PubMed logo
  1. Meganck, R.M., Borchardt, E.K., Castellanos Rivera, R.M., Scalabrino, M.L., Wilusz, J.E., Marzluff, W.F. and Asokan, A. (2018) Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Ther Nucleic Acids – In press. PDF
  2. Huang, C., Liang, D., Tatomer, D.C., and Wilusz, J.E. (2018) A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32:639-644. PDF
  3. Wilusz, J.E. (2018) A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip. Rev. RNA. e1478. PDF
  4. Liang, D., Tatomer, D.C., Luo, Z., Wu, H., Yang, L., Chen, L.L., Cherry, S., and Wilusz, J.E. (2017) The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell 68:940-954. PDF
  5. Kearse, M.G. and Wilusz, J.E. (2017) Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev. 31:1717-1731. PDF
  6. Tatomer, D.C., Liang, D., and Wilusz, J.E. (2017) Inducible expression of eukaryotic circular RNAs from plasmids. Methods Mol Biol. 1648:143-154. PDF
  7. Chen, Y.G., Kim, M.V., Chen, X., Batista, P.J., Aoyama, S., Wilusz, J.E., Iwasaki, A., and Chang, H.Y. (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67:228-238. PDF
  8. Tatomer, D.C. and Wilusz, J.E. (2017) An unchartered journey for ribosomes: Circumnavigating circular RNAs to produce proteins. Mol Cell 66:1-2. PDF
  9. He, C., Sidoli, S., Warneford-Thomson, R., Tatomer, D.C., Wilusz, J.E., Garcia, B.A., and Bonasio, R. (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol Cell 64:416-430. PDF
  10. Wilusz, J.E. (2016) Circular RNAs: Unexpected outputs of many protein-coding genes. RNA Biol.
    doi: 10.1080/15476286.2016.1227905. PDF
  11. Molleston, J.M., Sabin, L.R., Moy, R.H., Menghani, S.V., Rausch, K., Gordesky-Gold, B., Hopkins, K.C., Zhou, R., Jensen, T.H., Wilusz, J.E., and Cherry, S. (2016) A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 30:1658-1670. PDF
  12. Doucet, A.J., Wilusz, J.E., Miyoshi, T., Liu, Y., and Moran, J.V. (2015) A 3’ poly(A) tract is required for LINE-1 retrotransposition. Mol Cell 60:728-741. PDF
  13. Kramer, M.C., Liang, D., Tatomer, D.C., Gold, B., March, Z.M., Cherry, S., and Wilusz, J.E. (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29:2168-2182. PDF
  14. Wilusz, J.E. (2015) Removing roadblocks to deep sequencing of modified RNAs. Nat Methods 12:821-822.
  15. Wilusz, J.E. (2015) Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim Biophys Acta
    doi: 10.1016/j.bbagrm.2015.06.003. PDF
  16. Wilusz, J.E. (2015) Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 5:1-7.
    doi: 10.1080/2159256X.2015.1045682. PDF
  17. Wilusz, J.E. (2015) Controlling translation via modulation of tRNA levels. Wiley Interdiscip. Rev. RNA 6:453-470.
    doi: 10.1002/wrna.1287. PDF
  18. Kuhn, C.-D., Wilusz, J.E., Zheng, Y., Beal, P.A., and Joshua-Tor, L. (2015) On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Cell 160:644-658. PDF
  19. Wilusz, J.E. and Wilusz, J. (2014) Nonsense-mediated RNA decay: At the ‘cutting-edge’ of regulated snoRNA production. Genes Dev 28:2447-2449. PDF
  20. Liang, D. and Wilusz, J.E. (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28:2233-2247. PDF
  1. Wilusz, J.E. and Sharp, P.A. (2013) A circuitous route to noncoding RNA. Science 340:440-441. PDF
  2. Wilusz, J.E. (2013) Noncoding RNA. In: Maloy, S. and Hughes, K. (eds.) Brenner’s Online Encyclopedia of Genetics. 2nd edn.
  3. Wilusz, J.E., JnBaptiste, C.K., Lu, L.Y., Kuhn, C.-D., Joshua-Tor, L., and Sharp, P.A. (2012) A triple helix stabilizes the 3’ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26:2392-2407. PDF
  4. Wilusz, J.E., Whipple, J.M., Phizicky, E.M., and Sharp, P.A. (2011) tRNAs marked with CCACCA are targeted for degradation. Science 334:817-821. PDF
  5. Wilusz, J.E. and Spector, D.L. (2010) An unexpected ending: non-canonical 3’ end processing mechanisms. RNA 16:259-266. PDF
  6. Wilusz, J.E., Sunwoo, H., and Spector, D.L. (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494-1504. PDF
  7. Sunwoo, H., Dinger, M.E., Wilusz, J.E., Amaral, P.P., Mattick, J.S., and Spector, D.L. (2009) MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19:347-359. PDF
  8. Wilusz, J.E., Freier, S.M., and Spector, D.L. (2008) 3’ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919-932. PDF
  9. Wilusz, J.E. and Beemon, K.L. (2006) The negative regulator of splicing element of Rous sarcoma virus promotes polyadenylation. J. Virol. 80:9634-9640. PDF
  10. Wilusz, J.E., Devanney, S.C., and Caputi, M. (2005) Chimeric peptide nucleic acid compounds modulate splicing of the bcl-x gene in vitro and in vivo. Nucleic Acids Res 33:6547-6554. PDF