Home

Mission

The mission of the Center for Neurodegenerative Disease Research (CNDR) is to promote and conduct multidisciplinary clinical and basic research to increase the understanding of the causes and mechanisms leading to brain dysfunction and degeneration in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Lewy body dementia (LBD), Frontotemporal degeneration (FTD), Amyotrophic lateral sclerosis (ALS), Primary lateral sclerosis (PLS), Motor neuron disease (MND), and related disorders that occur increasingly with advancing age. Implicit in the mission of the CNDR are two overarching goals: 1.) Find better ways to cure and treat these disorders, 2. Provide training to the next generation of scientists.

“My goal for CNDR is not only to collaborate with researchers at Penn and from institutions across the globe with the mutual goal of finding better ways to diagnose and treat neurodegenerative diseases, but also to inspire and encourage the next generation of scientists on the importance of investigating these disorders that occur more frequently with advancing age.” – Virginia M.-Y. Lee, PhD, Director, CNDR

collage

 

John Q. Trojanowski, MD, PhD | 1946 - 2022

Latest Research

  • MRI Distance Measures as a Predictor of Subsequent Clinical Status During the Preclinical Phase of Alzheimer's Disease and Related Disorders Thursday, April 24, 2025

    Brain atrophy over time, as measured by magnetic resonance imaging (MRI), has been shown to predict subsequent cognitive impairment among individuals who were cognitively normal when first evaluated, indicating that subtle brain atrophy associated with Alzheimer's disease (AD) may begin years before clinical symptoms appear. Traditionally, atrophy has been quantified by differences in brain volume or thickness over a specified timeframe. Research indicates that the rate of atrophy varies across...

  • Mitophagy in Neurons: Mechanisms Regulating Mitochondrial Turnover and Neuronal Homeostasis Wednesday, April 23, 2025

    Mitochondrial quality control is instrumental in regulating neuronal health and survival. The receptor-mediated clearance of damaged mitochondria by autophagy, known as mitophagy, plays a key role in controlling mitochondrial homeostasis. Mutations in genes that regulate mitophagy are causative for familial forms of neurological disorders including Parkinson's disease (PD) and Amyotrophic lateral sclerosis(ALS). PINK1/Parkin-dependent mitophagy is the best studied mitophagy pathway, while more...

  • Strategic Modulation of Polarity and Viscosity Sensitivity of Bimane Molecular Rotor-Based Fluorophores for Imaging α-Synuclein Tuesday, April 22, 2025

    Molecular rotor-based fluorophores (RBFs) that are target-selective and sensitive to both polarity and viscosity are valuable for diverse biological applications. Here, we have designed next-generation RBFs based on the underexplored bimane fluorophore either through a change in aryl substitution or varying π-linkages between the rotatable electron donors and acceptors to produce red-shifted fluorescence emissions with large Stokes shifts. RBFs exhibit a twisted intramolecular charge transfer...

More News