Update on Benign Prostatic Hyperplasia

William I. Jaffe, MD
Assistant Professor of Urology in Surgery
Penn Presbyterian Medical Center
University of Pennsylvania Health System
Nobel Prize Winners in Urology

Werner Forssmann - 1956

Charles B. Huggins - 1966
Introduction

• Epidemiology
• Changes in Terminology
• Evaluation
• Medical Therapy
• Surgical Therapy
• BPH and Sex!
A Modern View of BPH
Clinical, Anatomic, and Pathophysiologic Changes

- **BPH = Benign Prostatic Hyperplasia**
 - Histologic: stromoglandular hyperplasia¹

- May be associated with
 - Clinical: presence of bothersome LUTS²
 - Anatomic: enlargement of the gland (BPE = Benign Prostatic Enlargement)²
 - Pathophysiologic: compression of urethra and compromise of urinary flow (BOO = Bladder Outlet Obstruction)²

Prevalence of BPH Versus Other Common Conditions

Prevalence of Histologic BPH

Prevalence (%) vs. Age

- Pradhan 1975
- Swyer 1944
- Franks 1954
- Moore 1943
- Harbitz 1972
- Holund 1980
- Baron 1941
- Fang-Liu 1991
- Karube 1961
Natural History of BPH: Prostate Volume Increases

- 631 white men ages 40 to 79 from Olmsted County, Minnesota
- Prostate volume measured up to 4 times by transrectal ultrasound during a 7-year follow-up period
- Estimated prostate growth rates increased by 1.6% per year across all ages
- Higher baseline prostate volume associated with higher rates of prostate growth

Prevalence of Symptomatic BPH

Natural History of BPH: Q_{max} and Voided Volume

Natural History of BPH: Risk of Acute Urinary Retention Increases

- 2115 white men ages 40 to 79 from Olmsted County, Minnesota
- Symptoms measured via questionnaire
- Incidence of acute urinary retention over 4 years ascertained via review of medical records
- 8344 person-years of data obtained

Natural History of BPH: Risk of Surgery Increases

10-Year Probability of Surgery (% of Patients)

Age (y)

40–49: 2, 3
50–59: 2, 7
60–69: 9, 16
70–79: 13, 34

- Red: Without prostatic enlargement and obstructive symptoms
- Blue: With prostatic enlargement and obstructive symptoms

PSA... It’s not just for cancer

- Serine protease produced by epithelial cells
- Dissolves semen coagulum
- Most bound to antiproteases ACT
- Increased with-
 - Malignancy
 - Hyperplasia
 - Infection/Inflammation
Serum PSA and Prostate Volume Increases Correlate with Age

PSA as a Predictor of Future Prostate Growth

% Change in PV at 48 Months

- Low PSA tertile (0.2 to 1.3 ng/mL): 0.7 mL/year
- Middle PSA tertile (1.4 to 3.2 ng/mL): 2.1 mL/year
- High PSA tertile (3.3 to 9.9 ng/mL): 3.3 mL/year

Annualized Growth Rates

- Low PSA tertile: 0.7 mL/year
- Middle PSA tertile: 2.1 mL/year
- High PSA tertile: 3.3 mL/year

Incidence of AUR and/or Surgery Over 4 Years by PSA Tertiles

Left untreated 1 in 6 patients with a PSA of >1.4 ng/mL will experience AUR or BPH-related surgery over a 4-year time period.

What is “BPH”?

• “Prostatism” and “BPH”
• Benign Prostatic Hyperplasia is a histological diagnosis
• New Urological Lexicon
Terminology

- **BPH**
 Histologic diagnosis

- **BPE**
 Enlargement due to benign growth (can be without obstruction)

- **BPO**
 Urodynamically proven BOO (static/dynamic components)

BPH = benign prostatic hyperplasia; BPE = benign prostatic enlargement; BPO = benign prostatic obstruction; BOO = bladder outlet obstruction
LUTS

• Symptoms attributable to lower urinary tract dysfunction
 – storage (irritative) symptoms
 – emptying (obstructive) symptoms
 – may be associated with BPH, BPE, and BPO, but not exclusive to these

OAB: US Prevalence by Age

OAB = overactive bladder.

Differential Diagnosis

- Urethral stricture
- Bladder neck contracture
- Bladder stones
- Urinary tract infection
- Interstitial cystitis
- Neurogenic bladder
- Inflammatory prostatitis
- Medications
- Carcinoma of the prostate
- Carcinoma in situ of the bladder
Old Paradigm

Small prostate, thin bladder wall

Enlarged prostate, thick bladder wall
Subsequent Paradigm

- Normal prostate
- Enlarged prostate
- Small prostate with α-receptors
Current Paradigm

Normal

Enlarged

α-receptors

Brain/Spinal column/Prostate
BPH/LUTS Pathophysiology

- Prostate Hyperplasia
 - Bladder Outlet Obstruction
 - Non-BPH Causes of Obstruction
 - Detrusor Aging Effects
 - Neurogenic Disease
 - Primary Bladder Disease
 - Detrusor Response
 - Lower Urinary Tract Symptoms
 - Polyuria

Copyright 2007 by Saunders, an imprint of Elsevier Inc.
Initial Evaluation

- Detailed medical history
- Physical exam
 - including DRE and neurologic exam
- Urinalysis
- Serum creatinine no longer mandatory
- PSA*
- Symptom assessment (AUA-SS)

PSA = prostate-specific antigen
*Per physician’s clinical judgment

AUA BPH Guidelines 2003
Evaluation (Part 1)

Initial evaluation:
- History
- DRE & focused exam
- Urinalysis
- PSA\(^1\)

Objective Symptom Assessment

Mild IPSS ≤ 7
- Watchful waiting

Moderate to severe IPSS ≥ 8
- Offer treatment alternatives
 - Minimally invasive therapies
 - Surgery
 - Cystoscopy, if important in planning operative approach

\(^1\)Optional in AHCPR Guidelines; Recommended by International Consensus Committee Clinical Practice Guideline, Number 8. AHCPR Publication No. 94-0582.
Evaluation (Part 2)

Initial evaluation
• History
• DRE & focused exam
• Urinalysis
• PSA

Objective Symptom Assessment
Moderate to severe IPSS ≥ 8

Additional diagnostic tests
• Flow rate test
• Residual urine
• Pressure-flow

Compatible with obstruction
Not compatible with obstruction
Non-BPH problems identified and treated

Presence of:
• Refractory retention
• Any of the following clearly 2° BPH:
 • Recurrent or persistent gross hematuria
 • Bladder stones
 • Renal insufficiency

Surgery

1 Optional in AHCPR Guidelines; Recommended by International Consensus Committee
2 Optional in both AHCPR and International Consensus recommendations
Goals of Therapy for BPH

BPH Treatment Success measured by:

• ↓ symptoms (IPSS/AUA)

• ↓ bother (bother score) and ↑ QOL

• ↓ prostate size or arrest further growth

• ↑ Increase in peak flow rate / Relieve obstruction

• Prevention of long-term outcomes/complications

• Acceptable adverse events profile

Medical Treatments for BPH, LUTS, BOO

- α-adrenergic blockers
 - Dynamic component
- 5 α-reductase inhibitors
 - Anatomic component
- Anticholinergic Therapy
 - Storage Sx’s
Role of α_1-Adrenoreceptors

α_1-ARs and Human LUTS

Prostate
Smooth muscle contraction
α_{1A}

Spinal cord
Lumbosacral
α_{1D}

Detrusor
Instability
Irritative symptoms
$\alpha_{1D} > \alpha_{1A}$

Vessels
Resistance vessels
α_{1A}
Aging effects
$\alpha_{1B} > \alpha_{1A}$

Comparison of α-Adrenergic Blockers

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dosing</th>
<th>Titration</th>
<th>Uroselective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terazosin (Hytrin®)</td>
<td>1 mg, 2 mg, 5 mg, 10 mg, 20 mg</td>
<td>+</td>
<td>NO</td>
</tr>
<tr>
<td>Doxazosin (Cardura®)</td>
<td>1 mg, 2 mg, 4 mg, 8 mg, 16 mg</td>
<td>+</td>
<td>NO</td>
</tr>
<tr>
<td>Tamsulosin (Flomax®)</td>
<td>0.4 mg, 0.8 mg (for improved efficacy)</td>
<td>+/-</td>
<td>YES (Relative affinity for α_{1A} receptors over α_{1B})</td>
</tr>
<tr>
<td>Alfuzosin</td>
<td>10 mg</td>
<td>-</td>
<td>YES (Highly diffused in prostatic tissue vs serum)</td>
</tr>
</tbody>
</table>

2. Cardura® (doxazosin mesylate tablets) Prescribing Information, Pfizer Inc.
3. Flomax® (tamsulosin hydrochloride) Prescribing Information, Boehringer Ingelheim Pharmaceuticals Inc.
4. Uroxatral® (alfuzosin HCl extended release tablets) Prescribing Information, Sanofi-Synthelabo Inc.
Tamsulosin: Clinical Efficacy

Mean Change in Q\textsubscript{max} (mL/s)

- Study 1 (13 wk; 0.8 mg, 0.4 mg)
 - Tamsulosin: 1.78
 - Placebo: 0.52

- Study 2 (13 wk; 0.8 mg, 0.4 mg)
 - Tamsulosin: 1.79
 - Placebo: 0.93

Mean Change in Symptom Score

- Study 1 (13 wk; 0.8 mg, 0.4 mg)
 - Tamsulosin: -9.6
 - Placebo: -5.5

- Study 2 (13 wk; 0.8 mg, 0.4 mg)
 - Tamsulosin: -8.3
 - Placebo: -5.8

*\(P \leq 0.05\) statistically significant difference from placebo.

Tamsulosin Prescribing Information.
Dihydrotestosterone (DHT) Action

- Testosterone is converted to DHT by two 5α-reductase isoenzymes
- The target for DHT is the androgen receptor
- DHT has approximately 5 times greater affinity for the androgen receptor than testosterone
- The greater affinity makes DHT a more potent androgenic steroid at physiologic concentrations
- The DHT/androgen receptor complex alters gene expression
Clinical Efficacy of 5-ARIs

<table>
<thead>
<tr>
<th></th>
<th>Finasteride(^1) 48-Mo Controlled Trial in 3040 Men</th>
<th>Dutasteride(^2) 24-Mo Controlled Trial in 4325 Men</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Finasteride</td>
<td>Placebo</td>
</tr>
<tr>
<td>Volume changes</td>
<td>-18%</td>
<td>+14%</td>
</tr>
<tr>
<td>IPSS reduction</td>
<td>-3.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>Q(_{\text{max}}) improvement</td>
<td>+1.9</td>
<td>+0.2</td>
</tr>
<tr>
<td>AUR risk reduction</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>Surgery risk reduction</td>
<td>55%</td>
<td></td>
</tr>
</tbody>
</table>

*Not from a comparative trial.

Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Finasteride¹</th>
<th>Placebo</th>
<th>Dutasteride²</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Finasteride</td>
<td>Placebo</td>
<td>Dutasteride</td>
<td>Placebo</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Altered libido</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Ejaculatory disorder</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td><1</td>
</tr>
<tr>
<td>Gynecomastia and breast tenderness</td>
<td>1</td>
<td>0.2</td>
<td>2</td>
<td><1</td>
</tr>
</tbody>
</table>

The new 5 alpha-reductase inhibitor Dutasteride has been shown to be of similar efficacy as Finasteride in terms of symptom score and flow-rate improvement, as well as in the prevention of disease progression, while having a comparable safety profile.³

*Not from a comparative trial.

Rationale for Combination Therapy

5α-Reductase Inhibitors:
- Arrest Disease Progression

Alpha-Blockers:
- Relieve Symptoms Rapidly

Combination Therapy: Arrest Disease Progression and Rapidly Relieve Symptoms
MTOPS

(Medical Treatment of Prostatic Symptoms)

&

Combination Therapy
MTOPS
Doxazosin/Finasteride/Combination

- Double-masked, randomized, placebo-controlled, multicenter study
- 3047 men aged ≥50 years with BPH
- Average follow-up: 4.5 years
- Primary outcome: time to clinical progression
 - AUR
 - Renal insufficiency due to BPH
 - Recurrent UTI or urosepsis
 - Incontinence
 - ≥4-point rise in baseline AUA symptom score confirmed within 2-4 weeks

- Secondary outcomes
 - Changes in symptom and flow rate over time
 - Rate of invasive therapies for LUTS/BPH

MTOPS = Medical Therapy Of Prostatic Symptoms.
Cumulative Incidence of BPH Progression

- Placebo: Risk Reduction = 0%
- Finasteride: Risk Reduction = 34%
- Doxazosin: Risk Reduction = 39%
- Combination: Risk Reduction = 67%

$P < 0.0001; \text{ df}=3$

Cumulative Incidence of AUR

- Placebo
- Doxazosin: Risk Reduction = 67%
- Finasteride: Risk Reduction = 67%
- Combination: Risk Reduction = 79%

P < .0034; df = 3

Cumulative Incidence of BPH-Related Surgery

- Placebo
- Finasteride: Risk Reduction = 64%
- Doxazosin: Risk Reduction = 0%
- Combination: Risk Reduction = 67%

$P<.0001; \text{df}=3$

MTOPS Conclusions

• In selected patients, combination therapy is most effective in
 – Reducing risk of clinical progression
 – Improving AUA symptom score
 – Improving maximum urinary flow rate

• Monotherapy significantly reduces risk of clinical progression of BPH

• Finasteride (5ARI) and combination therapy significantly reduce the risk of AUR and invasive therapy

• Doxazosin (α-adrenergic blocker) prolongs time to progression of AUR and invasive therapy, but does not reduce overall risk

• Both long-term monotherapy and combination therapy are safe and effective

Combination Treatment with An α-Blocker Plus An Anticholinergic for Bladder Outlet Obstruction: A Prospective, Randomized, Controlled Study

J Urol. 2003;169:2253-2256
Detrol® and Tamsulosin Combination Therapy in Men With BOO and OAB

• Randomized, controlled trial (independent research)
 – 50 men
 – 52 to 80 years of age (average, 69 years)
 – Mild/moderate BOO on PFS
 – Concomitant IDO

• Study design
 – Complete QoL 9 UROLIFE questionnaire prior to study onset
 – 1-week tamsulosin 0.4 mg qd, then randomized to receive concomitant Detrol® 2 mg bid or continue tamsulosin monotherapy
 – Repeat QoL 9 and PFS at 12 weeks

Detrol® and Tamsulosin Combination Therapy in Men with BOO and OAB: Effects on Urodynamic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tamsulosin (n = 25)</th>
<th>P Value</th>
<th>Tamsulosin+Tolterodine (n = 25)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum detrusor pressure (cm H₂O)</td>
<td>-5.2</td>
<td>0.0827</td>
<td>-8.24</td>
<td>0.0082</td>
</tr>
<tr>
<td>Maximum flow rate (mL/second)</td>
<td>+1.16</td>
<td>0.0001</td>
<td>+1.32</td>
<td>0.0020</td>
</tr>
<tr>
<td>Pressure at maximum unstable contraction (cm H₂O)</td>
<td>-2.16</td>
<td>0.05690</td>
<td>-11.16</td>
<td><0.0001</td>
</tr>
<tr>
<td>Volume at first unstable contraction (mL)</td>
<td>+30.40</td>
<td>0.0190</td>
<td>+100.40</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Detrol® and Tamsulosin Therapy in Men With BOO and OAB: *Effects on QoL*

<table>
<thead>
<tr>
<th>Mean score (QoL 9 UROLIFE)</th>
<th>Baseline (n=25)</th>
<th>12 Weeks (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamsulosin</td>
<td>542.2</td>
<td>548.2</td>
</tr>
<tr>
<td>P=NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamsulosin + Detrol®</td>
<td>525</td>
<td>628.4</td>
</tr>
<tr>
<td>P=0.0003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detrol® and Tamsulosin Therapy in Men With BOO and OAB: Conclusions

- **Efficacy**
 - Improved QoL
 - Increased bladder capacity
- **Safety**
 - No acute urinary retention was observed
 - Did not affect quality of urinary flow
 - Did not affect postvoid residual urine volume
- “The proposed combination of Detrol® and tamsulosin appears to be an effective and relatively safe treatment option in patients with bladder outlet obstruction and detrusor overactivity”

Table 2. Patients Reporting Treatment Benefit at Week 12

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n = 215)</th>
<th>Tolterodine ER (n = 210)</th>
<th>Tamsulosin (n = 209)</th>
<th>Tolterodine ER + Tamsulosin (n = 217)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol-Specified Intention-to-Treat Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing, No.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Patient report, No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benefit</td>
<td>132 (61.7)</td>
<td>136 (65.1)</td>
<td>146 (70.5)</td>
<td>172 (80.0)</td>
</tr>
<tr>
<td>No benefit</td>
<td>82 (38.3)</td>
<td>73 (34.9)</td>
<td>61 (29.5)</td>
<td>43 (20.0)</td>
</tr>
<tr>
<td>Pairwise comparison, P value (95% CI for difference), %†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>.48 (−6 to 13)</td>
<td>.06 (−1 to 19)</td>
<td><.001 (9 to 28)</td>
<td></td>
</tr>
<tr>
<td>Tolterodine ER</td>
<td></td>
<td>.25 (−4 to 15)</td>
<td>.001 (6 to 25)</td>
<td></td>
</tr>
<tr>
<td>Tamsulosin</td>
<td></td>
<td></td>
<td>.03 (1 to 19)</td>
<td></td>
</tr>
<tr>
<td>Post Hoc Intention-to-Treat Analysis‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient report, No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benefit</td>
<td>132 (59.5)</td>
<td>136 (62.7)</td>
<td>146 (67.9)</td>
<td>172 (76.4)</td>
</tr>
<tr>
<td>No benefit</td>
<td>90 (40.5)</td>
<td>81 (37.3)</td>
<td>69 (32.1)</td>
<td>53 (23.6)</td>
</tr>
<tr>
<td>Pairwise comparison, P value (95% CI for difference), %†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>.49 (−6 to 13)</td>
<td>.07 (−1 to 18)</td>
<td><.001 (8 to 26)</td>
<td></td>
</tr>
<tr>
<td>Tolterodine ER</td>
<td></td>
<td>.27 (−4 to 15)</td>
<td>.002 (5 to 23)</td>
<td></td>
</tr>
<tr>
<td>Tamsulosin</td>
<td></td>
<td></td>
<td>.06 (0 to 18)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, 95% 2-sided exact confidence interval; ER, extended release.
*Values reflect intention-to-treat analysis in which missing data for patient perception of treatment benefit were handled by imputation using the last observation carried forward.
†Between-group analyses compared percentages of patients who answered “yes” to the question: “Have you had any benefit from your treatment?”
‡Values reflect intention-to-treat analysis in which missing data for patient perception of treatment benefit were handled by imputation assuming no change from baseline values.
Surgical Therapy
Indications for Surgery

Absolute

• None

Relative

• Symptoms
• Pt. Choice
• AUR
• Bleeding
• Bladder Calculus
• UTI
• Renal Insufficiency
Alphabet Soup

<table>
<thead>
<tr>
<th>Electrosurgical</th>
<th>Laser</th>
<th>Minimally-Invasive</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURP</td>
<td></td>
<td>TUMT</td>
</tr>
<tr>
<td>TUVP</td>
<td>PVP</td>
<td>TUNA</td>
</tr>
<tr>
<td>Gyrus</td>
<td>HoLAP</td>
<td>WIT</td>
</tr>
<tr>
<td>TUIP</td>
<td>HoLEP</td>
<td>TEAP</td>
</tr>
<tr>
<td>Open</td>
<td>ILC</td>
<td>Botox</td>
</tr>
<tr>
<td>Suprapubic</td>
<td>CLAP</td>
<td>ILC</td>
</tr>
<tr>
<td>Retropubic</td>
<td>VLAP</td>
<td></td>
</tr>
<tr>
<td>Perineal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transurethral Resection of the Prostate (TURP): Overview

Advantages
- Availability of long-term outcomes data
- Good clinical results
- Treats prostates <150 g
- Low retreatment rate
- Low mortality

Disadvantages
- Retrograde ejaculation
- Bleeding
- TUR Syndrome
- Catheter time
- Hospital Stay

TURP: Efficacy

- Symptom improvement in 88% of patients
- 82% decrease in AUA Symptom Score
- 125% improvement in peak flow rate (Q_{max})
- Re-op rate approx. 1.5%/yr

TURP: Complications

- Clot Retention: 16%
- Urethral Stricture: 8.4%
- Transfusions: 7.0%
- TUR Syndrome: 0.9%
- Incontinence: 1.3%

BPH, LUTS & SEX

• LUTS and ED are common in middle age and older men

• Sexual function is an important aspect of quality of life
 - sexual activity decreases with age
 - sexual problems increase with age
BPH, LUTS & SEX

• Erectile dysfunction is often associated with chronic diseases (i.e. diabetes, hypertension, …)
• 25% of men over 60 years have BPH and HTN (4)
• Recent community-based studies have shown a possible relationship between LUTS and sexual dysfunction (1,2,3)

(3) Braun et al. - International Journal of Impotence Research 2000; 12:305-311
(4) Flack.Int. J. Clinical Practice 2002; 56(7): 527-530
Are they related?

- Affects similarly aged populations
- All have significant negative impact upon quality of life
- Association versus Pathophysiologic link?
- Proof of link requires robust epidemiologic data analyzing a large cohort of a representative population in a cross-sectional fashion
BPH and Sexual Dysfunction

- Chances of developing BPH and/or sexual dysfunction increase with age
 - sympathetic overreactivity
- Treatments may cause sexual dysfunction
 - erectile dysfunction (ED)
 - altered ejaculation
- Treatments should be tailored according to QOL and sexual function issues

QOL = quality of life

Objectives:

- To evaluate in a population of men aged 50 to 80 years
 - The incidence of LUTS
 - The sexuality and the incidence of sexual disorders
 - The possible relationship between LUTS, sexual dysfunction, and co-morbid medical conditions
Methodology:

• Patients

 - 14,000 men aged 50 to 80 in 7 countries (US, UK, F, D, I, Sp, NL)

 - In each country, the sample was representative of the target population
Methodology:

- Postal questionnaire
- Demographic characteristics
- I-PSS and Quality of Life index
- Dan-PSS sex (6 questions)
- IIEF (15 questions)
- Co-morbidity factors

12,815 questionnaire were exploitable (89.9%)
Average Number of Sexual Intercourse or Activity per Month

Base: Total sample
Average Number of Sexual Intercourse or Activity per Month

Base: Total sample

- **50 - 59 years**
 - 0 Mild: 8.6
 - 0 Moderate: 7.6
 - 0 Severe: 6.6

- **60 - 69 years**
 - 0 Mild: 5.7
 - 0 Moderate: 4.6
 - 0 Severe: 3.7

- **70 - 79 years**
 - 0 Mild: 4.0
 - 0 Moderate: 3.5
 - 0 Severe: 2.6

LUTS
MSAM-7: Sex Declined With Increasing Severity of LUTS

N=12,815 (total sample)
*Among total sample.
MSAM-7

ED Increased With Increasing Severity of LUTS

Average score on a scale from 1 to 30 (6 questions) measured by IIEF
Per question: 1 = Negative to 5 = Positive

Average Erectile Function Score

Age Effect

LUTS Effect

Base: Men sexually active/sexual intercourse during past 4 weeks (n=9099)

*as measured by IIEF.

Mechanisms for Co-existence of ED and BPH

- Diminished quality of life theory
- Increased sympathetic tone theory
- Ischemia/Endothelial Dysfunction
- NO alteration theory
Sildenafil Citrate Improves LUTS
Mulhall et al, 2002

- Men (n=30) presenting with ED and LUTS (IPSS ≥ 10)
- No prior or current alpha-blocker therapy
- Treated with Viagra (standard fashion)
- Sequential assessment of IIEF and IPSS
- Statistically significant improvement in IPSS on Viagra
Tadalafil for BPH/LUTS

A

Baseline
Week 4
Week 8
Week 12

Mean Change in IPSS
from Baseline to Endpoint

B

Baseline
Week 4
Week 8
Week 12

Placebo
Tad 2.5
Tad 5.0
Tad 10.0
Tad 20

Penn Urology
Take-Home Messages

- Aging Population = More BPH
- Not all Male LUTS = BPH
- Not all BPH = LUTS
- Consider Combination Therapy
- Quality of life issues