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SUMMARY
Microbes are an integral component of the tumor microenvironment. However, determinants of microbial
presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune
cell heterogeneity are spatially coupled. Mousemodels of pancreatic cancer recapitulate the immune-micro-
bial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched
and T cell-poor regions displaying unique bacterial communities that are associated with immunologically
active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of
intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of
myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion
disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a
coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities
differentially influence tumor biology.
INTRODUCTION

The tumor microenvironment (TME) is a complex ecosystem that

consists of extracellular matrix and diverse populations of malig-

nant and non-malignant cells, wherein interactions between

distinct components regulate tumor progression and response

to therapy. Microbes have emerged as an integral component

of the TME of tumors.1–4 Yet, the significance of the tumormicro-

biome remains controversial. While microbial diversity has been

associated with long-term survival in patients,4 microbes have

also been suggested to mediate resistance to chemotherapies2

and promote tumor development.5,6 Moreover, the spatial rela-

tionship between microbes, tumor cells, and immune cells is

poorly understood.

In solid tumors, diverse populations of malignant cells and im-

mune cells engage in heterotypic interactions to form spatially

heterogeneous TMEs.7–9 Because of this shifting immune topog-

raphy, a single tumor can harbor phenotypically distinct micro-

environments. High-dimensional immune-based phenotyping
Cell Rep
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of human tumors has identified features in the TME that asso-

ciate with survival outcomes.10–13 Recent studies based on

single-cell RNA sequencing have shown that malignant cells iso-

lated from solid tumors exhibit an extraordinary degree of tran-

scriptional heterogeneity.14–18 Yet, single-cell RNA sequencing

does not preserve the spatial architecture of the TME, and the

mechanistic basis for the heterogeneous distribution of immune

cells and microbes remains a mystery.

To preserve the spatial fidelity of the TME, we performedmulti-

plex imaging studies to interrogate the distribution of microbes

and immune cells within human pancreatic ductal adenocarci-

noma (PDAC) and lung adenocarcinoma (LUAC). We used laser

capture microdissection (LCM) coupled with RNA sequencing to

identify distinct molecular signatures that define tumor nests in

PDAC with differential microbial presences. We then used

mouse models of T cell-poor and T cell-enriched tumors to un-

derstand the spatial dependency between microbes and im-

mune cells present within the TME and their impact on tumor

biology. In doing so, we established a causal relationship
orts Medicine 5, 101397, February 20, 2024 ª 2024 The Authors. 1
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between intra-tumoral microbes and T cells that was indepen-

dent of the gut microbiome. Collectively, our studies reveal a

non-random coupling between intra-tumoral microbes and

T cells in cancer and suggest that distinct spatially defined mi-

crobial-immune communities differentially affect tumor biology,

with important therapeutic implications.

RESULTS

Microbes and CD8+ T cells spatially co-localize within
the TME
To understand the spatial distribution of microbes within the

TME, we performed multiplex immunohistochemistry on human

solid tumors to identify CK19+ cancer cells and bacteria, de-

tected based on the expression of lipopolysaccharide (LPS;

gram negative) and lipoteichoic acid (LTA; gram positive). Ana-

lyses of PDAC and LUAC revealed that the distribution of LPS

was significantly variable in both tumor types (Figures 1A–1D).

While a small proportion (approximately 10%) of LPS was de-

tected within cancer cells, the majority of LPS was localized to

cells within the stroma that surrounds cancer cells (Figure 1E).

Similar to LPS, 16S rRNA was mostly localized to the stroma,

with about 10% of 16S rRNA detected within cancer cells

(Figures S1A and S1B). LPS and 16S rRNA were detected within

CD68+ or CD15+ myeloid cells and cells expressing citrullinated

histone H3 at even lower frequencies (Figures S1A–S1D). In

addition, LTA was rarely observed in these tumor types

(Figures S1E and S1F) but was detected in melanoma. These

findings show that the distribution of microbes in tumors is

spatially heterogeneous, dominated by gram-negative bacteria

in LUAC and PDAC, and mostly limited to the stromal

microenvironment.

We next studied the association between microbes and im-

mune infiltrates in tumors by categorizing tumor regions based

on the density of immune cell types surrounding CK19+ cancer

cells (Figure 1F). The spatial heterogeneity in LPS distribution

seen in PDAC was not defined by the presence of CD20+ B cells,

CD68+ macrophages, or FOXP3+ regulatory T cells (Tregs)

(Figures 1G and S1G–S1I). In contrast, LPS distribution within

PDAC tumors was associated with CD8+ T cell infiltration

(Figures 1H and 1I). Higher levels of LPS were also observed in

CD8+ T cell-enriched regions in LUAC (Figure 1J). These findings

suggested a mechanistic link between CD8+ T cells and mi-

crobes in tumors.

Microbial-CD8+ T cell enrichment identifies distinct
tumor-stromal communities
We next studied the cellular and molecular contexture of tumor

nests defined based onCD8+ T cell infiltrates. CD8+ T cell infiltra-

tion varied significantly across multiple human solid tumors, with

inter- and intra-patient variability observed (Figure S2). Notably,

the spatial distribution of CD8+ T cells was focal and heteroge-

neous in PDAC, whereas LUAC, which displayed the lowest vari-

ance in CD8+ T cells, contained largely uniform and homoge-

neous spatial distributions of CD8+ T cells. Based on these

findings, we focused our investigations on PDAC and catego-

rized tumor nests as CD8+ T cell enriched (‘‘hot’’) or poor

(‘‘cold’’) (Figures 2A and 2B). Hot tumor nests displayed signifi-
2 Cell Reports Medicine 5, 101397, February 20, 2024
cantly higher densities of Tregs and CD68+ myeloid cells

(Figures 2C and 2D), a higher number of CD1A+ dendritic cells

(Figures S3A–S3C), a greater presence of components of hu-

moral immunity (e.g., CD20+ B cells and immunoglobulin A

[IgA]+ and IgG+ cells) (Figures S3B–S3E), and an increased pres-

ence of CD15+myeloid cells andCD31+ endothelial cells in a less

fibrotic milieu (Figures S3F and S3G). Cancer cells in hot and

cold tumor nests also showed distinct patterns of HLA-ABC

expression (Figures S3H and S3I). Notably, CK19+ cancer cells

in hot tumor nests expressed significantly lower levels of the pro-

liferation marker Ki-67 compared to cold tumor nests

(Figures S3J and S3K), while T cells in hot tumor nests displayed

higher levels of Ki-67 (Figures S3J, S3L, and S3M). PD-L1

expression was also higher in hot tumor nests (Figure S3N).

Taken together, CD8+ T cell infiltration identified spatially distinct

intra-tumoral cellular communities in PDAC.

We next developed a sequencing workflow for transcriptional

analyses performed on formalin-fixed, paraffin-embedded

(FFPE) tissues (Figure S4; Data S1) and then adapted this pro-

cess to assess discrete regions (tumor versus stroma) within hu-

man PDAC tumors (Figure S5; Data S2). We applied this work-

flow to molecularly profile tumor cells and stroma in PDAC

tumors, which revealed distinct biological processes associated

with stroma and tumor epithelium (Figure S5). We then analyzed

RNA from epithelium and stroma specifically isolated from hot

and cold tumor nests using LCM (Figures 2E and S6A–S6D).

Principal-component analysis of differentially expressed genes

(DEGs) showed that cold and hot stroma clustered distinctly

along principal component 2 (PC2), while cold and hot epithelium

clustered to a lesser extent (Figure 2F). We next isolated DNA

from hot and cold tumor nests and assessed for bacterial 16S

rRNA. Consistent with increased LPS localization to CD8+

T cell-enriched tumor regions (Figure 1), hot tumor nests had a

higher presence of 16S rRNA (Figure 2G). Overall, these findings

show that transcriptional heterogeneity in PDAC is spatially

defined and is linked to microbial and CD8+ T cell distribution

patterns in tumors.

We next studied the biological processes that distinguish cold

and hot tumor nests in human PDAC. We identified 601 DEGs

between cold and hot stroma and 31 DEGs between cold and

hot tumor epithelium (Data S3). Cold stroma was enriched in

genes associated with epithelial-to-mesenchymal transition

(EMT), MYC targets, E2F targets, myogenesis, G2M checkpoint,

transforming growth factor b (TGF-b) signaling, hypoxia, and

glycolysis (Figures S6E and S6F; Table S1). In contrast, hot

stroma showed enrichment of genes associated with allograft

rejection, interferon g (IFNg) response, interleukin-6 (IL-6)/JAK/

STAT3 signaling, IFNa response, inflammatory response, and

complement (Figures S6E and S6G; Table S1). Compared to

hot tumor epithelium, cold epithelium was enriched in genes

associated with E2F targets, MYC targets, G2M checkpoint,

oxidative phosphorylation, DNA repair, MTORC1 signaling,

and adipogenesis (Table S1). Consistent with increased microbi-

al presence, Gene Ontology enrichment analysis of hot stroma

revealed induction of genes that orchestrate host responses

to bacteria (Figures 2H, 2I, and S6H). Genes involved in

extracellular matrix organization including collagens and matrix

metalloproteinases further distinguished cold and hot stroma
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Figure 1. Microbial distribution in human solid tumors is spatially heterogeneous and coupled with CD8+ T cell infiltration

(A) Immunofluorescence (IF) images of CK19 (green), LPS (red), and nuclei (DAPI, blue) (top row) and heatmaps of LPS (bottom row). Scale bars, 2 mm.

(B and C) IF images of LPS-poor (left) and LPS-rich (right) regions. Scale bars, 200 mm.

(D) Spatial variance of LPS.

(E) Distribution of LPS in CK19+ tumor cells (yellow) and stromal cells (purple).

(F) Study design.

(G) Quantification of LPS. CD20 (n = 56 for CD20-poor and n = 11 for CD20-enriched nests pooled from 7 PDAC specimens), CD68 (n = 43 for CD68-poor and n =

28 for CD68-enriched nests pooled from 8 PDAC specimens), and FOXP3 (n = 49 for FOXP3-poor and n = 16 for FOXP3-enriched nests pooled from 9 PDAC

specimens). Scale bars, 100 mm.

(H) IF images of CD8 (yellow), tumor cells (green, CK19), LPS (red), and nuclei (blue, DAPI). Scale bars, 100 mm.

(I) Quantification of LPS in PDAC tumor nests (left; n = 110 for CD8-poor nests and n = 39 for CD8-enriched nests pooled from 10 PDAC specimens).

(J) Quantification of LPS in LUAC tumor nests (right; n = 100 for CD8-poor nests and n = 50 for CD8-enriched nests pooled from 10 LUAC specimens).

For (D) and (E), n = 9 for PDAC and n = 9 for LUAC. Statistical significance was calculated using a two-tailed Mann-Whitney test (E, G, I, and J). Data are rep-

resented as violin plots (center line, median; top and bottom lines, upper and lower quartiles) and scatterplots (mean ± SD). PDAC, pancreatic ductal adeno-

carcinoma; LUAC, lung adenocarcinoma; NS, not significant.
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(Figures S7A and S7B). Hot stroma also showed enrichment of

genes involved in T and B cell chemotaxis (Figures S6H and

S7C) and immune regulation (Figure S7D). Consistent with this,

hot tumor nests displayed a greater presence of CD8+ T cells ex-

pressing markers associated with T cell exhaustion (Figures
S7E–S7G). Despite expression of these molecules, hot stroma

exhibited a higher degree of cytolytic activity than cold stroma

(Figure S7H), which showed elevated levels of CD276, a mole-

cule that has been suggested to inhibit T cell responses19

(Figures S7I–S7K).
Cell Reports Medicine 5, 101397, February 20, 2024 3
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Figure 2. T cell and microbial co-localization define distinct cellular neighborhoods in human pancreatic cancer

(A) Study design for (B)–(D) (n = 185 for cold nests and n = 77 for hot nests pooled from 16 specimens).

(B) Images of CD8 (yellow), CD68 (brown), tumor epithelium (teal, CK19), FOXP3 (purple), and nuclei (blue, hematoxylin). Scale bars, 1 mm (top) and 50 mm

(bottom).

(C) Quantification of CD8+ (left), FOXP3+ (middle), and CD68+ (right) cells.

(D) Ratio of CD8+ cells to FOXP3+ cells.

(E) Study design for (F) and (H)–(J).

(F) Principal-component analysis (n = 5 for hot and cold tumor nests from 1 specimen).

(G) 16S rRNA levels (n = 14 for cold and hot tumor nests from 3 patient specimens).

(H and I) Heatmap (H) and enrichment score (I) for the relative expression of genes associated with response to bacterium (GO: 0009617) in hot and cold stroma.

(J) Volcano plot of DEGs.

(K) Multiplex immunohistochemistry images of CD8 (yellow), PIGR (purple), and nuclei (blue, hematoxylin).

(L) Quantification of PIGR (n = 49 for cold nests and n = 46 for hot nests pooled from 7 specimens).

(M) Multiplex immunohistochemistry images of CD8 (teal), CD20 (yellow), CD74 (purple), and nuclei (blue, hematoxylin).

(N) Quantification of CD74 (n = 71 for cold nests and n = 45 for hot nests pooled from 10 specimens).

(legend continued on next page)
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We next examined hot and cold tumor nests for potential

markers of intercellular interactions that might become upregu-

lated in cancer cells in response to the presence of microbes.

Compared to cold tumor epithelium, hot tumor epithelium

displayed higher levels of receptors that mediate immune re-

sponses to microbes, including PIGR and CD74 (Figures 2J–

2N). Specifically, PIGR enables humoral immune responses to

microbes by facilitating the transcytosis of polymeric isoforms

of IgA and immune complexes,20 and CD74 is a molecule

involved in antigen presentation and has been reported to bind

gut microbes, including H. pylori.21 Taken together, these data

show that microbial presence and immune networks, including

molecules associated with acquired immune suppression,

distinguish immunologically active (hot) and quiescent (cold) tu-

mor-stromal communities in PDAC (Figure 2O).

Microbial diversity in tumors is linked toT cell infiltration
Based on our findings demonstrating a spatial coupling between

microbes and T cells and enrichment of genes that orchestrate

host responses to bacteria in T cell-enriched regions in human

tumors, we next studied the relationship between immune cells

and microbes in cancer. To do so, we utilized mouse PDAC

cell lines that establish immunologically hot and cold TMEs

based on T cell infiltration (Figure 3A).16,22 As expected, PDAC

cell lines injected orthotopically into syngeneic mice were distin-

guishable based on the presence of CD8+ T cells and FOXP3+

Tregs (Figure 3B). PDAC tumors also showed a spatially hetero-

geneous distribution of CD8+ T cells (Figure 3C), similar to human

PDAC. Consistent with our findings in human tumors showing

that hot tumor nests harbor greatermicrobial presence (Figure 1),

hot tumors in mice also displayed higher levels of 16S rRNA (Fig-

ure 3D). However, there was no significant difference between

16S rRNA levels in stools collected from mice bearing cold and

hot tumors (Figure 3D), indicating that microbial abundance in

the gastrointestinal tract is not linked to either T cell infiltration

into PDAC tumors or microbial presence within tumors.

To corroborate the association between T cell infiltration and

microbial presence within tumors, we analyzed five additional

syngeneic PDAC cell lines16 (Figures 3E and 3F). Here, we per-

formed 16S rRNA quantification on tumor and stool as well as

flow cytometry and immunohistochemistry to quantify the pres-

ence of multiple immune cell populations and markers of immu-

noregulation. As expected, principal-component analysis (PCA)

and hierarchical clustering revealed two distinct patterns of im-

mune infiltration (T cell enriched and -poor) (Figures 3E and

3F). In addition, 16S rRNA levels in tumors positively correlated

with T cell infiltration (R values for correlation with CD3+, CD4+,

and CD8+ T cells were 0.49, 0.60, and 0.54, respectively) (Fig-

ure 3G). 16S rRNA levels in tumors also positively correlated

with the presence of macrophages, as well as expression of

CD86 and molecules involved in antigen presentation. On the

other hand, 16S rRNA levels showed inverse correlations with

the expression of CD206 on macrophages and tumor weight.
(O) Summary of cell markers and proteins.

For (K) and (M), scale bars, 2 mm (left) and 50 mm (right), and dashed lines indica

Mann-Whitney test. Data are represented as violin plots (center line, median; top

mean). PDAC, pancreatic ductal adenocarcinoma.
We next performed mRNA sequencing on cold and hot PDAC

tumors isolated from syngeneic mice (Figure 3H; Data S4). PCA

showed that cold and hot tumors clustered distinctly along PC1

(Figure 3I). Similar to findings in human PDAC, hot tumors in

mouse PDAC showed enrichment of genes involved in immune

activation (Figure S8). In contrast, cold tumors expressed genes

enriched in metabolic processes, hypoxia, and cell-cycle regula-

tion (Figure S8). Hot tumors also showed an enrichment in genes

associated with response to bacterium, cell markers (Cd20,

Cd3e,Cd68), chemokines and receptors (Cxcl13,Ccl19), and tu-

mor epithelium markers (Cd74, Pigr) (Figures 3J–3M). Taken

together, these data support a coupling between microbes and

the immunological phenotype of PDAC tumors.

The tumor microbiome has been suggested to shape im-

mune responses in PDAC.4 Therefore, we hypothesized that

the microbial compositions of hot and cold tumors would

differ. Using 16S rRNA gene sequencing performed on hot

and cold tumors injected orthotopically into mice, we

measured the composition of bacteria in tumors (Figure 4A).

As seen in human PDAC and LUAC, gram-negative bacteria

dominated the tumor microbiome of hot and cold tumors (Fig-

ure 4B). We next conducted dimensional taxonomic compari-

sons using linear discriminant analysis (LDA) and a compari-

son heatmap based on operational taxonomic unit (OTU)

abundance, which revealed significant differences in the pre-

dominance of bacterial communities (Figures 4C and 4D).

We detected differences in bacterial communities at the

various taxonomic levels (Figures 4E and S9). Hot tumors ex-

hibited higher levels of Arthrobacter and Bacillus at the genus

level and Methylobacteriaceae at the family level. In contrast,

cold tumors were dominated by Salirhabdus at the genus level

and Oxalobacteraceae at the family level.

We then measured tumor microbial a-diversity, defined as

the number of species within a tumor sample, using different

methodologies. a-Diversity of the tumor microbiome was

significantly higher in hot tumors compared to cold tumors

(Figure 4F). To examine phylogenetic relationships between

bacterial communities, we used b-diversity23,24 to generate a

principal-coordinate analysis (PCoA), which revealed a distinct

clustering between OTUs from hot and cold tumors (Fig-

ure 4G). In contrast, gut microbiota in stool showed a signifi-

cant reduction in microbial a-diversity between tumor-free

and tumor-bearing mice, with no difference between mice

with hot tumors compared to cold tumors (Figure 4H). Further,

gut microbial b-diversity distinguished tumor-free and tumor-

bearing mice but was similar between mice with hot tumors

and cold tumors (Figure 4I). Thus, the abundance, diversity,

and composition of the gut microbiota are altered by PDAC

but are not necessarily determinants of T cell infiltration into

tumors. In addition, these data suggest that the gut and tumor

microbiomes in PDAC are uncoupled, with distinct intra-tu-

moral microbial communities defined by the presence or

absence of infiltrating T cells.
te tumor epithelium. Statistical significance was calculated using a two-tailed

and bottom lines, upper and lower quartiles) and scatterplots (mean + SD or

Cell Reports Medicine 5, 101397, February 20, 2024 5
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Figure 3. The tumor microbiome is linked to T cell infiltration in murine PDAC

(A) Study design for (B)–(D) (n = 5–6 for mice orthotopically injected with cold [69] and hot [2838c3] PDAC cells).

(B) Quantification of intra-tumoral CD8+ and FOXP3+ T cells.

(C) Representative heatmap (left) of CD8+ T cells in murine hot PDAC tumor and corresponding multiplex immunohistochemistry images (right) of CD8 (brown),

FOXP3 (purple), tumor cells (yellow, CK19), and nuclei (blue, hematoxylin). Scale bars, 1 mm and 100 mm (insets).

(D) 16S rRNA levels in cold and hot orthotopic tumors (left) and stool (right).

(E–G) Mice (n = 3–5 per group) were orthotopically injected with cold (n = 3) and hot (n = 2) PDAC cell lines. Principal-component analysis (E) of immune and

bacterial determinants displayed in heatmap (F). (G) Correlation plot.

(H) Study design for (I)–(M) (n = 6 for mice orthotopically injected with cold [69] and hot [2838c3] tumor cells).

(legend continued on next page)
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Tumor microbiome communities are instructed by
T cells and differentially impact tumor biology
To interrogate the causal relationship between intra-tumoral

T cells and microbes, mice were orthotopically injected with

PDAC cells that form cold and hot tumors and then treated

with a triple-antibiotic cocktail consisting of metronidazole, cef-

triaxone, and vancomycin (Figure 5A). Antibiotic treatment effec-

tively depleted bacteria in hot tumors and stool (Figure 5B) but

did not impact CD8+ T cell or Treg infiltration into the tumors

(Figures 5C and 5D). In cold tumors, bacterial abundance was

significantly less than in hot tumors (Figure 5B), was not further

decreased by antibiotic treatment (Figure 5E), and did not impact

CD8+ T cell or Treg presence (Figure 5F). Antibiotic treatment

differentially altered the transcriptional profile of cold and hot tu-

mors (Figure 5G; Data S5). Genes downregulated in hot tumors

with antibiotics were associated with pancreatic secretion, in-

flammatory response, and innate immunity, whereas genes

downregulated in cold tumors were associated with pancreatic

secretion, MAPK signaling pathway, and positive regulation of

cell proliferation (Figures 5H and S10). Tumor growth was also

differentially impacted by antibiotics, as seen by a reduction in

tumor weights for cold tumors but not hot tumors (Figures 5I

and 5J). We next examined the impact of antibiotics on the

phenotype and presence of myeloid cells and B cells, which

were found to be differentially associated with cold and

hot tumors in mice (Figure 3) and humans (Figure 2 and S3).

Consistent with the immunomodulatory potential of microbes,

antibiotic treatment decreased the density of intra-tumoral

CD19+ B cells in hot tumors (Figure 5K). Further, antibiotics

decreased the expression levels of major histocompatibility

complex (MHC) class II molecules on intra-tumoral macro-

phages, with a concomitant increase in the immunosuppressive

marker CD206 (Figures 5L and 5M). Together, these data indi-

cate that T cell surveillance in cancer can occur independent

of intra-tumoral and gut microbiota but, nonetheless, implicate

a role for intra-tumoral bacteria in shaping the cellular contexture

of the TME.

We next considered the possibility that microbial presence in

tumors is dependent on T cells. To test this hypothesis, mice

with or without T cell depletion were orthotopically injected

with PDAC cells that form hot tumors (Figures 6A, S11A, and

S11B). As expected, genes associated with T cells as well as

myeloid cell populations were decreased in hot tumors depleted

of T cells (Figure S11C; Data S5). PCA revealed that cold tumors

and hot tumors with and without T cells each clustered distinctly

(Figure 6B). These findings indicated a significant role for T cells

in defining the transcriptional profile of PDAC tumors but also

suggested that other determinants contribute to transcriptional

differences seen between cold and hot tumors. Consistent

with a role for T cells in regulating the microbial response to

PDAC, Gene Ontology enrichment analysis showed an increase

in genes that orchestrate host responses to bacteria in hot
(I) Principal-component analysis.

(J–M) Volcano plots.

Data are representative of three independent experiments (B–D) or two independe

Mann-Whitney test (B and D). Data are represented as scatterplots (mean ± SD)
compared to cold tumors, with a significant decrease in hot tu-

mors when T cells were depleted (Figure 6C). Further, microbi-

al-associated genes Pigr and Cd74, which are increased in hot

tumor cells in human PDAC (Figure 2), were also enriched in

hot tumors compared to hot tumors with T cell depletion (Fig-

ure S11D). T cell depleted tumors were greater in weight (Fig-

ure 6D), and 16S rRNA levels were decreased in hot tumors in

the absence of T cells (Figure 6E). In contrast, no effect was

seen on 16S rRNA levels detected in stool (Figure 6F). These

findings indicate that microbial-T cell coupling in PDA tumors

is directed by T cells rather than microbes.

Finally, we studied the impact of T cells on the TME andmicro-

bial composition in tumors. T cell presence in hot tumors was

associated with genes enriched in antigen processing and pre-

sentation of endogenous peptide antigen and cytokine produc-

tion (Figure S12). However, T cell presence in tumors was also

associated with genes enriched in response to LPS, B cell

activation, and the Toll-like receptor signaling pathway. Consis-

tent with this, T cell depletion reduced CD19+ B cell infiltration

into hot tumors like that seen with antibiotic treatment (Figures

S11E and S11F). In addition, T cell depletion caused a shift in

myeloid cell phenotype, with a decrease in MHC class II on

intra-tumoral macrophages and a concomitant increase in the

immunosuppressive marker CD206 (Figures S11G–S11I).

To deepen the characterization of immune cells and to study

their relationship to microbial presence in more detail, we next

performed image mass cytometry (IMC) and compared the

cellular composition of hot tumors and hot tumors that were

depleted of T cells (Figure S13A). T cell depletion decreased

the density of all T cell subsets (Figure S13B). Consistent with

flow cytometric results (Figures S11G–S11I), T cell depletion

also decreased the density of myeloid cells expressing MHC

class II and CD86 (myeloid cell subset 2), whereas the density

of myeloid cells that expressed CD206 (myeloid cell subsets

3–6) increased in response to T cell depletion (Figures S13B

and S13C). Consistently, T cell depletion also decreased the

presence of LPS and 16S rRNA within the tumor (Figures S13C

and S13D). In contrast, T cell depletion increased the number

of endothelial cells and vessel patency (Figures S13B, S13C,

S13E, and S13F). These findings support a coupling between

T cells and microbes in shaping the contexture of the TME

(Figure S13G).

We next performed dimensional taxonomic comparisons on

hot tumors with and without T cells, which revealed similar bac-

terial communities (Figures 6G and S14). Consistent with this, tu-

mor microbial b-diversity was also similar between hot tumors

with and without T cells (Figure 6H). In contrast, tumor microbial

a-diversity was significantly decreased in hot tumors in the

absence of T cells (Figure 6I). These findings indicate that

T cells direct microbial accumulation in tumors but do not influ-

ence the composition of the tumor microbiome. Taken together,

our findings establish a causal link between T cells andmicrobes
nt experiments (H–M). Statistical significancewas calculated using a two-tailed

. FDR, false discovery rate; NS, not significant.
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in cancer and show that T cells coordinate this relationship and,

in doing so, define spatially andmolecularly distinct cellular com-

munities within tumors.

DISCUSSION

In this study, we incorporated spatial-profiling technologies

along with clinically relevant mouse models to interrogate the

causal relationship between microbes and immune cells in

defining spatial heterogeneity in cancer. We show that a non-

random coupling between microbial and immune communities

within human and mouse pancreatic tumors shapes the biology

of distinct intra-tumoral niches. Microbial-T cell coupling in tu-

mors was coordinated by T cells rather than by intra-tumoral

microbes. Further, this relationship was independent of the gut

microbiome, which, although altered by tumor development,

was not a determinant of T cell infiltration into tumors or intra-tu-

moral microbial diversity and composition.

Recent studies implicate the gut and tumormicrobiomes as in-

tegral components of the immunobiology of solid tumors.1–4,6 In

human PDAC, higher diversity of bacteria within tumors associ-

ates with T cell infiltration and correlates strongly with increased

long-term survival.4 While cancer-cell-intrinsic factors, including

CXCL1,16 G-CSF/GM-CSF,25,26 EPHA2,27 USP22,28 and b-cate-

nin,29 have been shown to suppress anti-tumor immunity, the

precise immunoregulatory impact of gut and intra-tumoral mi-

crobes on immunosurveillance in PDAC has remained unclear.

Fecal microbiota transplants have been used as one approach

to examine the role of the gut microbiota in regulating tumor

biology.4,30–35 These studies have revealed the potential of fecal

transplantation as a therapeutic intervention capable of trig-

gering immune activation against tumors. These studies also

raised the hypothesis that the gut microbiome is a determinant

of immune biology. Consistent with this, some microbes found

within tumor specimens appear to share a gut origin, suggesting

the possibility for translocation of bacteria from the gut to the

tumor.36

In contrast to previous studies, we used syngeneic tumor

models of PDAC that naturally establish immunologically active

or quiescent TMEs and intra-tumoral microbiome to investigate

a link between microbes and the immunobiology of PDAC.

Consistent with prior work, we found that the gut microbiome

of tumor-bearing mice was distinct from tumor-free mice. How-

ever, the gut microbiome of mice with T cell-enriched tumors

was indistinguishable from the gut microbiome of mice with

T cell-poor tumors, whereas the microbial composition and
Figure 4. Intra-tumoral microbial composition and diversity distinguis

(A) Study design for (B)–(I) (n = 5, 5, and 6 for mice orthotopically injection with P

(B) Percentage of composition of gram-negative and gram-positive bacteria in c

(C) Linear discriminant analysis.

(D) Heatmap of bacterial features at the genus level.

(E) Taxonomic compositions at the class and genus levels.

(F) a-Diversity in tumor.

(G) Principal-coordinate analysis (PCoA) of tumor.

(H) a-Diversity in stool.

(I) PCoA of stool.

Data are representative of two independent experiments (B–I). Statistical signifi

Kruskal-Wallis test (C and H). Data are represented as scatterplots (mean ± SD).
abundance of T cell-enriched and -poor tumors were signifi-

cantly different. This finding is consistent with the co-existence

of T cell-enriched and -poor niches, which corresponded to

microbe-enriched and -poor niches, respectively, in pancreatic

tumors and supports a role for cancer-cell-intrinsic determinants

rather than the gutmicrobiome in defining tumor-immune-micro-

bial communities. We also found that hot tumor nests in human

PDAC had higher microbial abundance compared to cold tumor

nests. However, we were not able to perform 16S rRNAmetage-

nomic sequencing to assess the microbial composition due to

the insufficient amounts of bacterial DNA that we were able to

collect from tumor nests isolated using LCM.

Cancer cells co-exist with many microenvironmental compo-

nents, including a variety of tissue-associated cells, immune

cells, extracellular matrix, soluble factors, and microbes. These

cancer-cell-extrinsic determinants influence tumor evolution

and shape treatment outcomes. The heterogeneous distribution

of these factors within tumors has complicated studies to under-

stand reciprocal interactions between elements of the TME. For

this reason, we studied resected cancer, rather than biopsies, to

allow for assessment of this biology. Our data show that mi-

crobes and T cells co-localize in tumors and that this inter-

dependence is coordinated by T cells, which enhance intra-tu-

moral microbial presence. We considered the possibility that

T cells may promote increased vascularity in tumors, which in

turn facilitates the accumulation of microbes. However, tumors

that were depleted of T cells showed enrichment in genes asso-

ciated with angiogenesis (Figure S12) and a greater presence of

patent blood vessels (Figure S13). This finding suggests that

changes in the vasculaturemay in turn altermicrobial abundance

through changes in the delivery of nutrients and metabolites. In

addition, T cell depletion and antibiotic treatment increased the

presence of CD206+ myeloid cells. As a C-type lectin that is pre-

dominantly expressed bymyeloid cells, CD206 (mannose recep-

tor) recognizes a range of microbes, including bacteria, fungi,

and viruses.37 Thus, CD206+myeloid cells that become enriched

in tumors in response to T cell depletion and/or antibiotic treat-

ment may render tumors less susceptible to microbial growth.

Prior work also suggests that intra-tumoral bacteria may be

mostly intracellular and present in both cancer and immune

cells.3,38,39 Consistent with this, our data show that gram-nega-

tive bacteria, detected using LPS and 16S rRNA, are foundwithin

tumor cells and stromal cell populations, including CD68+ mac-

rophages. CD8+ T cells were also located in close proximity to

LPS. Thus, it is possible that T cells support microbial presence

in tumors by actively transporting bacteria and by recruiting
h T cell-enriched and T cell-poor tumors

BS, cold [69], and hot [2838c3] PDAC cells, respectively).

old and hot tumors.

cance was calculated using a two-tailed Mann-Whitney test (B and F) and a
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Figure 5. T cell infiltration into tumors occurs independent of the gut and tumor microbiome

(A) Study design for (B)–(K).

(B) 16S rRNA levels in tumor and stool frommice orthotopically injected with cold (69) tumor cells (n = 10) or hot (2838c3) tumor cells and treated with (n = 15) and

without (n = 20) antibiotics.

(C and D) Quantification of CD3+ (C) and CD8+ and FOXP3+ (D) T cells from hot tumors of mice treated with (n = 19) or without (n = 13) antibiotics.

(E) 16S rRNA levels in tumor from mice orthotopically injected with cold (69) tumor cells and treated with (n = 5) and without (n = 5) antibiotics.

(F) Quantification of CD8+ and FOXP3+ T cells from cold tumors of mice treated with (n = 5) and without (n = 5) antibiotics.

(G) Number of DEGs.

(H) Bar graph displaying overrepresentation analysis of DEGs in indicated gene sets.

(I and J) Tumor weights at day 20.

(K) Quantification of intra-tumoral CD19+ cells.

(L and M) Mean fluorescence intensity (MFI) of MHC class II (L) and CD206 (M) on CD11b+ F4/80+ intra-tumoral macrophages.

Data were pooled from two to three experiments (B–D and J–M) or are representative of two independent experiments (E–I). Statistical significance was

calculated using one-way ANOVA with Dunnett’s test (B, L, and M) and a two-tailed Mann-Whitney test (C–F and I–K). Data are represented as scatterplots

(mean ± SD). NS, not significant.

10 Cell Reports Medicine 5, 101397, February 20, 2024

Article
ll

OPEN ACCESS



A B C D

FE G

H I

Figure 6. T cells promote the accumulation of intra-tumoral microbes without affecting microbial composition

(A) Study design for (B)–(H).

(B) Principal-component analysis of mRNA sequencing data.

(C) Enrichment score for the relative expression of genes associated with response to bacterium (GO: 0009617).

(D–F) Tumor weights at day 20 (D) and 16S rRNA levels in tumor (E) and stool (F) frommice orthotopically injected with cold (69) tumor cells (n = 10) or hot (2838c3)

tumor cells and treated with (n = 20) or without (n = 12–13) anti-CD4/CD8 antibodies.

(G) Taxonomic compositions at the genus level.

(H) PCoA of tumor.

(I) a-Diversity in tumor.

Data were pooled from two experiments (D–F). Statistical significance calculated using a two-tailed Mann-Whitney test. Data are represented as scatterplots

(mean ± SD). NS, not significant.
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other cells that harbor intracellular bacteria. While not addressed

in our present study, future studies that investigate the origin of

intra-tumoral microbes and their interactions with immune cells

at the site of origin may reveal cellular mediators of microbial en-

try into primary as well as metastatic tumors. Our data also show

that T cells are not determinants of the microbial composition in

tumors, suggesting that other factors, such as extracellular ma-

trix composition or metabolites within the tumor stroma, may

select for distinct microbes.

Our study provides evidence that distinct microbial commu-

nities can differentially influence tumor biology. Using mouse

models of PDAC, we found that microbial composition in tumors

differed between T cell-poor and -enriched tumors. Microbes in
T cell-poor tumors supported tumor growth, whereas microbes

in T cell-enriched tumors facilitated B cell infiltration and the up-

regulation of immunostimulatory molecules on intra-tumoral

macrophages. We hypothesize that this dichotomy in microbial

influence on tumor biology reflects the distinct composition of

intra-tumoral microbes. This may explain the paradoxical find-

ings of microbes seen in preclinical and translational studies

wherein microbes can contribute to chemotherapeutic resis-

tance and tumor progression2,5,6 but can also trigger anti-tumor

immunity.4,30–35 In addition, it is possible that the relationship be-

tween microbes and the phenotype of tumor-immune commu-

nities may differ based on cancer type and anatomic location

of disease. In this regard, we found that gram-positive bacteria
Cell Reports Medicine 5, 101397, February 20, 2024 11
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were common to melanoma lesions but undetectable by immu-

nohistochemistry in LUAC and PDAC. Consistent with this, the

microbiome composition can differ by cancer type.3

We studied murine models of PDAC that mirror the T cell-en-

riched and T cell-poor TMEs seen in human disease. Notably,

these murine models are known to respond differentially to

immunotherapy.16 Given the remarkable spatial heterogeneity

defined by T cells and microbes in human cancer, we propose

that discrete regions of tumors may also respond differently to

therapeutic interventions. To this end, it remains unclear whether

changes in the TME produced by chemotherapy or immuno-

therapy remodel microbial communities in tumors and whether

enrichment in distinct microbes in the setting of treatment influ-

ences outcomes. Our data also showed that T cell-enriched and

-poor tumors responded differently to antibiotic treatment. While

antibiotics inhibited the growth of T cell-poor tumors, the growth

of T cell-enriched tumors was not affected. Further, myeloid cells

in T cell-enriched tumors acquired an immunosuppressive

phenotype in response to antibiotic treatment, suggesting that

antibiotic treatment may shape how discrete regions of tumors

may respond to chemotherapy or immunotherapy. In addition,

our studies do not address other components of the micro-

biome, including the contribution of fungal components, which

may perturb the TME in distinct ways.40 Regardless, this work

shows collectively that the spatial distribution of intra-tumoral

microbiota in human and mouse cancer is non-random, not

necessarily dependent on the gut microbiome, and linked to

discrete tumor-immune cellular communities with differential ac-

tivity on cancer cells.

Limitations of the study
While our study demonstrates that T cells are necessary for the

accumulation of intra-tumoral microbes, our data do not define

the precise molecular mechanisms by which T cells regulate

the presence of microbes within tumors. To this end, it is

possible that multiple factors converge to establish a microenvi-

ronment that is conducive for distinct microbes. For example,

while our data show the importance of T cells in coordinating

this microenvironment, it remains unclear whether T cells are

directly and solely responsible for microbial accumulation within

tumors or if other cells and factors also contribute. Finally, our

study focused on the spatial coupling between immune cells

and intra-tumoral bacteria. Future studies will need to consider

other components of the tumor microbiome, including fungal

species. This knowledge may further inform mechanisms by

which immune cells shape the distribution of distinct microbes

in tumors.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal anti-mouse CD3 (17A2) BioLegend 100214; RRID:AB_493644

Rat monoclonal anti-mouse CD4 (RM4-5) Invitrogen 17-0042-82; RRID:AB_469323

Rat monoclonal anti-mouse CD8 (53-6.7) BioLegend 100708; RRID:AB_312747

Rat monoclonal anti-mouse CD11b (M1/70) BD Biosciences 550993; RRID:AB_394002

Rat monoclonal anti-mouse CD45 (30-F11) BioLegend 103125; RRID:AB_493536

Rat monoclonal anti-mouse CD45 (30-F11) BD Biosciences 550994; RRID:AB_394003

Rat monoclonal anti-mouse CD45 (30-F11) BD Biosciences 442848

Rat monoclonal anti-mouse CD74 (In1/CD74) BioLegend 151004; RRID:AB_2632609

Rat monoclonal anti-mouse CD86 (GL1) BD Biosciences 553692; RRID:AB_394994

Rat monoclonal anti-mouse CD206 (MR6F3) eBioscience 17-2061-82; RRID:AB_2637420

Rat monoclonal anti-mouse E-cadherin (DECMA-1) BioLegend 47314; RRID:AB_2750302

Rat monoclonal anti-mouse F4/80 (BM8) BioLegend 123114; RRID:AB_893478

Rat monoclonal anti-mouse F4/80 (BM8) BioLegend 123118; RRID:AB_893489

Rat monoclonal anti-mouse Ly6G (1A8) BD Biosciences 560602; RRID:AB_1727563

Rat monoclonal anti-mouse MHC class I (28-8-6) BioLegend 114608; RRID:AB_313599

Rat monoclonal anti-mouse MHC class I (M5/114.15.2) BioLegend 107627; RRID:AB_1659252

Rat monoclonal anti-mouse PD-L1 (10F.9G2) BioLegend 124314; RRID:AB_10643573

Rat monoclonal anti-mouse CD4 (GK1.4) BioXcell BE0003-1; RRID:AB_1107636

Rat monoclonal anti-mouse CD8 (2.42) BioXcell BE0061; RRID:AB_1125541

Mouse monoclonal anti-human CD1a (O10) Thermo Fisher MA5-12526; RRID:AB_10943672

Rabbit monoclonal anti-human CD3 (2GV6) Ventana 790-4341; RRID:AB_2335978

Rabbit monoclonal anti-human CD8 (SP57) Ventana 760-4460;RRID:AB_2335985

Rabbit monoclonal anti-mouse CD8 (EPR20305) Abcam ab209775; RRID:AB_2860566

Mouse monoclonal anti-human CD15 (MMA) Ventana 760-2504; RRID:AB_2335952

Rabbit monoclonal anti-mouse CD19 (D4V4B) Cell Signaling Technology 90176S; RRID:AB_2800152

Mouse monoclonal anti-human CD20 (L26) Ventana 760-2531; RRID:AB_2335956

Mouse monoclonal anti-human CD31 (JC70) Cell Marque 760-4378; RRID:AB_2927455

Rabbit monoclonal anti-mouse CD31 (D8B9E) Cell Signaling Technology 77699; RRID:AB_2722705

Mouse monoclonal anti-human CD68 (KP-1) Ventana 790-2931; RRID:AB_2335972

Mouse monoclonal anti-human CD74 (LN2) Abcam ab9514; RRID:AB_2075504

Rabbit monoclonal anti-human CD276 (SP206) Abcam ab227670

Rabbit monoclonal anti-human citrullinated histone H3 (E4O3F) Cell Signaling Technology 97272S

Mouse monoclonal anti-human CK19 (A53-B/A2.26) Ventana 760-4281; RRID:AB_2335655

Rabbit monoclonal anti-rabbit CK19 (EPNCIR127B) Abcam ab133496; RRID:AB_11155282

Mouse monoclonal anti-human FOXP3 (236A/E7) Abcam ab20034; RRID:AB_445284

Rabbit monoclonal anti-mouse FOXP3 (D6O8R) Cell Signaling Technology 12653; RRID:AB_2797979

Mouse monoclonal anti-human HLA-ABC (EMR8-5) Abcam ab70328; RRID:AB_1269092

Rabbit monoclonal anti-human IgA (EPR5367-76) Abcam ab124716; RRID:AB_10976507

Rabbit monoclonal anti-human IgG (EPR4421) Abcam ab109489;RRID:AB_10863040

Rabbit monoclonal anti-human Ki-67 (30-9) Ventana 790-4286;RRID:AB_2631262

Mouse monoclonal anti-LPS (2D7/1) Abcam ab35654;RRID:AB_732222

Mouse polyclonal anti-LTA Hycult Biotech HM2048;RRID:AB_57466

(Continued on next page)
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Mouse monoclonal anti-human PD-1 (NAT105) Abcam ab52587;RRID:AB_881954

Rabbit monoclonal anti-human PD-L1 (SP263) Ventana 740-4907;RRID:AB_2819099

Rabbit polyclonal anti-human PIGR Novus Biologicals NBP1-86095; RRID:AB_11012087

Mouse monoclonal anti-human podoplanin (D2-40) Ventana 760-4395

Rabbit monoclonal anti-human TIM3 (D5D5R) Cell Signaling Technology 45208; RRID:AB_2716862

Rabbit polyclonal anti-human TOX Invitrogen PA5-53781; RRID:AB_2648830

Mouse monoclonal anti-mouse aSMA (1A4) Cell Signaling Technology 69319SF

Rabbit monoclonal anti-mouse vimentin (D21H3) Cell Signaling Technology 46173SF

Rabbit monoclonal anti-mouse S100A9 (D3U8M) Cell Signaling Technology 74641SF

Hamster monoclonal anti-mouse podoplanin (8.1.1) BioLegend 127401; RRID:AB_108918

Rabbit monoclonal anti-mouse CD11c (D1V9Y) Cell Signaling Technology 39143SF; RRID:AB_2924836

Rabbit monoclonal anti-mouse CD68 (E3O7V) Cell Signaling Technology 29176SF

Rat monoclonal anti-mouse MHC class II (M5/114.15.2) Thermo Fisher 14-5321-82; RRID:AB_467561

Rabbit monoclonal anti-mouse CD206 (E6T5J) Cell Signaling Technology 87887SF

Rabbit monoclonal anti-mouse CD10 (EPR22867-118) Abcam ab261729

Mouse monoclonal anti-mouse Ki-67 (B56) Standard BioTools 91H017150

Rabbit monoclonal anti-mouse CD45 (D3F8Q) Standard BioTools 91H029151

Rabbit monoclonal anti-mouse CD31 (D8V9E) Cell Signaling Technology 92841SF; RRID:AB_2940919

Rabbit monoclonal anti-mouse TOX/TOX2 (E6I3Q) Cell Signaling Technology 62886SF

Rabbit monoclonal anti-mouse PD-1 (EPR20665) Abcam ab228857

Rabbit monoclonal anti-mouse GZMB (EPR22645-206) Standard BioTools 91H026155

Rabbit monoclonal anti-mouse F4/80 (D2S9R) Standard BioTools 91H030156

Rabbit monoclonal anti-mouse E-cadherin (24E10) Standard BioTools 3158029D; RRID:AB_2893074

Rabbit monoclonal anti-mouse CD3 (E4T1B) Cell Signaling Technology 73484SF

Rabbit monoclonal anti-mouse CD8 (EPR21769) Standard BioTools 91H023162

Rabbit monoclonal anti-mouse CD11b (EPR1344) Standard BioTools 91H007163

Mouse monoclonal anti-mouse NK1.1 (PK136) Thermo Fisher MA1-70100; RRID:AB_2296673

Rat monoclonal anti-mouse FOXP3 (FJK-16s) Standard BioTools 91H032165

Rat monoclonal anti-mouse Ly6G (1A8) Standard BioTools 91H037166

Rabbit monoclonal anti-mouse CD86 (E5W6H) Cell Signaling Technology 20018SF

Rabbit monoclonal anti-mouse PD-L1 (D5V3B) Cell Signaling Technology 85095SF

Rat monoclonal anti-mouse B220 (RA3-6B2) Standard BioTools 91H036176

Biological samples

Human: FFPE tumor blocks Cooperative Human Tissue Network https://www.chtn.org

Chemicals, peptides, and recombinant proteins

Human CCL19 probe ACDBio 474369

Human CD276 probe ACDBio 430419

Deposited data

Sequencing data This paper GEO: GSE155725

Sequencing data This paper GEO: GSE213736

Experimental models: Cell lines

Mouse: 69 Lee et al.22 N/A

Mouse: 6419c5 Li et al.16 N/A

Mouse: 6422c1 Li et al.16 N/A

Mouse: 6694c2 Li et al.16 N/A

Mouse: 2838c3 Li et al.16 N/A

Mouse: 6499c4 Li et al.16 N/A

Mouse: 6620c1 Li et al.16 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Universal 16S primers targeting v4 region: 515F,

50-GTGYCAGCMGCCGCGGTAA-30; 806R,
50- GGACTACNVGGGTWTCTAAT-30

This paper N/A

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Software and algorithms

Visiopharm Integrator System (VIS) software Visiopharm https://visiopharm.com

PANTHER Mi et al.41 https://pantherdb.org

ClueGO Bindea et al.42 https://apps.cytoscape.org/

apps/cluego

Cytoscape Shannon et al.43 https://cytoscape.org

GSEA Subramanian et al.44 https://www.gsea-msigdb.org

CellProfiler Carpenter et al.45 https://cellprofiler.org

Ilastik Berg et al.46 https://www.ilastik.org

HistoCAT Schapiro et al.47 https://bodenmillergroup.

github.io/histocat-web
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Gregory L.

Beatty (gregory.beatty@pennmedicine.upenn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Sequencing data have been deposited at GEO and are publicly available as of the date of publication. Accession numbers are

listed in the key resources table. All data reported in this paper will be shared by the lead contacts upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human samples
Deidentified formalin-fixed paraffin-embedded (FFPE) patient tumor samples were acquired from the Cooperative Human Tissue

Network. Written informed consent was obtained prior to the procurement of all patient specimens. Tissue collection protocols

were approved by the institutional review board of the University of Pennsylvania and were carried out in compliance with the

1996 Declaration of Helsinki. Patient characteristics are shown in Table S2.

Cell lines
‘‘Cold’’ PDAC cell lines (69, 6419c5, 6422c1, and 6694c2) and ‘‘hot’’ PDAC cell lines (2838c3, 6499c4, and 6620c1) were used for

orthotopic injection. These cell lines were derived from PDAC tumors that arose spontaneously in KrasLSL-G12D/+ Trp53LSL-R172H/+

Pdx1-cre (KPC) mice, as previously described.16,22 Cell lines were cultured in DMEM (Corning) supplemented with 10% fetal bovine

serum (FBS, VWR), 83 mg/ml gentamicin (Thermo Fisher), and 1%GlutaMAX (Thermo Fisher) at 37�C, 5% CO2. Trypan blue staining

was used to ensure that cells with >95% viability were used for studies. Cell lines were tested routinely forMycoplasma contamina-

tion at the Cell Center Services Facility at the University of Pennsylvania. All cell lines used in our studies tested negative for Myco-

plasma contamination.

In vivo studies
Female C57BL/6J mice of similar age were obtained from the Jackson Laboratory. Sample sizes were estimated based on pilot ex-

periments. Animal protocols were reviewed and approved by the Institute of Animal Care and Use Committee of the University of

Pennsylvania. Mice were monitored three times per week for general health and euthanized early based on defined endpoint criteria
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including significant ascites, lethargy, loss of R10% body weight, or other signs of sickness or distress. A cocktail of antibiotics,

including metronidazole (20 mg/kg, Sigma), ceftriaxone (50 mg/kg, Sigma), and vancomycin (20 mg/kg, Sigma), was administered

twice daily via intraperitoneal injection beginning on day -3 until day 20. Anti-CD4 (cloneGK1.5, 0.2mg, BioXCell) and anti-CD8 (clone

2.43, 0.2 mg, BioXCell) antibodies were administered on days -3, 4, 11 and 18. Mice were orthotopically injected with tumor cells (53

105 cells suspended in 100 mL sterile PBS) into the pancreas on day 0, as previously described.22

METHOD DETAILS

Microscopic analysis
FFPE tissue blocks containing human primary tumors were sectioned at 5 mm onto Superfrost Plus microscope slides (VWR Inter-

national, catalog 48311-703). Automated immunohistochemistry, immunofluorescence, and RNA in situ hybridization were per-

formed using a Ventana Discovery Ultra automated slide staining system (Roche). Reagents used for deparaffinization, heat-induced

epitope retrieval, and chromogenic or fluorescent signal detection were obtained fromRoche and ACDBio and used according to the

manufacturer’s protocol. All antibodies and reagents used for microscopic analysis are shown in Table S3. Images were acquired

using a BX43 upright microscope (Olympus), an Aperio CS2 scanner system (Leica), and an IX83 inverted multicolor fluorescent mi-

croscope (Olympus).

Immunohistochemistry image analysis
Whole slide scanned images were digitally quantified using Visiopharm Integrator System (VIS) software (Version 2019.07). For im-

mune cell heterogeneity analyses, 250 mm by 250 mm square grids were superimposed upon stained tissues. Regions containing

adipose tissue, necrotic lesions, and artefactual stainingwere excluded from analysis. Cell identity was then quantified as the number

of cells within each grid. Cell counts were normalized to the area of the grid and reported as densities (cells permm2). Spatial variance

in CD8+ T cell density was calculated across constituent grids making up a single patient tissue sample. Spatial variance was defined

as the square of the standard deviation. CD8+ T cell spatial heterogeneity was visualized using heat maps based on the number of

CD8+ T cells detected within each square grid. The sameminimum andmaximum thresholds were applied to all samples during heat

map generation. For virtual biopsy analyses, rectangular grids measuring 20 mm by 3,000 mm were superimposed on whole slide

scans of pancreatic tumor tissues. Each grid was designed to simulate tissue captured in a core needle biopsy. Images were quan-

tified, and the density of CD8+ and FOXP3+ T cells was reported for each virtual biopsy grid.

T cell-enriched (‘‘hot’’) and -poor (‘‘cold’’) tumor nests were detected computationally using heat maps in an unsupervisedmanner.

We defined a tumor nest as a localized region consisting of a cluster of cancer cells and the immediate stroma surrounding the cancer

cells. To identify these focal regions, cancer cells and their surrounding immune infiltrates were classified in an unsupervised manner

using the VIS software. We generated heat maps based on the CD8 density in classified images. To normalize the margins of the

tumor nests, a uniform distance of 150 mm from CK19+ cancer cells was applied during CD8 heatmap generation. Results from heat-

map generation were used to guide subsequent manual delineation of regions of interest (ROIs) around (i) tumor nests with low CD8

density and (ii) tumor nests with high CD8 density. Finally, tumor nests, excluding ductal lumens, with >500 CD8+ T cells per mm2

were designated as hot tumor nests, and regions that did not meet this threshold were designated as cold tumor nests.

For epithelial-based analyses, only CK19+ tumor cells were examined. For stromal-based analyses, CK19+ tumor cells were

excluded from tumor nests. The absolute number of cells expressing markers of interest was quantified using the VIS software,

normalized to the area of the ROI, and reported as densities (number of cells per mm2). Furthermore, percent area of positive staining

was determined within the ROI.

Immunofluorescence image analysis
Spatial distribution of gram-negative bacteria in solid tumors was assessed using whole slide images of human pancreatic ductal

adenocarcinoma and lung adenocarcinoma specimens acquired on a Leica Aperio FL ScanScope Pathology Slide Scanner. ROIs

were delineated around nucleated (i.e., DAPI-positive) regions. Lipopolysaccharide (LPS)-positive staining was quantified using

the VIS software. Heat maps based on LPS signal were generated to visualize the distribution of gram-negative bacteria. To quantify

differences in LPS distribution patterns, square gridsmeasuring 250 mmby 250 mmwere superimposed upon tissues. Percent area of

LPS positive staining was assessed per grid. Spatial variance in LPS percent area was calculated across constituent grids making up

a single patient tissue sample and within epithelial and stromal regions. Cell-enriched and -poor tumor nests were defined based on

k-means clustering, and percent LPS-positive staining quantified using the VIS software. In addition, the VIS ‘‘Multiplex Phenotyping’’

platformwas used to detect T cell phenotypes. The sumof all absolute cell counts was used to calculate percent composition of each

T cell phenotype in cold and hot tumor nests. For analysis of the spatial distribution of LPS and 16S rRNA, at least five 203 fields were

captured from each tumor specimen. Co-localization of LPS and 16S rRNAwith cells expressingmarkers of interest were then exam-

ined using Olympus cellSens software.

RNA and laser capture microdissection (LCM)
For isolation of RNA fromwhole slides (Figure S4A), FFPE tissues were sectioned onto Superfrost Plusmicroscope slides andmacro-

dissected. RNA was isolated using a RNeasy FFPE kit (Qiagen, catalog 73504) following the manufacturer’s protocol. For isolation of
e4 Cell Reports Medicine 5, 101397, February 20, 2024
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RNA from mouse tumors (Figures 4A and S11A), a RNeasy Mini kit (Qiagen, catalog 74004) was used following the manufacturer’s

protocol. For isolation of RNA from tumor nests (Figures 2E and S5A), FFPE blocks containing human primary tumors were serially

sectioned at 5 mmonto glass slideswith PENmembrane (Leica, catalog 11505158), air dried, and stored at -80�Cuntil analysis. Slides

were then thawed at room temperature prior to use and deparaffinized in fresh xylene for 30 seconds twice, followed by rehydration in

ethanol (30 seconds each in 100%, 100%, 95%, and 70% ethanol). Slides were transferred to RNase-free water and stained with

Mayer’s hematoxylin for 10 seconds. Slides were washed with RNase-free water and dehydrated in 95% ethanol, 100% ethanol,

and xylene, twice in each solution for 30 seconds. Specific regions of dehydrated slides were micro-dissected by laser capture using

a LMD7000 microscope (Leica). For isolation of tumor epithelium and stroma (Figure S5A), tumor epithelium and adjacent stroma

were identified using the morphology of cells that were stained with hematoxylin as described above, and specific regions were

then isolated using LCM. For isolation of tumor epithelium and stroma from cold and hot tumor nests (Figure 2E), regions that cor-

responded to cold and hot tumor nests were determined using a serial section that was stained with CK19, CD68, FOXP3, CD8, and

hematoxylin using immunohistochemistry as described above. Tumor epithelium and adjacent stroma from cold and hot tumor nests

were then isolated using LCM. RNA from stroma and epithelium was isolated using a RNeasy FFPE kit, and RNA from cold and hot

stroma and epithelium was collected using a NucleoSpin total RNA FFPE XS kit (Takara, catalog 740969.50). The quality of all RNA

samples was assessed using a 2100 Bioanalyzer (Agilent).

RNA sequencing and data analysis
The quality of RNA isolated from human or mouse pancreatic tumors was determined using a 2100 Bioanalyzer (Agilent). Samples

were then prepared using a QuantSeq 30 mRNA-Seq library prep kit FWD for Illumina (Lexogen) or SMARTer stranded total RNA-Seq

kit v2 (Takara) following the manufacturer’s protocol and analyzed on a NextSeq 500 sequencing system (Illumina) at the Genomics

Facility at the Wistar Institute. FASTQ files were uploaded to the BaseSpace Suite (Illumina), and the quality of FASTQ files was as-

sessed using FastQC application (version 1.0.0). All FASTQ files used in this study passed per base sequence quality checks with

most bases having per sequence quality scores higher than 30. FASTQ fileswere aligned using BaseSpace Suite RNA-Seq Alignment

application (version 2.0.0) (Data S1). Output files were analyzed using RNA-Seq Differential Expression application (version 1.0.1).

DEGs were determined using DESeq2,48 PANTHER,41 and ClueGO (version 2.5.6),42 an application of Cytoscape software (version

3.7.2).43 For ClueGO analysis, functional grouping of biological processes was performed based on kappa score, and only pathways

with P values less than 0.05 were visualized. Gene set enrichment analysis (GSEA, version 3.0)44 and singscore in R49 were used to

determine biological processes that were enriched in cold and hot tumor nests. Cytolytic activity in tumor nests was calculated as the

geometric mean of GZMA and PRF1, as previously described.50 Volcano plots were generated using Prism (GraphPad Software,

version 9), and heat maps were plotted using pheatmap in R (version 4.2).

Flow cytometry
Tumors were minced and incubated in 37�C for 45 min in DMEM containing collagenase (1 mg/mL, Sigma-Aldrich) and DNase

(150 U/mL, Roche). Tissues were then filtered through a 70-mm cell strainer, washed with DMEM, and lysed using ACK lysing buffer

(Life Technologies). Cells were washed, stained with antibodies (Table S3), and acquired on a FACS Canto II (BD Biosciences).

FlowJo software (Treestar) was used to analyze flow cytometric data.

16S rRNA gene quantification
Total bacterial genomic DNA was extracted from FFPE sections containing human PDAC tissues, frozen mouse tumors, and mouse

stool samples using a QIAamp DNA FFPE Tissue Kit, QIAamp DNA Mini Kit, and QIAamp PowerFecal Pro DNA Kit (Qiagen), respec-

tively, following the manufacturers’ instructions. DNA concentration was measured using a Qubit 4 Fluorometer (Thermo Scientific)

and kept at -80�C until analysis. For 16S rRNA gene quantitative PCR, universal 16S primers targeting the v4 region (515F, 50-GTGYC

AGCMGCCGCGGTAA-30 and 806R, 50- GGACTACNVGGGTWTCTAAT-30) were used. Sterile water was used as a negative control.

Equal amounts of genomic DNA (100 ng) were used for each tumor or stool sample. Relative 16S rRNA levels were calculated by

normalizing Ct values of the samples to the median Ct value of cold tumors or stools collected frommice bearing cold tumors. Addi-

tionally, we utilized Escherichia coli genomic DNA at various concentrations ranging from 0 to 1,000,000 ng/mL to generate a standard

curve. This standard curve was then used to calculate the absolute amount of 16S rRNA that was present in each sample

(Figure S15).

16S rRNA metagenomic sequencing and analysis
Following extraction of total bacterial genomic DNA, the v3-v4 region of the 16S rRNA gene was amplified with gene specific primers

(314F and 806R) added with overhang adapters using a 16S V3-V4 Library Preparation Kit (Illumina). The amplicon library was

sequenced on a MiSeq platform (Illumina) using a 2 3 250 bp paired-end protocol. QIIME 2 pipeline was then used to analyze the

16S sequencing data. Specifically, Casava 1.8 paired-end demultiplexed FASTQ data was imported into QIIME 2, followed by quality

filtering, length trimming, and denoise with Deblur. Sequences were then clustered into Operational Taxonomic Units (OTUs) at 97%

identity, and the chimera were filtered using q2-vsearch. Taxonomy assigned with the Greengenes 13_8 database was analyzed us-

ing q2-feature-classifier. OTUs less than 3 and sequence counts less than 10 were excluded from analysis. Phylogenetic trees were
Cell Reports Medicine 5, 101397, February 20, 2024 e5
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generated using q2-phylogeny. Alpha diversity (Faith-PD, observed features, and Shannon index) and beta diversity (Bray-Curtis,

Jaccard, and unweighted UniFrac distance metrics) analyses were performed using q2-diversity.

Image mass cytometry (IMC)
IMC staining on mouse liver tissues were performed as previously described.51,52 FFPE sections were baked, deparaffinized

in xylene, then rehydrated in an alcohol gradient. Slides were incubated in Cell Condition Solution 1 (Roche) at 100�C for 1 hour

then blocked with 3% BSA for 45 min at room temperature, followed by overnight staining at 4�C with the antibody cocktail. Anti-

bodies, metal isotopes, and their titrations are listed in Table S4. Images were acquired using a Hyperion Image System (Standard

BioTools). From each section, images were obtained from 6 ROIs, each measuring at least 1 mm by 1 mm. Upon acquisition, repre-

sentative images were visualized and generated through MCD Viewer (Standard BioTools). For data analysis, images were

segmented into a single cell dataset using the publicly available software pipeline based on CellProfiler, ilastik, and HistoCAT.45–47

The resulting single cells were clustered using all mouse cell markers using FlowSOM53 into metaclusters, which were annotated into

final cell types, as previously described.51,52 Cell type density quantifications were performed by calculating the number of cells of

each cell type over the area of each ROI.

Correlation analysis
Relative 16S rRNA levels in tumor and stool, total numbers of cells and percentages of cells positive for surface molecules and tumor

weights were imported into R studio (R version 4.2) and used for analyses following normalization. PCA plot, heat map, and corre-

lation matrix were generated using ggplot, pheatmap, and corrplot R packages, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was calculated using Prism (GraphPad Software, version 9) unless indicated otherwise. Multiple comparisons

testing was performed using one-way ANOVA with Dunnett’s test to compare the statistical difference between the control group to

all other experimental groups or Kruskal-Wallis test. Unpaired group comparisons test was performed using two-tailed Mann-

Whitney test. Correlation analysis was performed using Pearson’s correlation. P values less than 0.05 were treated as significant.

The investigators were not blinded to allocation during experiments and outcome assessment.
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