PubMed logo
  1. Liang, D., Tatomer, D.C., and Wilusz, J.E. (2021) Use of circular RNAs as markers of readthrough transcription to identify factors regulating cleavage/polyadenylation events. Methods - In press. PDF
  2. Dodbele, S., Mutlu, N., and Wilusz, J.E. (2021) Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep 22:e52072. PDF
  3. Meganck, R.M., Liu, J., Hale, A.E., Simon, K.E., Fanous, M.M., Vincent, H.A., Wilusz, J.E., Moorman, N.J., Marzluff, W.F., Asokan, A. (2021) Engineering highly efficient backsplicing and translation of synthetic circRNAs. Mol Ther Nucleic Acids 23:821-834. PDF
  4. He, C., Bozler, J., Janssen, K.A., Wilusz, J.E., Garcia, B.A., Schorn, A.J., and Bonasio, R. (2021) TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol. 28:62-70. PDF
  5. Tatomer, D.C., Liang, D., and Wilusz, J.E. (2021) RNAi screening to identify factors that control circular RNA localization. Methods Mol Biol 2209:321-332. PDF
  6. Mendoza-Figueroa, M.S., Tatomer, D.C., and Wilusz, J.E. (2020) The Integrator complex in transcription and development. Trends Biochem Sci45:923-934. PDF
  7. Dodbele, S. and Wilusz, J.E. (2020) Ending on a high note: Downstream ORFs enhance mRNA translational output. EMBO J. 39:e105959. PDF
  8. Tatomer, D.C. and Wilusz, J.E. (2020) Attenuation of eukaryotic protein-coding gene expression via premature transcription termination. Cold Spring Harb Symp Quant Biol84:83-93. PDF
  9. Xiao, M.S., Ai, Y., and Wilusz, J.E. (2020) Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol 30: 226-240. PDF
  10. Elrod, N.D., Henriques, T., Huang, K.L., Tatomer, D.C., Wilusz, J.E., Wagner, E.J., and Adelman, K. (2019) The Integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol Cell 76:738-752. PDF
  11. Fujiwara, R., Damodaren, N., Wilusz, J.E., and Murakami, K. (2019) The capping enzyme facilitates promoter escape and assembly of a follow-on pre-initiation complex for re-initiation. Proc Natl Acad Sci USA. 116:22573-22582. PDF
  12. Tatomer, D.C., Elrod, N.D., Liang, D., Xiao, M.S., Jiang, J.Z., Jonathan, M., Huang, K.L., Wagner, E.J., Cherry, S., and Wilusz, J.E. (2019) The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev 33:1525-1538. PDF
  13. Garikipati, V.N.S., Verma, S.K., Cheng, Z., Liang, D., Truongcao, M.M., Cimini, M., Yue, Y., Huang, G., Wang, C., Benedict, C., Mallaredy, V., Ibetti, J., Grisanti, L., Schumacher, S.M., Gao, E., Rajan, S., Wilusz, J.E., Goukassian, D., Houser, S., Koch, W.J., and Kishore, R. (2019) Circular RNA circFNDC3b modulates cardiac repair after myocardial infarction via FUS-1/VEGF-A axis. Nat Commun. 10:4317. PDF
  14. Xiao, M.S. and Wilusz, J.E. (2019) An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3’ ends. Nucleic Acids Res. 47:8755-8769. PDF
  15. Kearse, M.G., Goldman, D.H., Choi, J., Nwaezeapu, C., Liang, D., Green, K.M., Goldstrohm, A.C., Todd, P.K., Green, R., and Wilusz, J.E. (2019) Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes Dev 33:871-885. PDF
  16. Wilusz, J.E. (2019) Circle the wagons: Circular RNAs control innate immunity. Cell 177:797-799. PDF
  17. Meganck, R.M., Borchardt, E.K., Castellanos Rivera, R.M., Scalabrino, M.L., Wilusz, J.E., Marzluff, W.F. and Asokan, A. (2018) Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Ther Nucleic Acids 13:89-98. PDF
  18. Huang, C., Liang, D., Tatomer, D.C., and Wilusz, J.E. (2018) A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32:639-644. PDF
  19. Wilusz, J.E. (2018) A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip. Rev. RNA. e1478. PDF
  20. Liang, D., Tatomer, D.C., Luo, Z., Wu, H., Yang, L., Chen, L.L., Cherry, S., and Wilusz, J.E. (2017) The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell 68:940-954. PDF
  21. Kearse, M.G. and Wilusz, J.E. (2017) Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev. 31:1717-1731. PDF
  22. Tatomer, D.C., Liang, D., and Wilusz, J.E. (2017) Inducible expression of eukaryotic circular RNAs from plasmids. Methods Mol Biol. 1648:143-154. PDF
  23. Chen, Y.G., Kim, M.V., Chen, X., Batista, P.J., Aoyama, S., Wilusz, J.E., Iwasaki, A., and Chang, H.Y. (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67:228-238. PDF
  24. Tatomer, D.C. and Wilusz, J.E. (2017) An unchartered journey for ribosomes: Circumnavigating circular RNAs to produce proteins. Mol Cell 66:1-2. PDF
  25. He, C., Sidoli, S., Warneford-Thomson, R., Tatomer, D.C., Wilusz, J.E., Garcia, B.A., and Bonasio, R. (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol Cell 64:416-430. PDF
  26. Wilusz, J.E. (2016) Circular RNAs: Unexpected outputs of many protein-coding genes. RNA Biol.
    doi: 10.1080/15476286.2016.1227905. PDF
  27. Molleston, J.M., Sabin, L.R., Moy, R.H., Menghani, S.V., Rausch, K., Gordesky-Gold, B., Hopkins, K.C., Zhou, R., Jensen, T.H., Wilusz, J.E., and Cherry, S. (2016) A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 30:1658-1670. PDF
  28. Doucet, A.J., Wilusz, J.E., Miyoshi, T., Liu, Y., and Moran, J.V. (2015) A 3’ poly(A) tract is required for LINE-1 retrotransposition. Mol Cell 60:728-741. PDF
  29. Kramer, M.C., Liang, D., Tatomer, D.C., Gold, B., March, Z.M., Cherry, S., and Wilusz, J.E. (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29:2168-2182. PDF
  30. Wilusz, J.E. (2015) Removing roadblocks to deep sequencing of modified RNAs. Nat Methods 12:821-822.
  31. Wilusz, J.E. (2015) Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim Biophys Acta
    doi: 10.1016/j.bbagrm.2015.06.003. PDF
  32. Wilusz, J.E. (2015) Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 5:1-7.
    doi: 10.1080/2159256X.2015.1045682. PDF
  33. Wilusz, J.E. (2015) Controlling translation via modulation of tRNA levels. Wiley Interdiscip. Rev. RNA 6:453-470.
    doi: 10.1002/wrna.1287. PDF
  34. Kuhn, C.-D., Wilusz, J.E., Zheng, Y., Beal, P.A., and Joshua-Tor, L. (2015) On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Cell 160:644-658. PDF
  35. Wilusz, J.E. and Wilusz, J. (2014) Nonsense-mediated RNA decay: At the ‘cutting-edge’ of regulated snoRNA production. Genes Dev 28:2447-2449. PDF
  36. Liang, D. and Wilusz, J.E. (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28:2233-2247. PDF
  1. Wilusz, J.E. and Sharp, P.A. (2013) A circuitous route to noncoding RNA. Science 340:440-441. PDF
  2. Wilusz, J.E. (2013) Noncoding RNA. In: Maloy, S. and Hughes, K. (eds.) Brenner’s Online Encyclopedia of Genetics. 2nd edn.
  3. Wilusz, J.E., JnBaptiste, C.K., Lu, L.Y., Kuhn, C.-D., Joshua-Tor, L., and Sharp, P.A. (2012) A triple helix stabilizes the 3’ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26:2392-2407. PDF
  4. Wilusz, J.E., Whipple, J.M., Phizicky, E.M., and Sharp, P.A. (2011) tRNAs marked with CCACCA are targeted for degradation. Science 334:817-821. PDF
  5. Wilusz, J.E. and Spector, D.L. (2010) An unexpected ending: non-canonical 3’ end processing mechanisms. RNA 16:259-266. PDF
  6. Wilusz, J.E., Sunwoo, H., and Spector, D.L. (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494-1504. PDF
  7. Sunwoo, H., Dinger, M.E., Wilusz, J.E., Amaral, P.P., Mattick, J.S., and Spector, D.L. (2009) MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19:347-359. PDF
  8. Wilusz, J.E., Freier, S.M., and Spector, D.L. (2008) 3’ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919-932. PDF
  9. Wilusz, J.E. and Beemon, K.L. (2006) The negative regulator of splicing element of Rous sarcoma virus promotes polyadenylation. J. Virol. 80:9634-9640. PDF
  10. Wilusz, J.E., Devanney, S.C., and Caputi, M. (2005) Chimeric peptide nucleic acid compounds modulate splicing of the bcl-x gene in vitro and in vivo. Nucleic Acids Res 33:6547-6554. PDF