2e 2 5d 16
19
1b
36

Diego Contreras, MD, PhD

78 faculty photo 3e
Professor of Neuroscience
7 63
Department: Neuroscience
4 1 23
1f Graduate Group Affiliations 8 a
b
1d
46 Contact information
96
University of Pennsylvania School of Medicine Department of Neuroscience
26 211 Clinical Research Building
32 415 Curie Blvd.
Philadelphia, PA 19104
26
39 Fax: (215) 573 2015
34 Lab: (215) 573 8780
18
9b 12
4 3 3 1d
18 Publications
23 a
3 2 29 4 b 1f
13 Education:
21 9 M.D. c
3d University Autonoma of Madrid, Spain, 1988.
21 a Ph.D. c
39 Laval University, Quebec, Canada, 1996.
c
3 3 3 3 8b Permanent link
2 29
 
1d
25
21
b6 > Perelman School of Medicine   > Faculty   > Details a
1e 1d
5e

Description of Research Expertise

1b KEY WORDS:
40 cortex, thalamus, optical, information, coding, epilepsy
8
1a RESEARCH INTERESTS
4c Representation of information in thalamocortical networks. Epilepsy.
8
1b RESEARCH TECHNIQUES
36 Intracellular and optical recordings in vivo.
8
18 RESEARCH SUMMARY
24b My lab's focus is on the cellular basis of information representation in the visual system. In particular, we are interested in (i) the role of inhibitory circuits in thalamus and thalamorecipient layer 4 of primary visual cortex, (ii) the dynamic properties of thalamocortical synapses, and (iii) the role of intrinsic electrophysiological properties (such as the T-type calcium current) in visual responses. Responses to visual stimuli are recorded from cortex and thalamus with combined intracellular, extracellular and optical recordings using voltage sensitive dyes in vivo.
147 We also study the mechanisms by which neural networks engage in the abnormal, paroxystic activity that characterizes epilepsy. We are particularly interested in the cellular and network mechanisms underlying seizure initiation and propagation in adult neocortex as well as the cellular basis of thalamocortical seizures.
26 29
23

Selected Publications

10d Taylor, M. M., Sedigh-Sarvestani, M., Vigeland, L., Palmer, L. A., Contreras, D.: Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased. J Neurosci 38(3): 595-612, 2018.

123 Bessaih, T., Higley, M. J., Contreras, D.: Millisecond precision temporal encoding of stimulus features during cortically generated gamma oscillations in the rat somatosensory cortex. J Physiol 596(3): 515-534, 2018.

164 Bink, H., Sedigh-Sarvestani, M., Fernandez-Lamo, I., Kini, L., Ung, H., Kuzum, D., Vitale, F., Litt, B., Contreras, D.: Spatiotemporal evolution of focal epileptiform activity from surface and laminar field recordings in cat neocortex. J Neurophysiol 119(6): 2068-2081, 2018.

a4 Welle, C. G., Contreras, D.: New Light on Gamma Oscillations. Neuron 93(2): 247-249, 2017.

126 Sedigh-Sarvestani, M., Vigeland, L., Fernandez-Lamo, I., Taylor, M. M., Palmer, L. A., Contreras, D.: Intracellular, In Vivo, Dynamics of Thalamocortical Synapses in Visual Cortex. J Neurosci 37(21): 5250-5262, 2017.

e2 Barz, C. S., Bessaih, T., Abel, T., Feldmeyer, D., Contreras, D.: Sensory encoding in Neuregulin 1 mutants. Brain Struct Funct 221(2): 1067-81, 2016.

d4 Denman, D. J., Contreras, D.: On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus. Front Neural Circuits 10: 20, 2016.

122 Vanleer, A. C., Blanco, J. A., Wagenaar, J. B., Viventi, J., Contreras, D., Litt, B.: Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures. J Neural Eng 13(2): 026015, 2016.

e2 Welle, C. G., Contreras, D.: Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry. J Neurophysiol 115(4): 1821-35, 2016.

2c
7 1d
2c back to top
26 Last updated: 11/26/2018
34 The Trustees of the University of Pennsylvania c
1f
27
24
 
1d
18
1 49 2 2 18