Publications
2024
Girão, H., Macário-Monteiro, J., Figueiredo, A. C., Silva e Sousa, R., Doria, E., Demidov, V., Osório, H., Jacome, A., Meraldi, P., Grishchuk, E.L. and H. Maiato (2024) α-tubulin detyrosination fine-tunes kinetochore-microtubule attachments. Nature Communications (in press)
Sissoko, G.B., Tarasovetc, E.V., Marescal, O., Grishchuk, E.L. and I.M. Cheeseman (2024) Higher-order protein assembly controls kinetochore formation. Nature Cell Biology, doi: https://doi.org/10.1038/s41556-023-01313-7
2023
Evtugina, N.G., Peshkova, A.D , Khabirova, A.I, Andrianova, I.A., Abdullayeva, S., Ayombil, F., Shepeliuk, T., Grishchuk, E.L., Ataullakhanov, F.I., Litvinov, R.I. and J.W. Weisel (2023) Activation of Piezo1 channels in compressed red blood cells augments platelet-driven contraction of blood clots. Journal of Thrombosis and Haemostasis, doi: https://doi.org/10.1016/j.jtha.2023.05.022
Luo, W., Demidov, V., Shen, Q., Girão, H., Chakraborty, M., Maiorov, A., Ataullakhanov, F.I., Lin, C., Maiato, H. and E.L. Grishchuk (2023) CLASP2 recognizes tubulins exposed at the microtubule plus-end in a nucleotide state–sensitive manner. Science Advances, doi: https://doi.org/10.1126/sciadv.abq5404
2022
Tripathy, S.K., Demidov, V.M., Gonchar, I.V., Wu, S., Ataullakhanov, F.I. and E.L. Grishchuk (2022) Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding Proteins. Optical Tweezers: Methods and Protocols, Methods in Molecular Biology, vol. 2478, doi: https://doi.org/10.1007/978-1-0716-2229-2_22
Pogoda, K., Byfield, F., Deptuła, P., Cieśluk, M., Suprewicz, Ł., Skłodowski, K., Shivers, J.L., Van Oosten, A., Cruz, K., Tarasovetc, E.V., Grishchuk, E.L., Mackintosh, F.C., Bucki, R., Patteson, A.E. and P.A. Janmey (2022) Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive Stress. Nano Letters, doi: 10.1021/acs.nanolett.2c00736
2021
Tarasovetc, E.V., Kumar Allu, P., Cheeseman, I.M., Black, B.E. and E.L. Grishchuk (2021) Permitted and restricted steps of human kinetochore assembly in mitotic cell extracts. MBoC, doi: https://doi.org/10.1091/mbc.E20-07-0461
2020
Wu, S. and E.L. Grishchuk (2020) Structural view of the yeast Dam1 complex, a ring-shaped molecular coupler for the dynamic microtubule end. Essays in Biochemistry, doi: 10.1042/EBC20190079
2019
Chakraborty, M., Tarasovetc, E.V., Zaytsev, A.V., Godzi, M., Figueiredo, A.C., Ataullakhanov, F.I. and E.L. Grishchuk (2019) Microtubule end conversion mediated by motors and diffusing proteins with no intrinsic microtubule end-binding activity. Nature Communications, 2019, doi: 10.1038/s41467-019-09411-7. Supplements.
Nechipurenko, D.Y., Receveur, N., Yakimenko, A.O., Shepelyuk, T.O., Yakusheva, A.A., Kerimov, R.R., Obydennyy, S.I., Eckly, A., Léon, C., Gachet, C., Grishchuk, E.L., Ataullakhanov, F.I., Mangin, P.H. and M. A. Panteleev (2019) Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019,39:37-47. Featured in Editorial: Procoagulant Platelets Get Squeezed to Define the Boundaries of the Hemostatic Plug.
Trivedi, P., Zaytsev, A.V., Godzi, M.G., Ataullakhanov, F.I., Grishchuk, E.L. and P.T. Stukenberg (2019) The binding of Borealin to microtubules underlies a tension independent kinetochore-microtubule error correction pathway. Nature Communications, doi: 10.1038/s41467-019-08418-4
2018
Gudimchuk, N., Tarasovetc, E.V., Mustyatsa, V., Drobyshev, A.L., Vitre, B., Cleveland, D.W., Ataullakhanov, F.I. and E.L. Grishchuk (2018) Probing Mitotic CENP-E Kinesin with the Tethered Cargo Motion Assay and Laser Tweezers. Biophysical journal, 114(11), 2640-2652. doi: 10.1016/j.bpj.2018.04.017
Chakraborty, M., Tarasovetc, E.V. and E.L. Grishchuk (2018) In vitro reconstitution of lateral to end-on conversion of kinetochore–microtubule attachments. In Methods in Cell Biology, Vol 144. Academic Press, pp. 307-327. doi: 10.1016/bs.mcb.2018.03.018.
2017
Monda, J.K., Whitney, I.P., Tarasovetc, E.V., Wilson-Kubalek, E., Milligan, R.A., Grishchuk, E.L. and I.M. Cheeseman (2017) Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin- Interacting Surfaces. Curr Biol. 27(23):3666-3675.e6. doi: 10.1016/j.cub.2017.10.018.56:397-428.
Grishchuk, E.L. (2017) Biophysics of Microtubule End Coupling at the Kinetochore. Prog Mol Subcell Biol. 56:397-428. doi: 10.1007/978-3-319-58592-5_17.
Lampson, M.A. and E.L. Grishchuk (2017) Mechanisms to Avoid and Correct Erroneous Kinetochore-Microtubule Attachments. Biology, 6(1), 1; doi:10.3390/biology6010001.
2016
Zaytsev, A.V., Segura-Peña, D., Godzi, M., Calderon, A., Ballister, E.R., Stamatov, R., Mayo, A.M., Peterson, L., Black, B.E., Ataullakhanov, F.I., Lampson, M.A. and E.L. Grishchuk (2016) Bistability of a coupled Aurora B kinase-phosphatase system in cell division. eLife 5:e10644 doi: 10.7554/eLife.10644. Supplements.
2015
Zakharov, P., Gudimchuk, N., Voevodin, V., Tikhonravov, A., Ataullakhanov, F.I. and E.L. Grishchuk (2015) Molecular and mechanical causes of microtubule catastrophe and aging. Biophys. J. 109: 2574–91. Featured in Hancock, W.O. (2015) Aging Gracefully: A New Model of Microtubule Growth and Catastrophe. Biophys. J. 109: 2449-51. Featured: journal cover Image here.
Zaytsev, A.V. and Grishchuk, E.L. (2015) Basic mechanism for bi-orientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules. Mol. Biol. Cell. 26(22): 3985–98.
Barisic, M., Sousa R.S., Tripathy S.K., Magiera, M.M., Zaytsev, A.V., Pereira, A.L., Janke, C., Grishchuk, E.L. and H. Maiato (2015) Microtubule detyrosination guides chromosomes during mitosis. Science 348(6236): 799-803. Highlighted in Nature Reviews Mol. Cell. Biol. doi:10.1038/nrm4000. Link.
Zaytsev, A.V., Mick, J.E., Maslennikov, E., Nikashin, B., DeLuca, J.G. and E.L. Grishchuk (2015) Multisite phosphorylation of the NDC80 complex gradually tunes its microtubule-binding affinity. Mol. Biol. Cell 26(10): 1829-44.
2014
Kononova, O., Kholodov, Y., Theisen, K.E., Marx, K.A., Dima, R.I., Ataullakhanov, F.I, Grishchuk, E.L. and V. Barsegov (2014) Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico. J. Am. Chem. Soc. 136: 17036−45. Full text here.
Vitre, B., Gudimchuk, N., Borda, R., Kim., Y., Heuser, J., Cleveland, D.W. and E. L. Grishchuk (2014) Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E. Mol. Biol. Cell 25(15):2272-81. doi: 10.1091/mbc.E14-01-0698. Full text here. Featured: journal cover. Image here.
Volkov, V.A., Zaytsev, A.V. and E.L. Grishchuk (2014) Preparation of segmented microtubules to study motions driven by the disassembling microtubule ends. J. of Vis. Exp., 15(85): doi: 10.3791/51150. Full text here.
Zaytsev, A.V., Sundin, L.J.R., DeLuca, K.F., Grishchuk, E.L. and J.D. DeLuca (2014) Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions. J. Cell Biol., 206(1):45-59. Full text here. Featured in “In Focus” article by Short, B. (2014) Defining the kinetochore’s rules of engagement. J. Cell Biol. 206:3; doi:10.1083/jcb.2061if. Full text here.
2013
Grishchuk, E.L. (2013) A slippery walk to the microtubule-end. Biophys. J. 104(11): 2324-5. Full text here.
Gudimchuk, N., Vitre, N., Kim, Y., Kiyatkin, A., Cleveland, D.W., Ataullakhanov, F.I. and E.L. Grishchuk (2013) Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nature Cell Biol., 15(9): 1079-88. Full text here. Featured in Gardner, M. K. (2013) CENP-E hangs on at dynamic microtubule ends. Nature Cell Biol. 15(9):1079-88. Link.
McIntosh, J.R., O'Toole, E., Zhudenkov, K., Morphew, M., Schwartz, C., Ataullakhanov, F.I. and Grishchuk, E.L. (2013) Conserved and Divergent Structural Features of the Kinetochore-Microtubule Interface. J. Cell Biol. 200(4): 459-74. Full text here.
Volkov, V.A., Zaytsev, A.V., Gudimchuk, N., Grissom, P.M., Gintsburg, A.L., Ataullakhanov, F.I., McIntosh, J.R. and E.L. Grishchuk (2013) Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. Proc. Natl. Acad. Sci. (USA) 110(19): 7708-13. Full text here.
Zaytsev, A.V., Ataullakhanov, F.I. and E.L. Grishchuk (2013) Highly transient molecular interactions underlie the stability of kinetochore-microtubule attachment during cell division. Cell. Mol. Bioeng., 6(4): doi: 10.1007/s12195-013-0309-4. Full text here.
2012
Ataullakhanov, F.I. and Grishchuk, E.L. (2012). The coordination of molecular processes during cell division. Priroda (in Russian). Invited article in the Centennial Issue of the monthly journal of the Russian Academy of Sciences (1), 37-45. Full text here.
Schmidt, J.C., Arthanari, H., Boeszoermenyi, A., Dashkevich, N.M., Wilson-Kubalek, E.M., Monnier, N., Markus, M., Oberer, M., Milligan, R.A., Bathe, M., Wagner, G., Grishchuk, E.L. and I.M. Cheeseman (2012) The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev. Cell 23(5): 968-80. Full text here. Featured in Ye, A.A. and Maresca, T.J. (2012) Cell division: Kinetochores SKAdaddle. Current Biol. 23(3):R122-4 Link.
2011
Grishchuk, E.L., McIntosh, J.R., Molodtsov, M.I. and F.I. Ataullakhanov (2011). Force generation by dynamic microtubule polymers. In E.H. Egelman, editor: Comprehensive Biophysics, Vol 4, Molecular Motors and Motility. Oxford: Academic Press, pp. 93-117. Full text here.
2010
Grishchuk, E.L. and F.I. Ataullakhanov (2010). In vitro assays to study the tracking of shortening microtubule ends and to measure associated forces. Methods in Cell Biology 95: 657-76. Full text here.
McIntosh, J.R., Volkov, V., Ataullakhanov, F.I., and E.L. Grishchuk (2010) Tubulin depolymerization may be an ancient biological motor. J. Cell Science 123(Pt20): 3425-34. Full text here.
Prior to 2010 (selected)
Welburn, J.P., Grishchuk, E.L., Backer, C.B., Wilson-Kubalek, E.M., Yates, J.R. and I. Cheeseman (2009) The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16(3): 374-385. Full text here.
Grishchuk, E.L., Efremov, A.K., Volkov, VA, Spiridonov, I.S., Gudimchuk, N., Westermann, S., Drubin, D., Barnes, G., McIntosh, J.R. and F.I. Ataullakhanov (2008) The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proc. Natl. Acad. Sci. (USA) 105(40): 15423-8. Full text here.
Grishchuk, E.L., Spiridonov, I.S., Volkov, V., Efremov, A., Westermann, S., Drubin, D., Barnes, G., Ataullakhanov, F.I. and J.R. McIntosh (2008) Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms. Proc. Natl. Acad. Sci. (USA) 105(19): 6918-23. Full text here
McIntosh, J.R., Grishchuk, E.L., Morphew, M., Efremov, A., Zhudenkov, K., V.A.Volkov, I.M. Cheeseman, A. Desai, Mastronarde, D., and F.I. Ataullakhanov (2008) Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135: 322-33. Full text here.
Grishchuk, E.L., Spiridonov, I.S. and J.R. McIntosh (2007) Mitotic chromosome bi-orientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Mol. Biol. Cell 18(6):2216-25. Full text here. (This paper has received “Paper of the Year” award from Mol. Biol. Cell journal). Link.
Efremov, A., Grishchuk, E.L., McIntosh, J. R. and F. I. Ataullakhanov (2007) In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc. Natl. Acad. Sci. (USA) 104(48): 19017-22. Full text here.
Grishchuk, E.L. and J.R. McIntosh (2006). Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J. 25(20):4888-96. Full text here.
Molodtsov, M.I., Grishchuk, E.L., Efremov, A.K., McIntosh, J.R. and F.I. Ataullakhanov (2005) Force production by depolymerizing microtubules: a theoretical study. Proc. Natl. Acad. Sci. (USA) 102: 4353-8. Full text here.
Molodtsov, M.I., Ermakova, E.A., Shnol, E. E., Grishchuk, E.L., McIntosh, J.R. and F.I. Ataullakhanov (2005) A Molecular-mechanical model of microtubules. Biophys. J. 88: 3167-79. Full text here.
Grishchuk, E.L., Molodtsov, M.I., Ataullakhanov, F.I., and J.R. McIntosh (2005) Force production by disassembling microtubules. Nature 438: 384-388. Full text here. Featured in Cassimeris, L. (2006) Mitosis: Riding the Protofilament Curl. Curr. Biol. 16, R214-6. Link. Highlighted in Gardner et al. (2008) Microtubule assembly dynamics: new insights at the nanoscale. Curr. Opinion in Cell Biology, 20:64–70. Link.