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Leveraging artificial intelligence in the fight
against infectious diseases
Felix Wong1,2, Cesar de la Fuente-Nunez3,4,5*, James J. Collins1,2,6*

Despite advances in molecular biology, genetics, computation, and medicinal chemistry, infectious disease
remains an ominous threat to public health. Addressing the challenges posed by pathogen outbreaks,
pandemics, and antimicrobial resistance will require concerted interdisciplinary efforts. In conjunction with
systems and synthetic biology, artificial intelligence (AI) is now leading to rapid progress, expanding anti-
infective drug discovery, enhancing our understanding of infection biology, and accelerating the development of
diagnostics. In this Review, we discuss approaches for detecting, treating, and understanding infectious
diseases, underscoring the progress supported by AI in each case. We suggest future applications of AI and how
it might be harnessed to help control infectious disease outbreaks and pandemics.

I
nfectious diseases, caused by transmissible
pathogens including bacteria, eukaryotes,
and viruses, continue to challenge scientists
and clinicians despite advances in medi-
cine and basic research over the past few

decades. Limitations to the fast and accurate
detection of infections, as well as expanding
antimicrobial resistance, exacerbate these chal-
lenges (Box 1). Basic research has aimed to
expand our knowledge and provide solutions,
includingdevelopment of anti-infective therapies,
preventative measures, and fast and accurate
diagnostic tools. In particular, systems
and synthetic biology approaches have
led to biotechnological and medical
innovations—including drug treatments
andmodalities, vaccines, anddiagnostics—
that have improved how we deal with
infectious diseases.

The fields of systems and synthetic
biology emerged from two key devel-
opments: (i) the generation and syn-
thesis of quantitative biological hypotheses
and data fromwet-lab experiments, sequenc-
ing, and systems-level modeling; and (ii) an
understanding of the modularity and pro-
grammability of nucleic acids, peptides, and
other biomolecules, which enables control of
biology. Artificial intelligence (AI),which focuses
on developing machines capable of reasoning

with data, has recently matured into an exciting
field that draws on both these features to ac-
celerate scientific discovery. Because AI-based
approaches can integrate large amounts of
quantitative and omics data, they are particu-
larly adept at dealing with biological complex-
ity, extending our knowledge and facilitating
our efforts to reverse engineer and control
biology. AI-based approaches are particularly
useful in addressing the problem of infectious
diseases, which are complex across different
scales, ranging from cells to communities, and

for which advances in medicine and biotech-
nology are essential drivers of progress. In
this Review, we discuss major areas in which
AI-based approaches, applied to systems and
synthetic biology, are substantively empower-
ing our research to fight infectious diseases.

AI for anti-infective drug discovery

Anti-infective drugs, comprising antibacterials,
antivirals, antifungals, and antiparasitics, have
become less effective treatments as a result of
the spread of drug resistance. There is there-
fore an urgent need for new anti-infective
treatments, particularly ones that represent
unprecedented chemical spaces or therapeu-
tic modalities. AI, and in particular machine
learning (ML), a subfield of AI that uses data
to train machines to make predictions, has
foremost been helpful in facilitating searches
of small-molecule databases, such as the
ZINC15 (1). ML approaches to anti-infective
drug discovery have centered on training
models to identify new drugs or new uses of
existing drugs (Fig. 1). As the number of drug-

like small molecules is essentially infinite [as
large as ~1060 (2), and possibly larger, given
that typical antibiotics may not be tradition-
ally drug-like (3)], a major benefit of ML ap-
proaches is that they can virtually screen
compound libraries at a scale (>109 compounds)
that would be impossible to screen empirically.
Anti-infective drug discovery has benefited

particularly from AI integration for several
reasons. First, in contrast to cancer or other
diseases inwhichmechanism-driven approaches
have remained dominant, infectious diseases
are generally phenotype-driven; that is, these
diseases proceed from the physiological char-
acteristics of infectious agents rather than
from their genetic or molecular compositions.
The discovery of some of the first widely used
antibacterials, antivirals, antiparasitics, and
antifungals stemmed from observations of their
inhibitory effects against pathogens or the
symptoms caused by infections. This pheno-
typic line of discovery is as relevant today as
it was decades ago, especially as innovations
in high-throughput screening and the design
of chemical libraries have enabled more quan-
titative and customizable discovery efforts.
The focus on phenotypes implies that drug
polypharmacologic effects can be common to
anti-infective drugs and that biological infor-
mation canbe integrated across differentmacro-

molecular drug targets (4). Phenotypic
properties are well suited for analysis by
ML because ML can both unify and dis-
entangle the different types of biological
information that impinge on these read-
outs. Second,most anti-infective drugs are
small molecules, whose chemical struc-
tures can be modeled computationally
as graphs comprising vertices and edges,
and additional programmable modali-

ties, including target-binding nucleic acids
called aptamers (5) and antimicrobial peptides
(AMPs) (6–8), are currently in development.
Supervised graph neural networks (9–11), un-
supervised generative models (12, 13)—which
are ML models capable of producing outputs
similar to their training data—and other recent
advances in ML architectures (Box 1) enable
computers to learn, predict, or design patterns
in chemical structures, offering powerful tools
for modeling small molecules. The use of ML to
make biologically relevant predictions from se-
quences of nucleic acids or amino acids allows
forML-guideddesign relevant to these therape-
utic modalities, as exemplified by protein struc-
ture prediction platforms such as AlphaFold
and RoseTTAFold (14, 15). Lastly, infectious dis-
eases are typically caused by pathogens that are,
or can be, well characterized. This biological trac-
tability contrasts with complex diseases such
as neurodegeneration, for which our incom-
plete mechanistic understanding remains a
major bottleneck. Our clearer understanding
and larger databases (16–18) of the gene and
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protein networks of bacteria, viruses, and even
simple eukaryotes—as compared with hu-
man cell types—may allowML-driven approaches
to make more-accurate predictions and better
identify drug mechanisms of action (MoAs)
(19–21).
Despite these advantages, there are out-

standing issues in applying ML, and AI more
broadly, to anti-infective drug discovery. One
major challenge is that it is unclear how well
ML models generalize to unexplored biomo-
lecular spaces. For instance, we have previously
screened a library of small molecules for
growth inhibitory activity against Escherichia
coli and used this phenotypic information to
train graph neural networks to predict the anti-
biotic activities of small molecules—including
halicin—on the basis of their chemical struc-
tures (9). Yet these models performed best at
predicting compounds in well-known anti-
biotic classes, such as b-lactams and quinolones.
To tap into previously unexplored search spaces,
different approaches are needed. For exam-
ple, a suboptimal solution was implemented
during the course of a genetic algorithm—an
algorithm that iteratively evolves its inputs
to optimize a property—to identify the syn-
thetic peptide guavanin 2. This peptide was
subsequently synthesized and effectively killed
bacteria in a preclinical mouse model, sug-
gesting that themodel could
generalize at the cost of opti-
mality (22). Recently, emerg-
ing computational approaches
have made it possible to also
mine proteomes for antibi-
otic discovery, leading to
the identification of thou-
sands of antimicrobials in
bothextant andextinct orga-
nisms (6, 23).
Overall, lead molecules

are only as structurally nov-
el as the chemical spaces
that are explored, and ML-
driven approaches are limi-
ted by both the structural
diversity of the training sets
and the ability of model ar-
chitectures to prioritize nov-
elty. Organocatalysis and
cascade reaction sequen-
ces, which are chemical syn-
thesis methods that have
recently opened up chem-
ical spaces, can provide use-
ful experimental starting
points for generating struc-
turally diverse small mole-
cules (24). In contrast, the
computational enumeration
of all feasible small mole-
cules containing atoms found
in most drugs, as provided

by the GDB datasets (25), presents opportu-
nities to exhaustively sample chemical spaces
of small molecules, with the caveat that other
computational models are needed to accu-
rately predict synthesizability. Nucleic acid–
and peptide-encoded combinatorial libraries
of small molecules (26) and peptides (27), as
well as designable aptamers (28), can further
extend search spaces of interest. In each case,
generalizability is paramount to ML models.
Improving generalizability will require the
application of previously unexplored para-
digms and models with improved inference
capabilities, for instance, few-shot models,
which are ML models that extrapolate from
scarce training data (corresponding to under-
sampled regions of search spaces), or multi-
task models, which are ML models that
combine information from diverse inputs.
Models such as these will help to identify only
the most promising drug candidates (29).
Providing “negative” data (e.g., tested com-
pounds that are not active) is also essential
for ML model training and benchmarking,
and when ML models are applied to chal-
lenging test sets, it is important that their
limitations are clearly expressed (e.g., through
confidence information). To express these
limitations, interpretable or explainable ML
approaches can be used to capture the spe-

cific aspects of training data that models have
learned by pinpointing the input structural
features (explainable ML) or the parts of the
model that lead to a prediction (interpretable
ML) (30).
Another key challenge in AI for anti-infective

drug discovery is the need for improved
mechanistic models to complement pheno-
typic approaches. Whereas ML models have
been useful for identifying drug candidates on
thebasis of phenotypic information (9, 12,31–33),
more work is needed before models can ac-
curately predict drug–target interactions and
MoAs. These drug attributes remain impor-
tant in light of antimicrobial resistance and
the fact that we are still learning about the
MoAs of anti-infective drugs discovered de-
cades ago (34). Protein structure predictions
(14, 15) and other resources now provide struc-
tural information that can inform target-based
predictions—althoughnot knowing a protein’s
structure has not typically limited drug dis-
covery (35). Recent studies have highlighted
that improvements in molecular docking—
which predicts binding affinities between lig-
ands and targets on the basis of structural
information—are still needed to accurately
identify antibiotic MoAs, and that ML-driven
approaches can improve prediction accuracy
(36). Molecular docking approaches have

largely focused on small-
molecule ligands, but tar-
get predictability is just
as important for AMPs,
which often have nonspe-
cificmembrane-activeMoAs
(22, 31, 32), as well as
aptamers. Improvements
in target-centric approaches
can facilitate the discovery
of compounds with spe-
cific binding activity and
lead to improved biological
understanding, which can
inform predictions of emer-
gent properties such as
drug interactions and syn-
ergies. Of particular rele-
vance to antibiotic resistance,
a better understanding of
how compounds interact
withmembranes is crucial
for discovering drugs that
are active against Gram-
negative bacteria, whose
outer membranes have
proven particularly diffi-
cult to penetrate (37).
Drug development is a

lengthy and intricate pro-
cess influenced by numer-
ous factors such as safety,
cost, manufacturing, and
clinical trial outcomes. For
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Box 1. Overarching challenges in infectious diseases and concepts in AI.

Pathogen outbreaks and pandemics: Recent outbreaks include COVID-19, mpox,
Marburg virus, H5N1 influenza, Ebola, measles, Zika, E. coli, and MERS. Challenges include
detecting outbreaks and new pathogens, understanding disease biology, and developing
preventive measures.
Antimicrobial resistance and anti-infective drug discovery: Problematic pathogens
include carbapenem-resistant Enterobacteriaceae (CRE), methicillin-resistant Staphylococcus
aureus (MRSA), multidrug-resistant tuberculosis (MDR-TB), vancomycin-resistant Enterococcus
(VRE), extended-spectrum beta-lactamase (ESBL)–producing bacteria, and drug-resistant
Candida auris, Neisseria gonorrhoeae, P. falciparum, and Toxoplasma gondii. Challenges include
practicing antimicrobial stewardship (the appropriate and responsible use of anti-infective
drugs), developing new classes of anti-infective drugs, potentiating existing drugs against
resistant infections, and understanding drug MoAs.
Neglected, persistent, and difficult-to-treat infections: Examples include neglected
tropical diseases, chronic hepatitis B and C, chronic fungal infections, Lyme disease,
infections in low-resource populations, and HIV/AIDS. Challenges include developing low-
cost and field-deployable diagnostics, improving the accuracy of diagnostic tests, improving the
detection of antimicrobial resistance, and making effective disease treatments available.
Artificial intelligence and machine learning: ML is a subfield of AI, and its approaches can
be classified as supervised (model is told what property to predict), unsupervised (model
is not told what property to predict), or reinforcement learning (model optimizes for feedback).
Neural networks are a common ML architecture comprising interconnected layers of
basic processing units (neurons). Different types of neural networks exist, including those
that predict properties of graph-based inputs (graph neural networks), generate data by
compressing what the model has learned (variational autoencoders), process sequential
data (long short-term memory), and model complex dependencies by using attention
mechanisms to focus on specific input elements (transformers). Not all models are neural
networks, and simpler models include random forests (ensembles of decision trees),
support vector machines (classifiers that separate data points on a plot), and regression
models (functions that explicitly model the input–output relationship).
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anti-infective drugs in particular, toxicity to
host cells is a common liability. Drugs can be
toxic in different ways (e.g., cytotoxic, hemolytic,
and genotoxic), and ML models predicting
toxicity have been limited by factors such as
the lack of high-quality datasets (38). Absorp-
tion, distribution, metabolism, and excretion
(ADME) properties, including chemical insta-
bility in solution and metabolic breakdown,
are also needed to filter out drug candidates
that are nonselective or unsuitable for medici-
nal use. Although high-throughput screens have
focused on in vitro testing, there is substantial
unmet need for anti-infective drugs that are
effective against systemic infections. Predict-
ing efficacy in animalmodels of acute systemic
infections is a challenging task that has not
yet been addressed by ML-driven approaches.
We anticipate that active areas to watch are

those that combine experimental and compu-
tational approaches to address model predic-
tive power and data scarcity. ML approaches
that incorporate information from scarce train-
ingdata, aswell asmore-extensive search spaces,
are likely to substantively augment anti-infective
drug discovery. To guide experimental meth-
ods to augment search spaces, generative ML
models will continue to propose chemical struc-
tures and peptide sequences de novo that can
be synthesized and evaluated. Generative plat-
forms such as GPT-4 and NVIDIA’s BioNeMo
can also facilitate drug discovery by integrat-
ing disparate streams of scientific information
to improve our understanding of the underlying
biology and chemistry. Interpretable or explain-
able ML approaches (e.g., for graph neural net-
works) can offer powerful ways of inferring
salient structural features or improving model

learning from data. Computational pipelines
that leverage structural predictions of proteins
and other macromolecules provide a comple-
mentaryway to improvemodel predictivepower.
Detailed molecular dynamics simulations and
ML-augmented approaches to docking exem-
plify techniques that can better predict inter-
actions between drugs and macromolecules
(36,39).Weanticipate that sequence-to-structure
models, such as AlphaFold for proteins or
FARFAR2 for RNAs (14, 40), will also be useful
for structure-guided design. Such models can
be used to tune therapeutic candidates to
achieve specific structures, bridging struc-
tural predictions with the productive augmen-
tation of search spaces.

AI for infection biology and
infection-related contexts

Bacterial, eukaryotic, and viral pathogens in-
fect diverse hosts and trigger complex host
responses. Pathogen load, host immunity,
treatments administered, and other factors
influence the course of infection. Supervised
ML models have been used to analyze struc-
tured and unstructured nucleic acid, protein,
glycan, and cellular phenotypic datasets to
identify critical features and molecular net-
works involved in host–pathogen interactions
and immune responses (Fig. 2) (41–45). Vari-
ous supervised and unsupervised ML models,
including random forest classifiers and com-
plex language models (models designed to
understand or generate text), have been ap-
plied to identify genes and protein–protein
interactions associated with host cell changes,
predict immunogenicity, and evaluate patho-
gen killing, host cell adaptation, and virulence.

Additionally, supervised models have been
used to guide the development of vaccines
and therapeutic drugs through the optimiza-
tion of gene expression and antigen prediction
and selection (46, 47). Reverse vaccinology,
which bases antigen prediction on immuno-
logic and genomic information, has been
facilitated by supervised ML approaches, in-
cluding Vaxign-ML (47).
In general, ML has made an outsized con-

tribution to analyzing large and often con-
voluted datasets in infectious diseases research.
Although these examples illustrate the prom-
ise of using ML to elucidate key factors under-
lying infections and how infections progress
within hosts, understanding host–pathogen
interactions and immune responses remains
a challenging biological problem. This prob-
lem can be addressed by integrating high-
throughput datasets—including sequencing,
structural, and microscopy data—with detailed
mechanistic studies, experimentation, and in-
fection models. Mechanistic and experimental
studies, however, are typically low-throughput,
constraining the generalizability of AI-guided
approaches that rely on them. Experiments in
which large datasets are systematically ac-
quired and analyzed across different infection
contexts, for instance through comprehensive
CRISPR screens, RNA sequencing, and mass
spectrometry, would foster the development
of AI models that extend beyond tools for
data analysis andmake generalizable hypothe-
ses and inferences. Parameterizing these ef-
forts with biological sequences or chemical
structures, such as small molecules, guide
RNAs, or amino acid sequences, would offer
tunable approaches to investigating infection
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Fig. 1. AI can predict anti-infective drug activity, drug–target interactions, and therapeutic design. Examples of AI model inputs, model architectures or
types, and model outputs relevant to anti-infective drug discovery include those focusing on drug activity (A), drug–target interactions and MoAs (B), and
programmable therapeutic design (C). Inputs, models, and outputs shown are representative, in part, of those discussed in (9–15, 19–22, 28–33, 36, 39, 40).
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biology. In one example of a sequence-guided
approach, a recent study developed unsuper-
vised language models of influenza, HIV-1,
and severe acute respiratory syndrome corona-
virus 2 viral proteins based on amino acid
sequence information and accurately pre-
dicted escape patterns that allow these patho-
gens to evade the human immune system (45).
ML models that can make specific assump-
tions about biology, such as the relevance of
syntax (grammar) and semantics (meaning) in
biological sequences, or leverage structural in-
formation have the potential to guide the gen-
eration of biological hypotheses and improve
generalizability.
Additionally, ML has productively processed

microscopy datasets relevant to infection biol-
ogy. Various forms of microscopy, including
light and electron microscopy, have been used
to generate datasets underlying ML models
that detect bacteria, fungi, parasites, and
viruses in host cells. These analyses have led to
insights in host–pathogen biology, for instance
by elucidating the developmental morpholo-
gies of Plasmodium falciparum in human red
blood cells using multicolor fluorescence mi-
croscopy (48) and identifying virulence factors
involved in Mycobacterium abscessus patho-
genesis from high-content imaging and pheno-
genomic data (49).
Sequence-basedML approaches tomessenger

RNA and nucleic acid vaccines can accelerate
design, and the turnaround times for the syn-
thesis and experimental validation of these
vaccines are short (50). Protein structure–based
vaccine design (51) can also be augmented with
computational predictions from AlphaFold or
RoseTTAFold. Yet the use of ML for vaccine

development faces several challenges, including
poor data quality, limited data availability and
generalizability, and complicated testing proce-
dures. Limited or only low-quality data may be
available for certain populations or diseases,
particularly for neglected tropical diseases, and
these limitations can influence the choices of
target antigens and constrain ML models that
predict antigen presentation and vaccine tar-
gets. Different infections have different host
contexts, and ML models predicting the effi-
cacy of vaccines, which modulate immunity in
host cells, may be less generalizable to bio-
logical contexts than those for anti-infective
drugs. Furthermore, the validation of vaccine

candidates can be time-consuming and expen-
sive, requiring delivery to host cells and suitable
immunogenicity assays. To begin addressing
these challenges, comprehensive benchmark-
ing datasets for antigen selection and vaccine
efficacy will be needed. These datasets will
help to standardize data quality and improve
the predictive power of next-generation ML
approaches to vaccine development.
MLhasalso informedclinical decision-making

in infection contexts. A recent study used re-

gression models to implement personalized
antibiotic recommendations that minimized
the risk of urinary tract and wound infec-
tions (52). However, a general bottleneck in
using ML to design treatment strategies is
the need for data and models that are rele-
vant to specific infection settings. An earlier
study used support vector machines to ana-
lyze bacterial gene expression patterns in hu-
man patients, representing an important step
toward showing thatMLmodels can provide
useful biological information relevant to clin-
ical infections (53). Moving forward, multi-
dimensional predictions of how anti-infective
drugs and vaccines interact with model hosts
and humans will help improve treatment strat-
egies, anticipate adverse effects, and potentially
increase success rates for new drugs in clin-
ical trials.
As new datasets and models are needed to

improve the application of ML to infection-
related contexts, we anticipate that future work
will make biology more “embeddable”—that
is, able to be represented by low-dimensional
features, such as sequences, vectors, or graphs.
Integrating ML with next-generation systems
and synthetic biology methods for cellular pro-
filing will drive progress in this area. For in-
stance, combining high-throughput screens and
microscopy with precise methods for biolog-
ical control, such as gene editing or optoge-
netics, would generate data relevant to key
processes such as host cell stress responses,
enabling manipulation of these pathways to
address infectious diseases. In ML, promising
types of language models include large lan-
guage models, which are trained on large
amounts of text data, and fine-tuned language
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Fig. 2. AI can elucidate infection biology, facilitate vaccine design, and inform treatment strategies. Examples of AI model inputs, model architectures or
types, and model outputs focusing on infection biology (A), vaccine design (B), and anti-infective drug treatment strategies (C). Inputs, models, and outputs shown
are representative, in part, of those discussed in (41–49, 51–54).

“Better leveraging of AI
to address infectious
diseases will require a

collaborative effort among
scientists, clinicians,
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models, which are trained to perform a spe-
cific task. Fine-tuned large language models for
biology, such as BioBERT (54), may unify in-
formation from diverse infection contexts and
offer increased predictive power to help elu-
cidate host–pathogen interactions, facilitate
antigen selection, inform vaccine design, and
design treatment strategies.

AI for diagnostics and synthetic biology

As large-scale testing efforts during the
COVID-19 pandemic have illustrated, quick
and accurate detection of infections and path-
ogen outbreaks remains paramount to con-
trolling the spread of infectious diseases.
Recent advances in combining AI with syn-
thetic biology, gene expression analyses, mass
spectrometry, and imaging have substantively
expanded our ability to detect infections and
predict drug resistance (Fig. 3) (55–60). ML is
well suited for catalyzing synthetic biology–
based diagnostics because of the high program-
mability of biological elements, the routine
generation of large or sequence-based data-
sets, and the ability of ML to extract meaning-
ful information from biomolecular networks
in disease biology (61).
Engineering genetic elements and under-

standing biomolecular networks remain criti-
cal to designs that harness biology. Synthetic
biology approaches leveraging enzymatic reac-
tions, toehold switches (RNAs that respond to
specific nucleic acid sequences), or CRISPR-
Cas enzymes have been used for the detec-

tion of malaria, Ebola, Zika, COVID-19, and
other diseases (62–67). Supervised ML models
have facilitated the design of toehold switches
(68, 69), CRISPR guide RNAs (70–72), and
other biomolecules. Notably, large datasets are
available for toehold switch function, CRISPR
guide RNA activity, and other factors that are
relevant to diagnostic design. Different types
of neural networks, including feed-forward
networks (neural networks with linear archi-
tectures), convolutional neural networks (net-
works composed of convolutional layers), and
long short-term memory models, have been
commonly used to model these data, but the
same datasets can provide useful resources for
testingmore recently developed andpotentially
more predictive or generative ML models,
including transformers or variational auto-
encoders (Box 1), to more efficiently develop
next-generation diagnostics.
Beyond synthetic biology,ML has been used

for gene expression–, mass spectrometry–, and
imaging-based diagnostics. Gene expression–
andmass spectrometry–based diagnostics have
been applied to antimicrobial susceptibility
testing (AST). AST remains important for in-
forming the use of anti-infective drugs, but
typical (culture-based) AST for bacteria, vi-
ruses, fungi, and parasites can take at least
several days to complete. This turnaround time
remains too long to adequately address clin-
ical needs for acute systemic infections, such
as those resulting in sepsis. Recent studies
have combined gene expression and interac-

tion profiling, structural mutation-mapping,
and ML to identify genetic signatures of re-
sistance that could be used as the basis of
rapid molecular diagnostics (56, 57). Super-
vised ML classifiers have predicted antibiotic
resistance profiles correlated with clinical
matrix-assisted laser desorption/ionization–
time-of-flight (MALDI-TOF) mass spectra of
bacterial proteins, and these predictions could
be completed within 24hours of sample collec-
tion (58). Nevertheless, a potential limitation to
this approach is that the areas under the re-
ceiver operating characteristic curve (AUROC)
for different bacterial species were ~0.7, suggest-
ing that improvements in classifier accuracy will
be needed to make this approach useful (e.g.,
AUROC > 0.9) in clinical settings. ML has also
informedmore-traditional ways of diagnosing
infections, including microscopy, epitope pro-
filing (73), chest radiographs and CT scans
(59, 60), and lateral flow tests (74). In each of
these applications, the generationof large,multi-
dimensional datasets combined with clear func-
tional readouts, such as the presence or absence
of a resistance profile or a disease, makesML
particularly useful for producing accurate
predictions.
Nevertheless, there remain important chal-

lenges in applying ML to diagnosis, including
low data quality or quantity for new or em-
erging pathogens, the limited generalizability
of the current data and approaches used, and
the need for highly accurate diagnostic pre-
dictions in clinical settings. Obtaining enough
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Fig. 3. AI can facilitate synthetic biology research and diagnostics development. Examples of AI model inputs, model architectures or types, and model outputs
relevant to the development of synthetic biology–based diagnostics (A) and the development of other forms of diagnostics, including those based on sequencing,
mass spectrometry, and imaging (B). Inputs, models, and outputs shown are representative, in part, of those discussed in (55–60, 68–74).
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high-quality data relevant to new or emerg-
ing pathogens or strains, particularly in low-
resource settings, remains a difficult problem
that is exacerbated by a lack of scientific in-
frastructure and variable public health re-
sources. ML models based on limited data may
exhibit biases, promulgating inappropriate
diagnostics, misdiagnoses, and greater health
inequalities that make it more difficult to
serve patient populations. These biases may
also remain undetected, especially when black
box ML models, which do not provide any
explanation or interpretation of their predic-
tions, are used (30, 61). Even when high-quality
sequencing data from large infectious disease
databases, such the PATRIC database (75), are
available, it remains to be seen whether anti-
microbial resistance predictions based on these
data are generalizable when applied to ge-
netically diverse infections found worldwide.
Furthermore, unlike for anti-infective drug
discovery—where the stakes for false positives
and false negatives predicted by ML models
are lower because the predictions can be fur-
ther tested—the consequences of an inaccurate
diagnostic prediction can be severe. In fact, a
recent survey suggested that no existing model
for the diagnosis or prognosis of COVID-19 from
chest radiographs and CT scans was of poten-
tial clinical use owing to methodological flaws,
biases, or both (60). Models with comparatively
high AUROC values (i.e., 0.90) may still be too
weak for clinical applications, as this value im-
plies that, given a positive and a negative diag-
nosis, the negative diagnosis is ranked higher
than the positive diagnosis 10% of the time.
Until more-accurate ML models can be devel-
oped, AI-based diagnostics might play only a
supporting role in clinical settings.
Moving forward, we anticipate that researchers

will focus on the ML-guided design and dis-
covery of synthetic circuits enabling the devel-
opment of low-cost and portable diagnostics,
the application of AI to data generated from
clinical and field-deployable diagnostics that
improve accessibility and scope, and the devel-
opment of ML models that provide accurate
diagnoses in clinical settings. In particular,
the application of sequence-to-function mod-
els, language models, and generative models to
RNA switches, CRISPR-based tools, and other
programmable elements will be promising
areas of growth given the ability for rapid
iteration and the precise, on-target activity of
these synthetic biology approaches (67–71). By
increasing the testing and reporting of in-
fections, the development of low-cost, field-
deployable diagnostics should also help produce
more-balanced datasets that better sample
local infections andmakeMLmodels less biased.
AI or ML models that can extract information
from small or incomplete datasets, using tools
such as transfer learning (which adaptsmodels
trained on a specific task to other tasks) and

Bayesian networks (networks that allow for
probabilistic inference), can play outsized roles in
how infectious diseases are addressed, especially
for overlookedpopulations in low-resource areas.
Such models could lead to more-personalized
medicine, in which diagnoses or resistance
profiles can be readily reported on the basis
of data from only a few infections and help
guide theuse of anti-infective drugs.On the other
hand, the accuracy of ML models also needs to
improve for practical use in clinical diagnoses.
FutureMLmodelswill likely need tobeoptimized
in architecture, thoroughly evaluated for biases,
and trained on large amounts of robust data to
achieve high accuracy. Transfer and multitask
learning, attentionmechanisms, and other ap-
proaches can help these next-generation ML
models provide more-accurate diagnoses.

Outlook

Approaches combining systems and synthetic
biology with ML models, including graph
neural networks, sequence-to-function and
sequence-to-structure frameworks, and gen-
erative models, are yielding access to drug
candidates and methods for drug discovery.
Supervised classifiers, unsupervised language
models, and other ML models have produced
biologically relevant insights into how patho-
gens interact with host cells and immune
responses, informing antigen determination,
vaccine design, and treatment strategies. The
aforementioned types of ML models have also
informed the design of various diagnostic
tools and improved system accuracy, helping
clinicians to diagnose infections and detect
antimicrobial resistance. Beyond medical and
biotechnological approaches to infectious dis-
eases, ML—and AI more broadly—has also led
to substantive advances in epidemiology andour
understanding of disease transmission. Better
leveraging of AI to address infectious diseases
will require a collaborative effort among scien-
tists, clinicians, and public health officials.
Developing AI models that generalize and

avoid bias will require the acquisition and in-
tegration of comprehensive datasets. These
datasets might include high-throughput ther-
apeutic counter-screens and explorations of
diverse chemical spaces for drug discovery,
data from drug–target interactions and biomo-
lecular interactions, and genetic sequencing
information that is robustly and representa-
tively sampled from all infections, including
those occurring in low-resource or hard-to-
access areas. Programmable modalities, such
as nucleic acid and amino acid sequences,
have represented tractable and common start-
ing points for ML models (such as those pre-
dicting structure from sequence), but advances
in biology and chemistry are important to
opening up search spaces and making biology
more “embeddable,” or able to be represented
by low-dimensional features. Progress in this

area will help to predict therapeutic efficacy and
drugMoAs, complex host–pathogen interactions
and host responses, and interactions between
small molecules, proteins, peptides, and nucleic
acids. Advances in AI will include approaches,
such as few-shot and multitask models, that
leverage more of the available scientific infor-
mation for dealing with limited or low-quality
data. Furthermore, interpretable, explainable,
and generative ML approaches will lead to
specific biological hypotheses and insights.We
anticipate that AI will continue to empower us
to design next-generation drugs, vaccines, and
diagnostics that address infectious diseases.
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