapped, unpaired, and mitochondrial reads were removed using samtools. ENCODE Blacklist
regions were removed. PCR duplicates were removed using Picard. Peak calling was performed with MACS2 with a FDR q-value <
0.001. A union peak list of each data set was created by combining all peaks in all samples, merging overlapping peaks using bed-
toolsmerge, and keeping peaks that were called in more than one sample. The number of reads in each peak was determined with
bedtools coverage. Peaks were annotated using Homer. Batch correction for sample location and process group was done with
Combat. PCA was done with the prcomp function in R using the top twenty percent most variable ACRs. UMAP analysis was per-
formed using the umap function from the R package, umap. Differentially accessible peaks (DAPs) were identified with the R package
DESeq2 (DESeq function) using adjusted p value < 0.05. For pairwise comparisons betweenHDCD8 T cell subsets, donor type, sam-
ple location, and sample preparation group were included in the model formula to adjust for statistical confounding; for older versus
young donor analysis, sample location and sample preparation group were included; in the melanoma cohort, sample preparation
group and donor were included. Motif enrichment was performed with Homer using the union peak list as background. For peak
set enrichment, peak names between experiment and peak set of interest were unified using custom R scripts; enrichment scores
were calculated using the ‘‘gsva’’ method in the GSVA R package. ATAC-seq signal tracks were generated with the gviz R package.
ATAC signal tracks are generated using gviz with bigwigs normalized for library size and group scaled across all samples within the
dataset, peaks out of range are indicated with a contrast color on top.
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Clustering
Biclustering was performed using the SpectralBiclustering function from sklearn using differentially expressed genes from all
pairwise comparisons (adjusted p-value% 0.05, fold change > 3, median reads per group > 25) with k, the number of gene and sam-
ple clusters, set to the number of cell subsets included in the analysis, eight. For visualization, gene clusters were ordered based on
median gene expression in the naı̈ve CD8 T cell subset; sample clusters were ordered based on median expression of ranked gene
clusters. All other clustering was performed with pheatmap from the pheatmap R package using Euclidean for distance and
‘‘complete’’ for the clustering method (which are the default methods). The k for row/column cluster identification was chosen based
on the biologic question as indicated.

Gene ontology and gene set enrichment analysis
Gene ontology (biological processes) analysis was performed using Metascape (metascape.org) using all expressed genes as the
background gene list. Gene set enrichment was performed with GSEA software (https://www.gsea-msigdb.org), or scores for indi-
vidual samples were calculated with the ‘‘gsva’’ method in the GSVA R package – as indicated.

Measuring the informativeness of transcriptomic and epigenomic data for inferring cell subtypes (IQR analysis)
First, sample clusters fromRNA-seq or ATAC-seq (proximal ACRs or distal ACRs) were identified using hierarchical clustering (k = 12,
the number of sorted subsets). We then quantified the association between cell subsets (by sorted phenotype) with each set of sam-
ple clusters (generated separately from RNA-seq gene expression, ATAC-seq proximal ACR, or ATAC-seq distal ACR data) using
information quality ratio (IQR). IQR is a metric which quantifies mutual dependence of one variable (cell subset) based on a second
variable (clusters) and is mathematically defined as the ratio of mutual information divided by joint entropy between these two vari-
ables. IQR can therefore be viewed as a form of normalized mutual information, where IQR = 0 implies that two variables are mutually
independent whereas IQR = 1 implies that each variable perfectly predicts the other. To calculate mutual information and joint en-
tropy, probability of each cell subtype/cluster combination was estimated by observed sample proportions.

To test whether observed cell subset/cluster IQRs were significantly different than background, we generated a null distribution of
raw IQR values by permuting cell subtype labels and calculated one-tailed P-values based on the right tail of simulated raw IQR dis-
tribution (one-sample permutation test, N = 2*104 permutations). To test whether RNA-seq or ATAC-seq clusters (proximal ACRs or
distal ACRs) more accurately predicted cell subsets, we generated a null distribution of IQR differences by permuting cell subtype
labels across the combined dataset and calculated two-tailed P-values based on the left and right tails of simulated IQR difference
distribution (two-sample permutation test, N=104 permutations). For two-sided tests, we calculated a conditional two-sided p-value
centered at the median as previously described (Kulinskaya, 2008).

This analysis was also performed to compare the sample clusters generated from bi-clustering with the sorted cell subset labels
(Figure 2). Functions used for the IQR analysis are available: https://github.com/wherrylab/statistics_code/blob/master/
MutualInformationMetricsForDiscreteCategoricalComparison.R.

Calculating TF activity (Taiji analysis)
The Taiji pipeline integrates diverse datasets to identify master regulators, including genome-wide expression profile and chromatin
state. Herein, we implemented the pipeline described previously (http://wanglab.ucsd.edu/star/taiji). In brief, ATAC–seq peaks were
called by MACS2 v.2.1.1 to annotate genome-wide regulatory elements and the regulatory elements are assigned to their nearest
genes. Known transcription-factor motifs are scanned in the open chromatin region within each regulatory element to pinpoint the
putative binding-sites. Transcription factors with putative binding-sites in promoters or enhancers are then linked to their target
genes to form a network. As part of Taiji pagerank analysis, a personalized PageRank algorithm is used to assess the importance
of transcription factors in the network and ranks are calculated for each transcription factor on the basis of epigenetic and RNA
expression data. The normalized ranks are then compared across conditions by calculating fold change and the top transcription
factors are chosen using a cut-off of 1.53 above the mean and having a gene expression of at least 50 normalized counts. These
transcription factors are finally visualized in a heat map using the pheatmap R package.

Identification of epigenetic and transcriptional modules across differentiation trajectory
To identify genes and ACRs that exhibited the same pattern across CD8 differentiation, we first established a proposed trajectory,
order of CD8 T cell subsets, using Pearson correlation and the pseudotime algorithm from the R package Slingshot: naı̈ve/ SCM-
R3+/CM/ EM1/ EM2/ EMRA. For each gene and each ACR, differential gene expression analysis or accessibility was deter-
mined between each pairwise comparison along the trajectory (Naı̈ve vs SCM-R3+, SCM-R3+ vs CM, CM vs EM1, EM1 vs EM2, EM2
vs EMRA), as described above – using the R package DESeq2 with adjusted p value < 0.05. If there was an increase in the pairwise
comparison, the change between that comparison was scored as 1; if there was a decrease, the change was scored as -1; no sta-
tistical change was scored as 0. The relative gene expression and chromatin accessibility was determined by starting all genes at a
baseline of 0, then adding these scores across the pairwise transitions as shown schematically in Figure 3D.

Predicting functional ACRs for target genes
To predict which ACR(s) regulate which gene(s), we performed multiple regression with gene expression level of a particular gene as
outcome and ACRs within 250Kb of the corresponding gene as predictors (stepAIC in MASS R package) (Yoshida et al., 2019). We
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tested genes that had a minimummedian of 20 counts in at least one cell subset. We calculated the relative importance of each pre-
dicted peak (calc.relimp from the reliampo R package).

UMAP Analysis of melanoma TIL samples
To directly compare the melanoma TIL to the HD atlas, we first created a new union peak list by combining and merging (bedtools
mergeBed) peak lists from each data set and calculated the number of reads in each peak (bedtools coverage). Batch correction was
done with using the Combat function in the sva R package. To construct the HD reference UMAP, first we determined the top 5k
(by adjusted p value) distal DAPs (> 2kb from nearest transcriptional start site, TSS) for each non-naı̈ve HD CD8 T cell subset versus
all as described above using with the R package DESeq2 (DESeq function). These features were then used to construct the UMAP
(umap function, umap R package) with the HD non-naı̈ve CD8 T cell subsets. The melanoma TIL non-naı̈ve CD8 T cell samples were
projected onto this UMAP using the predict function from base R.
To compare the location of each melanoma TIL sample to the HD subsets in UMAP, we first calculated the centroid of each HD

subset. Next, the Euclidean distance between each TIL sample and each HD subset centroid was calculated; the TIL sample was
assigned to the nearest HD subset. A binomial test was used to test the null hypothesis that melanoma TIL are just as likely to be
near the PD1+CD39+ subset as all other subsets combined.

GWAS analysis
We used the GWAS catalog and EFO standardized term mapping downloaded from https://www.ebi.ac.uk/gwas/docs/file-
downloads on 2/10/2021. The SNPs were filtered using the parental EFO ontology term ‘‘Immune system disorder’’, then a 25kb
SNP window was generated by extending 12.5kb on either side. The R package, bedr, was used to determine the overlap between
the SNP windows and HD T cell atlas ACRs; the R package, gviz, was used to visualize the genomic regions.

Quantitative PCR (qPCR)
For each sgRNA, three samples were sorted: two control samples (dCas-KRAB-mCherry+ sgRNA-GFP-, dCas-KRAB-mCherry-

sgRNA-GFP+) and one experimental sample (dCas-KRAB-mCherry+ sgRNA-GFP+). For each sorted sample, the housekeeping cycle
threshold (CTHG) was calculated as the geometric mean of RPL13A and TBP. DCT was calculated by subtracting CT of the target or
non-target gene (CTTG) from CTHS for each sorted sample. The control DCT (DCTCTL) was calculated by taking the mean of control
samples. Relative expression (2-DDCT) was calculated as the difference between DCT from the experimental group (dCas-KRAB-
mCherry+ sgRNA-GFP+) (DCTEXP) and DCTCTL.
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