Yong Fan, PhD

faculty photo
Assistant Professor of Radiology
Department: Radiology

Contact information
Department of Radiology
Perelman School of Medicine
University of Pennsylvania
Richards Building, 7th floor
3700 Hamilton Walk
Philadelphia, PA 19104-6116
Office: 215-746-4065
Education:
PhD (Pattern Recognition and Intelligent Systems)
Chinese Academy of Sciences, Beijing, China, 2003.
Permanent link
 
> Perelman School of Medicine   > Faculty   > Details

Description of Research Expertise

Dr. Fan has a broad background in medical image analysis and pattern recognition, with specific training in applied mathematics, statistics, and machine learning.

His research interests are in the field of imaging analytics, machine learning, pattern recognition, and more generally in computational imaging. Much of his work has been focusing on methodology development and applications of machine learning techniques that quantify morphology and function from medical images, integrate multimodal information to aid diagnosis and prediction of clinical outcomes, and guide personalized treatments. The methodological focus has been on the general field of artificial intelligence, with emphasis on machine learning methods applied to complex and large imaging and clinical data. The image analytic methods being and to be developed include functional connectomics, radiomics, image registration and segmentation, and personalized neuromodulatory therapies. On the clinical side, his primary focus is on applications in clinical neuroscience, in cancer, and in chronic kidney disease, aiming to develop precision diagnostic tools using machine learning and pattern recognition techniques. The clinical research studies include brain development, brain diseases such as Alzheimer's, schizophrenia, depression, and addiction, pediatric kidney diseases, and predictive modeling of treatment outcomes of cancer patients such as rectal and lung cancers.

Selected Publications

Hongming Li, Yong Fan: Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks. Neuroimage 202(15): 1-11, Nov 2019 Notes: https://doi.org/10.1016/j.neuroimage.2019.116059.

Shi Yin, Qinmu Peng, Hongming Li, Zhengqiang Zhang, Xinge You, Katherine Fischer, Susan L Furth, Gregory E Tasian, Yong Fan: Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks. Medical Image Analysis 60(101602): 1-14, Nov 2019 Notes: https://doi.org/10.1016/j.media.2019.101602.

Ariana L. Smith, Steven J. Weissbart, Siobhán M. Hartigan, Michel Bilello, Diane K. Newman, Alan J. Wein, Anna P. Malykhina, Guray Erus, Yong Fan: Association Between Urinary Symptom Severity and White Matter Plaque Distribution in Women with Multiple Sclerosis. Neurourology and Urodynamics Page: 1-8, Oct 2019 Notes: https://doi.org/10.1002/nau.24206.

Hongming Li, Mohamad Habes, David A. Wolk, Yong Fan: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer's & Dementia: The Journal of the Alzheimer's Association 15(8): 1059-1070, Aug 2019 Notes: https://doi.org/10.1016/j.jalz.2019.02.007.

Rixing Jing, Peng Li, Zengbo Ding, Xiao Lin, Rongjiang Zhao, Le Shi, Hao Yan, Jinmin Liao, Chuanjun Zhuo, Lin Lu, Yong Fan: Machine learning identifies unaffected first-degree relatives with functional network patterns and cognitive impairment similar to those of schizophrenia patients. Human Brain Mapping 40(13): 3930-3939, Aug 2019 Notes: https://doi.org/10.1002/hbm.24678.

Reagan R. Wetherill, Hengyi Rao, Nathan Hager, Jieqiong Wang, Teresa R. Franklin, Yong Fan: Classifying and Characterizing Nicotine Use Disorder with High Accuracy Using Machine Learning and Resting-State fMRI. Addiction Biology 24(4): 811-821, Jun 2019 Notes: https://doi.org/10.1111/adb.12644.

Hongming Li, Maya Galperin-Aizenberg, Daniel Pryma, Charles B. Simone II, and Yong Fan : Unsupervised machine learning of radiomic features for predicting treatment response and overall survival of early stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. Radiotherapy & Oncology 129(2): 218-226, Nov 2018 Notes: https://doi.org/10.1016/j.radonc.2018.06.025.

Xiaofeng Zhu, Weihong Zhang, Yong Fan: A robust reduced rank graph regression method for neuroimaging genetics analysis. Neuroinformatics 16(3-4): 351-361, Oct 2018 Notes: https://doi.org/10.1007/s12021-018-9382-0.

Xiaomei Zhao, Yihong Wu, Guidong Song, Zhenye Li, Yazhuo Zhang, and Yong Fan: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Medical Image Analysis 43: 98-111, Jan 2018 Notes: https://doi.org/10.1016/j.media.2017.10.002.

Hongming Li, Theodore D. Satterthwaite, and Yong Fan: Large-scale sparse functional networks from resting state fMRI. Neuroimage 156: 1-13, Aug 2017 Notes: https://doi.org/10.1016/j.neuroimage.2017.05.004.

back to top
Last updated: 12/13/2019
The Trustees of the University of Pennsylvania