Liming Pei, Ph.D.

faculty photo
Assistant Professor of Pathology and Laboratory Medicine
Department: Pathology and Laboratory Medicine
Graduate Group Affiliations

Contact information
CTRB 6018
3501 Civic Center Blvd.
Philadelphia, PA 19104
Office: 267-425-2118
Fax: 267-426-0978
Lab: 267-425-2145
Education:
B.S.
University of Science and Technology of China, 2000.
Ph.D.
UCLA, 2006.
Permanent link
 
> Perelman School of Medicine   > Faculty   > Details

Description of Research Expertise

Cardiac Endocrinology; Mitochondrial Function and Metabolic Disease

The overall goal of the lab is to understand how different organs react to energy cues and communicate with each other to maintain whole-organism homeostasis in both physiological and pathological contexts. We welcome postdoctoral fellows and (rotating) graduate students to join us in our endeavors.

1. Cardiac endocrinology
A central question in physiology is how different organs communicate with each other to maintain whole-organism homeostasis. Research in the past 20 years revealed that non-glandular organs such as adipose tissue, liver and skeletal muscle can secrete hormones that regulate whole-body metabolism. In contrast, little is known regarding heart-derived hormones save for ANP and BNP, each discovered over 30 years ago. We recently discovered that Growth Differentiation Factor 15 (GDF15) is a new heart-derived hormone. Circulating GDF15 acts on the liver to inhibit growth hormone signaling and body growth. Plasma GDF15 is increased in children with concomitant heart disease and failure to thrive (FTT). Our results explain a well-established clinical observation that children with heart diseases often develop FTT. More importantly, these studies reveal a new endocrine mechanism by which the heart coordinates cardiac function and body growth. Plasma GDF15 was recently shown to be elevated in patients with various heart diseases and is associated with increased morbidity and mortality. However, how GDF15 is increased in heart disease remains unclear. We tackled this clinically important question and identified the whole gene regulatory network that induces GDF15 transcription in heart disease, using massively parallel single-nucleus RNA-Seq (~20,000 nuclei). This study also revealed for the first time the organ composition, cell type and heterogeneity in normal postnatal, developing mouse heart, and the profound changes of transcriptional landscape of every cell type in the disease state. In addition, we have identified the key enzymes that process GDF15 pro-hormone into its mature form. Together, these studies helped pioneer a new field of cardiac endocrinology.

Hu P, Liu J, Zhao J, Wilkins BJ, Lupino K, Wu H, Pei L. (2018). Single-nucleus transcriptomic survey of cell diversity and functional remodeling in the postnatal developing hearts. Genes & Development.
Li J, Liu J, Lupino K, Liu X, Zhang L, Pei L. (2018). GDF15 maturation requires proteolytic cleavage by PCSK3, 5 and 6. Molecular and Cellular Biology.
Wang T, Liu J, McDonald C, Lupino K, Zhai X, Wilkins BJ, Hakonarson H, Pei L. (2017). GDF15 is a heart-derived hormone that regulates body growth. EMBO Mol Med

Ongoing/rotation projects:
a) Single cell analysis of postnatal mouse hearts to understand how heart disease affects cardiac functions at single cell level;
b) Single cell analysis to mechanistically understand specific disease conditions that induce GDF15 transcription;
c) Investigating how heart disease impacts GDF15 maturation through regulating the activity of GDF15 processing enzymes PCSK3, 5 and 6.
d) Identify the liver GDF15 receptor and elucidate its signaling pathway in the liver.

2. Cell type-specific regulation of cellular metabolism
Metabolic dysfunction directly causes or significantly contributes to many human diseases including heart disease, obesity, diabetes, cancer and aging. Most cells have limited capacity to store energy; therefore cellular energy supply and demand must be coordinated. In addition, different cell types exhibit preference for specific metabolic pathways (fatty acid oxidation/FAO, glycolysis or oxidative phosphorylation/OxPhos). For instance, neurons rely on glycolysis and ensuing OxPhos but not FAO, while cardiomyocytes use OxPhos and FAO to generate most energy for cardiac contraction. However, it is little understood how specific metabolic pathways are coordinately regulated to support cell type-specific function. Work from my lab using cell type-specific KO mice and genomic approaches (ChIP-Seq and RNA-Seq) filled this knowledge gap by identifying the transcription factor estrogen-related receptor gamma (ERRγ) as a key transcriptional coordinator of cellular energy supply and demand. Mechanistically we showed that ERRγ directly regulates hundreds of OxPhos genes, and cooperates with distinct transcription factors to regulate cell type-specific metabolic (FAO) and functional genes. Accordingly, ERRγ is essential for normal cardiac contraction and conduction1, neuronal function and learning/memory, and renal reabsorption. Together, these studies revealed how cellular energy production and consumption are elegantly coordinated in a cell type-specific manner.

Zhao J, Lupino K, Wilkins BJ, Qiu C, Liu J, Omura Y, Allred AL, McDonald C, Susztak K, Barish GD, Pei L. (2018). Genomic integration of ERRgamma-HNF1beta regulates renal bioenergetics and prevents chronic kidney disease. PNAS.
Pei L*, Mu Y, Leblanc M, Alaynick W, Barish GD, Pankratz M, Tseng TW, Kaufman S, Liddle C, Yu RT, Downes M, Pfaff SL, Auwerx J, Gage FH, Evans RM. (2015). Dependence of Hippocampal Function on ERRgamma-Regulated Mitochondrial Metabolism. Cell Metabolism (*cocorresponding author)
Wang T, McDonald C, Petrenko NB, Leblanc M, Giguere V, Evans RM, Patel VV, Pei L. (2015). Estrogen-related receptor alpha (ERRalpha) and ERRgamma are essential coordinators of cardiac metabolism and function. Molecular and Cellular Biology

Ongoing/rotation projects:
a) Modulating ERRγ activity to prevent/ameliorate kidney disease;
b) Modulating ERRγ activity to prevent/ameliorate mitochondrial disease using human iPS cell and animal models.

Selected Publications

Hu P, Liu J, Zhao J, Wilkins BJ, Lupino K, Wu H, Pei L: Single-nucleus transcriptomic survey of cell diversity and functional remodeling in the postnatal developing hearts. Genes & Development 32(19-20): 1344-57, Oct 2018.

Zhao J, Lupino K, Wilkins BJ, Qiu C, Liu J, Omura Y, Allred AL, McDonald C, Susztak K, Barish GD, Pei L: Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease. Proc Natl Acad Sci USA 115(21): E4910-E4919, May 2018.

Li J, Liu J, Lupino K, Liu X, Zhang L, Pei L: GDF15 maturation requires proteolytic cleavage by PCSK3, 5 and 6. Molecular and Cellular Biology 38(21): e00249-18, Oct 2018 Notes: DOI 10.1128/MCB.00249-18.

Wang T, Liu J, McDonald, C, Lupino K, Zhai X, Wilkins BJ, Hakonarson H, Pei L : GDF15 is a heart-derived hormone that regulates body growth. EMBO Molecular Medicine 9: 1150-1164, 2017.

Pei L, Wallace DC : Mitochondrial Etiology of Neuropsychiatric Disorders. Biological Psychiatry 83(9): 722-730, May 2018.

Wang, T., McDonald, C., Petrenko, N.B., Leblanc, M., Giguere, V., Evans, R.M., Patel, V.V., and Pei, L.: ERRalpha and ERRgamma are essential coordinators of cardiac metabolism and function. Mol Cell Biol. 35(7): 1281-1298, 2015.

Pei, L., Mu, Y., Leblanc, M., Alaynick, W., Barish, G.D., Pankratz, M., Tseng, T.W., Kaufman, S., Liddle, C., Yu, R.T., Downes, M., Pfaff, S.L., Auwerx, J., Gage, F.H., Evans, R.M.: Dependence of hippocampal function on ERRγ regulated mitochondrial metabolism. Cell Metab 21(4): 628-636, 2015.

Pei, L., Leblanc, M., Barish, G., Atkins, A., Nofsinger, R., Whyte, J., Gold, D., He, M., Kawamura, K., Li, H-R., Downes, M., Yu, R., Powell, H.C., Lingrel, J.B., Evans, R.M.: Thyroid hormone receptor repression is linked to type I pneumocyte associated respiratory distress syndrome. Nat Med 17(11): 1466-1472, 2011.

Pei, L., and Evans, R.M: Retrofitting fat metabolism. Cell Metab 9(6): 483-484, 2009.

Pei, L., Waki, H., Vaitheesvaran, B., Wilpitz, D. C., Kurland, I. J., and Tontonoz, P: NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med 12(9): 1048-1055, 2006.

Pei, L., Castrillo, A., Chen, M., Hoffmann, A., Tontonoz, P.: Induction of NR4A Orphan Nuclear Receptor Expression in Macrophages in Response to Inflammatory Stimuli. J Biol Chem 280(32): 29256-29262, 2005.

Pei, L., Castrillo, A., and Tontonoz, P: Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol Endocrinol 20(4): 786-794, 2006.

Pei, L., Tontonoz, P.: Fat's loss is bone's gain. J Clin Invest 113(6): 805-6, 2004.

back to top
Last updated: 10/24/2018
The Trustees of the University of Pennsylvania