Publications

Primary Papers

Zhu, Y., Li, S., Jaume, A., Jani, R. A., Delevoye, C., Raposo, G., & Marks, M. S. (2022). Type II phosphatidylinositol 4-kinases function sequentially in cargo delivery from early endosomes to melanosomes. Journal of Cell Biology, 221(11), e202110114. https://doi.org/10.1083/jcb.202110114

working model of PI4Kinases on endosomal tubules
Figure 9H. Working model (see paper for full description).

See the related paper from the Raposo lab:

Jani, Riddhi Atul, Aurélie Di Cicco, Tal Keren-Kaplan, Silvia Vale-Costa, Daniel Hamaoui, Ilse Hurbain, Feng-Ching Tsai, et al. “PI4P and BLOC-1 Remodel Endosomal Membranes into Tubules.” Journal of Cell Biology 221, no. 11 (September 28, 2022): e202110132. https://doi.org/10.1083/jcb.202110132.

Bowman, S. L., Le, L., Zhu, Y., Harper, D. C., Sitaram, A., Theos, A. C., Sviderskaya, E. V., Bennett, D. C., Raposo-Benedetti, G., Owen, D. J., Dennis, M. K., & Marks, M. S. (2021). A BLOC-1–AP-3 super-complex sorts a cis-SNARE complex into endosome-derived tubular transport carriers. Journal of Cell Biology, 220(7), e202005173. https://doi.org/10.1083/jcb.202005173

Model of AP-3 and BLOC-1 coordinating sortnig of VAMP7-STX13 cis-SNARE complexes into melanosome-bound tubule carriers
Figure 8. AP-3 and BLOC-1 coordinate sorting of VAMP7-STX13 cis-SNARE complexes into melanosome-bound tubule carriers.

 

Platelet dense granules begin to selectively accumulate mepacrine during proplatelet formation

Hanby, H. A., Bao, J., Noh, J.-Y., Jarocha, D., Poncz, M., Weiss, M. J., & Marks, M. S. (2017). Platelet dense granules begin to selectively accumulate mepacrine during proplatelet formation. Blood Advances, 1(19), 1478–1490. https://doi.org/10.1182/bloodadvances.2017006726

Dennis, M. K., Mantegazza, A. R., Snir, O. L., Tenza, D., Acosta-Ruiz, A., Delevoye, C., Zorger, R., Sitaram, A., de Jesus-Rojas, W., Ravichandran, K., Rux, J., Sviderskaya, E. V., Bennett, D. C., Raposo, G., Marks, M. S., & Setty, S. R. G. (2015). BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. Journal of Cell Biology, 209(4), 563–577. https://doi.org/10.1083/jcb.201410026

Microscope images of BLOC-2 showing recycling endosomal tubules delivering cargo to maturing melanosomes
Figure 8A-C. BLOC-2 facilitates contacts of recycling endosomal tubules with maturing melanosomes.

 

Dennis, M. K., Delevoye, C., Acosta-Ruiz, A., Hurbain, I., Romao, M., Hesketh, G. G., Goff, P. S., Sviderskaya, E. V., Bennett, D. C., Luzio, J. P., Galli, T., Owen, D. J., Raposo, G., & Marks, M. S. (2016). BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers. Journal of Cell Biology, 214(3), 293–308. https://doi.org/10.1083/jcb.201605090

BLOC-3 is required to retrieve VAMP7 from melanosomes
Figure 10e. BLOC-3 is required to retrieve VAMP7 from melanosomes.

 

TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation

Mantegazza, A. R., Zajac, A. L., Twelvetrees, A., Holzbaur, E. L. F., Amigorena, S., & Marks, M. S. (2014). TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proceedings of the National Academy of Sciences, 111(43), 15508–15513. https://doi.org/10.1073/pnas.1412998111

Reviews

Le, L., Sirés-Campos, J., Raposo, G., Delevoye, C., & Marks, M. S. (2021). Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integrative and Comparative Biology, 61(4), 1517–1545. https://doi.org/10.1093/icb/icab078

working model of intracellular tracking during melanosome biogenesis
Figure 3. Working model of intracellular trafficking during melanosome biogenesis (see paper for full description).

Bowman, S. L., Bi-Karchin, J., Le, L., & Marks, M. S. (2019). The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic, 20(6), 404–435. https://doi.org/10.1111/tra.12646

HPS complexes and mechanisms of cargo delivery to melanosomes
Figure 3. HPS complexes and mechanisms of cargo delivery to melanosomes (see paper for full description).

Lysosome-related organelles as functional adaptations of the endolysosomal system

Delevoye, C., Marks, M. S., & Raposo, G. (2019). Lysosome-related organelles as functional adaptations of the endolysosomal system. Current Opinion in Cell Biology, 59, 147–158. https://doi.org/10.1016/j.ceb.2019.05.003