Monitoring the Progression of a Calcifying Uterine Leiomyoma: Detection Using 18F-NaF-PET/CT

David A. Resto,* Peter Sang Uk Park, BA,*† Thomas J. Werner, MSc, * Poul F. Høilund-Carlsen, MD, DMSc,‡§ and Abass Alavi, MD*

Abstract: Uterine leiomyomas (fibroids) are common and benign hormone-dependent tumors of the uterus, often coinciding with atypical menstrual bleeding, urinary incontinence, and lower abdominal pain. The PET tracer 18F-NaF has been used to study metastatic and benign bone disorders, but its potential use in investigating the molecular alterations of extraosseous tissues and tumors has not been fully investigated. In this report, we present a calcifying uterine leiomyoma incidentally detected on 18F-NaF PET/CT scans in a post-menopausal 61-year-old woman and follow-up image 2 years after, highlighting the potential of 18F-NaF in monitoring both the molecular and structural progression of uterine leiomyomas.

Key Words: calcification, fibroid, NaF, PET, uterine leiomyoma

Received for publication June 2, 2022; revision accepted August 9, 2022.

From the *Department of Radiology, Hospital of the University of Pennsylvania; and †Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; and ‡Department of Nuclear Medicine, Odense University Hospital; and §Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Conflicts of interest and sources of funding: none declared.

Correspondence to: Abass Alavi, MD, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104. E-mail: Abass.alavi@pennmedicine.upenn.edu. Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved. ISSN: 0363-9762/22/0000–0000 DOI: 10.1097/RLU.0000000000004395

ACKNOWLEDGMENT

The authors thank the staff of the CAMONA study and the study participants for the valuable contributions.

REFERENCES

FIGURE 1. Coronal MIP 18F-NaF PET (A), axial 18F-NaF PET (B), CT (C), and fused 18F-NaF PET/CT (D) images. Corresponding coronal MIP 18F-NaF PET (E), axial 18F-NaF PET (F), CT (G), and fused 18F-NaF PET/CT (H) images of the same subject 2 years after. A 61-year-old asymptomatic woman without history of cardiovascular, neoplastic, or autoimmune disease was initially recruited and underwent 18F-NaF PET/CT scans as a control subject of the CAMONA study, followed up 2 years after as part of the study protocol. A uterine leiomyoma undergoing calcification was incidentally detected (C and D; volume, 2380.56 mm3 average; HU$_{\text{mean}}$, 304.74) with focal 18F-NaF uptake (A and B; average SUV$_{\text{mean}}$, 5.02). In a follow-up scan 2 years after, calcification within the uterine leiomyoma demonstrates increased size (G and H; volume, 3135.93 mm3; average HU$_{\text{mean}}$, 311.98) and greater 18F-NaF uptake (E and F; average SUV$_{\text{mean}}$, 5.51). Uterine leiomyomas or fibroids are benign, hormone-dependent tumors that typically decrease in size with onset at menopause because of diminishing estrogen levels.1 As the leiomyomas regress, degeneration and necrosis ensue, resulting in calcium salt deposition2 that can be captured using 18F-NaF PET/CT.3 The role of 18F-NaF PET/CT in detecting calcification within osseous and soft tissues has been well demonstrated previously.2 In our case study, the increased calcification and 18F-NaF deposition over time most likely signify the concurrent macroscopic and microscopic growth of calcification and highlight the potential of 18F-NaF PET in monitoring both the structural and molecular alterations within extraosseous tissues such as uterine leiomyomas in a time-dependent manner.