Perelman School of Medicine at the University of Pennsylvania

Grishchuk Lab



Sissoko, G.B.,  Tarasovetc, E.V., Marescal, O., Grishchuk, E.L. and I.M. Cheeseman (2024) Higher-order protein assembly controls kinetochore formationNature Cell Biology, doi:


Evtugina, N.G., Peshkova, A.D , Khabirova, A.I, Andrianova, I.A., Abdullayeva, S., Ayombil, F., Shepeliuk, T.,  Grishchuk, E.L., Ataullakhanov, F.I., Litvinov, R.I. and J.W. Weisel (2023) Activation of Piezo1 channels in compressed red blood cells augments platelet-driven contraction of blood clots. Journal of Thrombosis and Haemostasis, doi:

Luo, W., Demidov, V., Shen, Q., Girão, H., Chakraborty, M., Maiorov, A., Ataullakhanov, F.I., Lin, C., Maiato, H. and E.L. Grishchuk (2023) CLASP2 recognizes tubulins exposed at the microtubule plus-end in a nucleotide state–sensitive mannerScience Advances, doi:


Tripathy, S.K., Demidov, V.M., Gonchar, I.V., Wu, S., Ataullakhanov, F.I. and E.L. Grishchuk (2022) Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding ProteinsOptical Tweezers: Methods and Protocols, Methods in Molecular Biology, vol. 2478, doi:

Pogoda, K., Byfield, F., Deptuła, P., Cieśluk, M., Suprewicz, Ł., Skłodowski, K., Shivers, J.L., Van Oosten, A., Cruz, K., Tarasovetc, E.V., Grishchuk, E.L.,  Mackintosh, F.C., Bucki, R., Patteson, A.E. and P.A. Janmey (2022) Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive StressNano Letters, doi: 10.1021/acs.nanolett.2c00736


Tarasovetc, E.V., Kumar Allu, P., Cheeseman, I.M., Black, B.E. and E.L. Grishchuk (2021) Permitted and restricted steps of human kinetochore assembly in mitotic cell extractsMBoC, doi:


Wu, S. and E.L. Grishchuk (2020) Structural view of the yeast Dam1 complex, a ring-shaped molecular coupler for the dynamic microtubule endEssays in Biochemistry, doi: 10.1042/EBC20190079 


Chakraborty, M., Tarasovetc, E.V., Zaytsev, A.V., Godzi, M., Figueiredo, A.C., Ataullakhanov, F.I. and E.L. Grishchuk (2019) Microtubule end conversion mediated by motors and diffusing proteins with no intrinsic microtubule end-binding activity. Nature Communications, 2019, doi: 10.1038/s41467-019-09411-7. Supplements.

Nechipurenko, D.Y., Receveur, N., Yakimenko, A.O., Shepelyuk, T.O., Yakusheva, A.A., Kerimov, R.R., Obydennyy, S.I., Eckly, A., Léon, C., Gachet, C., Grishchuk, E.L., Ataullakhanov, F.I., Mangin, P.H. and M. A. Panteleev (2019) Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019,39:37-47. Featured in Editorial: Procoagulant Platelets Get Squeezed to Define the Boundaries of the Hemostatic Plug.

Trivedi, P., Zaytsev, A.V.,  Godzi, M.G., Ataullakhanov, F.I., Grishchuk, E.L. and P.T. Stukenberg (2019) The binding of Borealin to microtubules underlies a tension independent kinetochore-microtubule error correction pathwayNature Communications, doi: 10.1038/s41467-019-08418-4


Gudimchuk, N., Tarasovetc, E.V., Mustyatsa, V., Drobyshev, A.L., Vitre, B., Cleveland, D.W., Ataullakhanov, F.I. and E.L. Grishchuk (2018) Probing Mitotic CENP-E Kinesin with the Tethered Cargo Motion Assay and Laser Tweezers. Biophysical journal, 114(11), 2640-2652. doi: 10.1016/j.bpj.2018.04.017

Chakraborty, M., Tarasovetc, E.V. and E.L. Grishchuk (2018) In vitro reconstitution of lateral to end-on conversion of kinetochore–microtubule attachments. In Methods in Cell Biology, Vol 144. Academic Press, pp. 307-327. doi: 10.1016/bs.mcb.2018.03.018.


Monda, J.K., Whitney, I.P., Tarasovetc, E.V., Wilson-Kubalek, E., Milligan, R.A., Grishchuk, E.L. and I.M. Cheeseman (2017) Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin- Interacting Surfaces. Curr Biol. 27(23):3666-3675.e6. doi: 10.1016/j.cub.2017.10.018.56:397-428.

Grishchuk, E.L. (2017) Biophysics of Microtubule End Coupling at the Kinetochore. Prog Mol Subcell Biol. 56:397-428. doi: 10.1007/978-3-319-58592-5_17.

Lampson, M.A. and E.L. Grishchuk (2017) Mechanisms to Avoid and Correct Erroneous Kinetochore-Microtubule Attachments. Biology, 6(1), 1; doi:10.3390/biology6010001.


Zaytsev, A.V., Segura-Peña, D., Godzi, M., Calderon, A., Ballister, E.R., Stamatov, R., Mayo, A.M., Peterson, L., Black, B.E., Ataullakhanov, F.I., Lampson, M.A. and E.L. Grishchuk (2016) Bistability of a coupled Aurora B kinase-phosphatase system in cell division. eLife 5:e10644 doi: 10.7554/eLife.10644. Supplements.


Zakharov, P., Gudimchuk, N., Voevodin, V., Tikhonravov, A., Ataullakhanov, F.I. and E.L. Grishchuk (2015) Molecular and mechanical causes of microtubule catastrophe and aging. Biophys. J. 109: 2574–91. Featured in Hancock, W.O. (2015) Aging Gracefully: A New Model of Microtubule Growth and Catastrophe. Biophys. J. 109: 2449-51. Featured: journal cover Image here.

Zaytsev, A.V. and Grishchuk, E.L. (2015) Basic mechanism for bi-orientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules. Mol. Biol. Cell. 26(22): 3985–98.

Barisic, M., Sousa R.S., Tripathy S.K., Magiera, M.M., Zaytsev, A.V., Pereira, A.L., Janke, C., Grishchuk, E.L. and H. Maiato (2015) Microtubule detyrosination guides chromosomes during mitosis. Science 348(6236): 799-803. Highlighted in Nature Reviews Mol. Cell. Biol. doi:10.1038/nrm4000. Link.

Zaytsev, A.V., Mick, J.E., Maslennikov, E., Nikashin, B., DeLuca, J.G. and E.L. Grishchuk (2015) Multisite phosphorylation of the NDC80 complex gradually tunes its microtubule-binding affinity. Mol. Biol. Cell 26(10): 1829-44.


Kononova, O., Kholodov, Y., Theisen, K.E., Marx, K.A., Dima, R.I., Ataullakhanov, F.I, Grishchuk, E.L. and V. Barsegov (2014) Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico. J. Am. Chem. Soc. 136: 17036−45. Full text here.

Vitre, B., Gudimchuk, N., Borda, R., Kim., Y., Heuser, J., Cleveland, D.W. and E. L. Grishchuk (2014) Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E. Mol. Biol. Cell 25(15):2272-81. doi: 10.1091/mbc.E14-01-0698. Full text here. Featured: journal cover. Image here.

Volkov, V.A., Zaytsev, A.V. and E.L. Grishchuk (2014) Preparation of segmented microtubules to study motions driven by the disassembling microtubule ends. J. of Vis. Exp., 15(85): doi: 10.3791/51150. Full text here.

Zaytsev, A.V., Sundin, L.J.R., DeLuca, K.F., Grishchuk, E.L. and J.D. DeLuca (2014) Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions. J. Cell Biol., 206(1):45-59. Full text here. Featured in “In Focus” article by Short, B. (2014) Defining the kinetochore’s rules of engagement. J. Cell Biol. 206:3; doi:10.1083/jcb.2061if. Full text here.


Grishchuk, E.L. (2013) A slippery walk to the microtubule-end. Biophys. J. 104(11): 2324-5. Full text here.

Gudimchuk, N., Vitre, N., Kim, Y., Kiyatkin, A., Cleveland, D.W., Ataullakhanov, F.I. and E.L. Grishchuk (2013) Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nature Cell Biol., 15(9): 1079-88. Full text here. Featured in Gardner, M. K. (2013) CENP-E hangs on at dynamic microtubule ends. Nature Cell Biol. 15(9):1079-88. Link.

McIntosh, J.R., O'Toole, E., Zhudenkov, K., Morphew, M., Schwartz, C., Ataullakhanov, F.I. and Grishchuk, E.L. (2013) Conserved and Divergent Structural Features of the Kinetochore-Microtubule Interface. J. Cell Biol. 200(4): 459-74. Full text here.

Volkov, V.A., Zaytsev, A.V., Gudimchuk, N., Grissom, P.M., Gintsburg, A.L., Ataullakhanov, F.I., McIntosh, J.R. and E.L. Grishchuk (2013) Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. Proc. Natl. Acad. Sci. (USA) 110(19): 7708-13. Full text here.

Zaytsev, A.V., Ataullakhanov, F.I. and E.L. Grishchuk (2013) Highly transient molecular interactions underlie the stability of kinetochore-microtubule attachment during cell division. Cell. Mol. Bioeng., 6(4): doi: 10.1007/s12195-013-0309-4. Full text here.


Ataullakhanov, F.I. and Grishchuk, E.L. (2012). The coordination of molecular processes during cell division. Priroda (in Russian). Invited article in the Centennial Issue of the monthly journal of the Russian Academy of Sciences (1), 37-45. Full text here.

Schmidt, J.C., Arthanari, H., Boeszoermenyi, A., Dashkevich, N.M., Wilson-Kubalek, E.M., Monnier, N., Markus, M., Oberer, M., Milligan, R.A., Bathe, M., Wagner, G., Grishchuk, E.L. and I.M. Cheeseman (2012) The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev. Cell 23(5): 968-80. Full text here. Featured in Ye, A.A. and Maresca, T.J. (2012) Cell division: Kinetochores SKAdaddle. Current Biol. 23(3):R122-4 Link.


Grishchuk, E.L., McIntosh, J.R., Molodtsov, M.I. and F.I. Ataullakhanov (2011). Force generation by dynamic microtubule polymers. In E.H. Egelman, editor: Comprehensive Biophysics, Vol 4, Molecular Motors and Motility. Oxford: Academic Press, pp. 93-117. Full text here


Grishchuk, E.L. and F.I. Ataullakhanov (2010). In vitro assays to study the tracking of shortening microtubule ends and to measure associated forces. Methods in Cell Biology 95: 657-76. Full text here.

McIntosh, J.R., Volkov, V., Ataullakhanov, F.I., and E.L. Grishchuk (2010) Tubulin depolymerization may be an ancient biological motor. J. Cell Science 123(Pt20): 3425-34. Full text here.

Prior to 2010 (selected)

Welburn, J.P., Grishchuk, E.L., Backer, C.B., Wilson-Kubalek, E.M., Yates, J.R. and I. Cheeseman (2009) The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16(3): 374-385. Full text here. 

Grishchuk, E.L., Efremov, A.K., Volkov, VA,  Spiridonov, I.S., Gudimchuk, N., Westermann, S.,  Drubin, D., Barnes, G., McIntosh, J.R. and F.I. Ataullakhanov (2008) The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proc. Natl. Acad. Sci. (USA) 105(40): 15423-8. Full text here. 

Grishchuk, E.L., Spiridonov, I.S., Volkov, V., Efremov, A., Westermann, S., Drubin, D., Barnes, G., Ataullakhanov, F.I. and J.R. McIntosh (2008) Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms. Proc. Natl. Acad. Sci. (USA) 105(19): 6918-23. Full text here 

McIntosh, J.R., Grishchuk, E.L., Morphew, M., Efremov, A., Zhudenkov, K., V.A.Volkov, I.M. Cheeseman, A. Desai, Mastronarde, D., and F.I. Ataullakhanov (2008) Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135: 322-33. Full text here

Grishchuk, E.L., Spiridonov, I.S. and J.R. McIntosh (2007) Mitotic chromosome bi-orientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Mol. Biol. Cell 18(6):2216-25Full text here. (This paper has received “Paper of the Year” award from Mol. Biol. Cell journal). Link.

Efremov, A., Grishchuk, E.L., McIntosh, J. R. and F. I. Ataullakhanov (2007) In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc. Natl. Acad. Sci. (USA) 104(48): 19017-22. Full text here.

Grishchuk, E.L. and J.R. McIntosh (2006). Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J. 25(20):4888-96. Full text here.

Molodtsov, M.I., Grishchuk, E.L., Efremov, A.K., McIntosh, J.R. and F.I. Ataullakhanov (2005) Force production by depolymerizing microtubules: a theoretical study. Proc. Natl. Acad. Sci. (USA) 102: 4353-8. Full text here.

Molodtsov, M.I., Ermakova, E.A., Shnol, E. E., Grishchuk, E.L., McIntosh, J.R. and F.I. Ataullakhanov (2005) A Molecular-mechanical model of microtubules. Biophys. J. 88: 3167-79. Full text here.

Grishchuk, E.L., Molodtsov, M.I., Ataullakhanov, F.I., and J.R. McIntosh (2005) Force production by disassembling microtubules. Nature 438: 384-388. Full text here.  Featured in Cassimeris, L. (2006) Mitosis: Riding the Protofilament Curl. Curr. Biol. 16, R214-6. Link. Highlighted in Gardner et al. (2008) Microtubule assembly dynamics: new insights at the nanoscale. Curr. Opinion in Cell Biology, 20:64–70. Link.