Mauck Laboratory

MechDiff: Cell Mechanobiology and Differentiation Journal Club

November 2016

Transcription upregulation via force-induced direct stretching of chromatin
PubMed Article 
View Abstract

Arash Tajik, Yuejin Zhang, Fuxiang Wei, Jian Sun, Qiong Jia, Wenwen Zhou, Rishi Singh, Nimish Khanna, Andrew S. Belmont & Ning Wang.

Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina–chromatin interactions to directly stretch chromatin and upregulate transcription.

Close

Spatially patterned matrix elasticity directs stem cell fate.
PubMed Article 
View Abstract

Yang C, DelRio FW, Ma H, Killaars AR, Basta LP, Kyburz KA, Anseth KS.

There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness. 

Close

September 2016

Nuclear envelope rupture and repair during cancer cell migration
PubMed Article 
View Abstract

Celine M. Denais, Rachel M. Gilbert, Philipp Isermann, Alexandra L. McGregor, Mariska te Lindert, Bettina Weigelin, Patricia M. Davidson, Peter Friedl, Katarina Wolf, Jan Lammerding.

During cancer metastasis, tumor cells penetrate tissues through tight interstitial spaces, requiring extensive deformation of the cell and its nucleus. Here, we investigated mammalian tumor cell migration in confining microenvironments in vitro and in vivo. Nuclear deformation caused localized loss of nuclear envelope (NE) integrity, which led to the uncontrolled exchange of nucleo-cytoplasmic content, herniation of chromatin across the NE, and DNA damage. The incidence of NE rupture increased with cell confinement and with depletion of nuclear lamins, NE proteins that structurally support the nucleus. Cells restored NE integrity using components of the endosomal sorting complexes required for transport-III (ESCRT-III) machinery. Our findings indicate that cell migration incurs substantial physical stress on the NE and its content, requiring efficient NE and DNA damage repair for cell survival.

Close

August 2016

Targeting β1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice
PubMed Article 
View Abstract

Rozo M, Li L, Fan CM.

Interactions between stem cells and their microenvironment, or niche, are essential for stem cell maintenance and function. Our knowledge of the niche for the skeletal muscle stem cell, i.e., the satellite cell (SC), is incomplete. Here we show that β1-integrin is an essential niche molecule that maintains SC homeostasis, and sustains the expansion and self-renewal of this stem cell pool during regeneration. We further show that β1-integrin cooperates with fibroblast growth factor 2 (Fgf2), a potent growth factor for SCs, to synergistically activate their common downstream effectors, the mitogen-activated protein (MAP) kinase Erk and protein kinase B (Akt). Notably, SCs in aged mice show altered β1-integrin activity and insensitivity to Fgf2. Augmenting β1-integrin activity with a monoclonal antibody restores Fgf2 sensitivity and improves regeneration after experimentally induced muscle injury. The same treatment also enhances regeneration and function of dystrophic muscles in mdx mice, a model for Duchenne muscular dystrophy. Therefore, β1-integrin senses the SC niche to maintain responsiveness to Fgf2, and this integrin represents a potential therapeutic target for pathological conditions of the muscle in which the stem cell niche is compromised. 

Close

July 2016

Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair
PubMed Article 
View Abstract

Yujie Deng, Ailing Wu, Pikshan Li, Gang Li, Ling Qin, Hai Song, Kinglun Kingston Mak.

Summary

Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration.

Close

June 2016

Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading
PubMed Article 
View Abstract

Li Y, Lovett D, Zhang Q, Neelam S, Kuchibhotla RA, Zhu R, Gundersen GG, Lele TP, Dickinson RB.

The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes. 

Close

May 2016

Hydrogels with tunable stress relaxation regulate stem cell fate and activity
PubMed Article 
View Abstract

Ovijit Chaudhuri, Luo Gu, Darinka Klumpers, Max Darnell, Sidi A. Bencherif, James C. Weaver, Nathaniel Huebsch, Hong-pyo Lee, Evi Lippens, Georg N. Duda & David J. Mooney

Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel’s initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell–ECM interactions and as an important design parameter of biomaterials for cell culture.

Close

April 2016

Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity.
PubMed Article 
View Abstract

Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, Zhu C, Trepat X, Roca-Cusachs P.

Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response. 

Close

March 2016

Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation
PubMed Article 
View Abstract

Franco Klingberg, Melissa L. Chow, Anne Koehler, Stellar Boo, Lara Buscemi, Thomas M. Quinn, Mercedes Costell, Benjamin A. Alman, Elisabeth Genot, Boris Hinz.

Integrin-mediated force application induces a conformational change in latent TGF-β1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-β1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-β1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-β1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-β1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-β1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer.

Close

August 2015

Expression of a-Smooth Muscle Actin Determines the Fate of Mesenchymal Stromal Cells
PubMed Article 
View Abstract

Nilesh P. Talele, Julie Fradette, John E. Davies, Andras Kapus, Boris Hinz

Pro-fibrotic microenvironments of scars and tumors characterized by increased stiffness stimulate mesenchymal stromal cells (MSCs) to express a-smooth muscle actin (a-SMA). We investigated whether incorporation of a-SMA into contractile stress fibers regulates human MSC fate. Sorted a-SMA-positive MSCs exhibited high contractile activity, low clonogenicity, and differentiation potential limited to osteogenesis. Knockdown of a-SMA was sufficient to restore clonogenicity and adipogenesis in MSCs. Conversely, a-SMA overexpression induced YAP translocation to the nucleus and reduced the high clonogenicity and adipogenic potential of a-SMA-negative MSCs. Inhibition of YAP rescued the decreased adipogenic differentiation potential induced by a-SMA, establishing a mechanistic link between matrix stiffness, a-SMA, YAP, and MSC differentiation. Consistent with in vitro findings, nuclear localization of YAP was positively correlated in a-SMA expressing stromal cells of adiposarcoma and osteosarcoma. We propose that a-SMA mediated contraction plays a critical role in mechanically regulating MSC fate by controlling YAP/TAZ activation.

Close

May 2015

Differential Fates of biomolecules delivered to target cells via extracellular vesicles
PubMed Article 
View Abstract

Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar RL, Butte MJ, Matin AC, Contag CH

Extracellular vesicles (EVs), specifically exosomes and microvesicles (MVs), are presumed to play key roles in cell-cell communication via transfer of biomolecules between cells. The biogenesis of these two types of EVs differs as they originate from either the endosomal (exosomes) or plasma (MVs) membranes. To elucidate the primary means through which EVs mediate intercellular communication, we characterized their ability to encapsulate and deliver different types of macromolecules from transiently transfected cells. Both EV types encapsulated reporter proteins and mRNA but only MVs transferred the reporter function to recipient cells. De novo reporter protein expression in recipient cells resulted only from plasmid DNA (pDNA) after delivery via MVs. Reporter mRNA was delivered to recipient cells by both EV types, but was rapidly degraded without being translated. MVs also mediated delivery of functional pDNA encoding Cre recombinase in vivo to tissues in transgenic Cre-lox reporter mice. Within the parameters of this study, MVs delivered functional pDNA, but not RNA, whereas exosomes from the same source did not deliver functional nucleic acids. These results have significant implications for understanding the role of EVs in cellular communication and for development of EVs as delivery tools. Moreover, studies using EVs from transiently transfected cells may be confounded by a predominance of pDNA transfer.

Close

Cyclic stretching of soft substrates induces spreading and growth
PubMed Article 
View Abstract

Yidan Cui, Feroz M. Hameed, Bo Yang, Kyunghee Lee, Catherine Qiurong Pan, Sungsu Park & Michael Sheetz

In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1–5% cyclic stretching over a frequency range of 0.01–10Hz caused spreading and stress fibre formation (optimum 0.1Hz) that persisted after 4h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth.

Close

April 2015

Cell mechanosensitivity to extremely low magnitude signals is enabled by a LINCed nucleus.
PubMed Article 
View Abstract

Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, Bas G, Styner M, Rubin CT, Judex S, Burridge K, Rubin J.

A cell's ability to recognize and adapt to the physical environment is central to its survival and function, but how mechanical cues are perceived and transduced into intracellular signals remains unclear. In mesenchymal stem cells (MSC), high magnitude substrate strain (HMS, ≥2%) effectively suppresses adipogenesis via induction of FAK/mTORC2/Akt signaling generated at focal adhesions [1]. Physiologic systems also rely on a persistent barrage of low level signals to regulate behavior [2]. Exposing MSC to extremely low magnitude mechanical signals (LMS) suppresses adipocyte formation [3] despite the virtual absence of substrate strain(<0.001%) [2], suggesting that LMS-induced dynamic accelerations can generate force within the cell. Here we show that MSC response to LMS is enabled through mechanical coupling between the cytoskeleton and the nucleus, in turn activating focal adhesion kinase (FAK) and Akt signaling followed by FAK-dependent induction of RhoA. While LMS and HMS synergistically regulated FAK activity at the focal adhesions, LMS-induced actin remodeling was concentrated at the perinuclear domain. Preventing nuclear-actin cytoskeleton mechanocoupling by disrupting LINC (Linker of Nucleoskeleton and Cytoskeleton) complexes inhibited these LMS-induced signals as well as prevented LMS repression of adipogenic differentiation, highlighting that LINC connections are critical for sensing LMS. In contrast, FAK activation by high magnitude strain (HMS) was unaffected by LINC decoupling, consistent with signal initiation at the focal adhesion (FA) mechanosome. These results indicate that the MSC responds to its dynamic physical environment not only with "outside-in" signaling initiated by substrate strain, but vibratory signals enacted through the LINC complex enable matrix independent "inside-inside" signaling.

Close

Rac1-Dependent Phosphorylation and Focal Adhesion Recruitment of Myosin IIA Regulates Migration and Mechanosensing.
PubMed Article 
View Abstract

Ana M. Pasapera, Sergey V. Plotnikov, Robert S. Fischer, Lindsay B. Case, Thomas T. Egelhoff, Clare M. Waterman.

Background

Cell migration requires coordinated formation of focal adhesions (FAs) and assembly and contraction of the actin cytoskeleton. Nonmuscle myosin II (MII) is a critical mediator of contractility and FA dynamics in cell migration. Signaling downstream of the small GTPase Rac1 also regulates FA and actin dynamics, but its role in regulation of MII during migration is less clear.

Results

We found that Rac1 promotes association of MIIA with FA. Live-cell imaging showed that, whereas most MIIA at the leading edge assembled into dorsal contractile arcs, a substantial subset assembled in or was captured within maturing FA, and this behavior was promoted by active Rac1. Protein kinase C (PKC) activation was necessary and sufficient for integrin- and Rac1-dependent phosphorylation of MIIA heavy chain (HC) on serine1916 (S1916) and recruitment to FA. S1916 phosphorylation of MIIA HC and localization in FA was enhanced during cell spreading and ECM stiffness mechanosensing, suggesting upregulation of this pathway during physiological Rac1 activation. Phosphomimic and nonphosphorylatable MIIA HC mutants demonstrated that S1916 phosphorylation was necessary and sufficient for the capture and assembly of MIIA minifilaments in FA. S1916 phosphorylation was also sufficient to promote the rapid assembly of FAs to enhance cell migration and for the modulation of traction force, spreading, and migration by ECM stiffness.

Conclusions

Our study reveals for the first time that Rac1 and integrin activation regulates MIIA HC phosphorylation through a PKC-dependent mechanism that promotes MIIA association with FAs and acts as a critical modulator of cell migration and mechanosensing.

Close

February 2015

Rac1 nucleocytoplasmic shuttling drives nuclear shape changes and tumor invasion.
PubMed Article 
View Abstract

Navarro-Lérida I, Pellinen T, Sanchez SA, Guadamillas MC, Wang Y, Mirtti T, Calvo E, Del Pozo MA.

Nuclear membrane microdomains are proposed to act as platforms for regulation of nuclear function, but little is known about the mechanisms controlling their formation. Organization of the plasma membrane is regulated by actin polymerization, and the existence of an actin pool in the nucleus suggests that a similar mechanism might operate here. We show that nuclear membrane organization and morphology are regulated by the nuclear level of active Rac1 through actin polymerization-dependent mechanisms. Rac1 nuclear export is mediated by two internal nuclear export signals and through its interaction with nucleophosmin-1 (B23), which acts as a Rac1 chaperone inside the nucleus. Rac1 nuclear accumulation alters the balance between cytosolic Rac1 and Rho, increasing RhoA signaling in the cytoplasm and promoting a highly invasive phenotype. Nuclear Rac1 shuttling is a finely tuned mechanism for controlling nuclear shape and organization and cell invasiveness.

Close

Actin stress in cell reprogramming.
PubMed Article 
View Abstract

Jun Guo, Yuexiu Wang, Frederick Sachs, and Fanjie Meng. 

Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals.

Close

January 2015

Molecular adhesion between cartilage extracellular matrix macromolecules.
PubMed Article 
View Abstract

Rojas FP, Batista MA, Lindburg CA, Dean D, Grodzinsky AJ, Ortiz C, Han L.

In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ≈ 2.5 µm) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecan-collagen adhesion. Increasing both ionic strength and [Ca(2+)] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca(2+)-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecan-collagen interactions. Interestingly, we found a significant increase in aggrecan-collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecan-collagen adhesion, together with aggrecan-aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties.

Close

December 2014

Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival.
PubMed Article 
View Abstract

Harada T, Swift J, Irianto J, Shin JW, Spinler KR, Athirasala A, Diegmiller R, Dingal PC, Ivanovska IL, Discher DE.

Cell migration through solid tissue often involves large contortions of the nucleus, but biological significance is largely unclear. The nucleoskeletal protein lamin-A varies both within and between cell types and was shown here to contribute to cell sorting and survival in migration through constraining micropores. Lamin-A proved rate-limiting in 3D migration of diverse human cells that ranged from glioma and adenocarcinoma lines to primary mesenchymal stem cells (MSCs). Stoichiometry of A- to B-type lamins established an activation barrier, with high lamin-A:B producing extruded nuclear shapes after migration. Because the juxtaposed A and B polymer assemblies respectively conferred viscous and elastic stiffness to the nucleus, subpopulations with different A:B levels sorted in 3D migration. However, net migration was also biphasic in lamin-A, as wild-type lamin-A levels protected against stress-induced death, whereas deep knockdown caused broad defects in stress resistance. In vivo xenografts proved consistent with A:B-based cell sorting, and intermediate A:B-enhanced tumor growth. Lamins thus impede 3D migration but also promote survival against migration-induced stresses.

Close

A mechanical checkpoint controls multicellular growth thought YAP/TAZ regulation by actin-processing factors.
PubMed Article 
View Abstract

Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S.

Key cellular decisions, such as proliferation or growth arrest, typically occur at spatially defined locations within tissues. Loss of this spatial control is a hallmark of many diseases, including cancer. Yet, how these patterns are established is incompletely understood. Here, we report that physical and architectural features of a multicellular sheet inform cells about their proliferative capacity through mechanical regulation of YAP and TAZ, known mediators of Hippo signaling and organ growth. YAP/TAZ activity is confined to cells exposed to mechanical stresses, such as stretching, location at edges/curvatures contouring an epithelial sheet, or stiffness of the surrounding extracellular matrix. We identify the F-actin-capping/severing proteins Cofilin, CapZ, and Gelsolin as essential gatekeepers that limit YAP/TAZ activity in cells experiencing low mechanical stresses, including contact inhibition of proliferation. We propose that mechanical forces are overarching regulators of YAP/TAZ in multicellular contexts, setting responsiveness to Hippo, WNT, and GPCR signaling.

Close

October 2014

Bone Morphogenetic Protein-2-Induced Signaling and Osteogenesis Is Regulated by Cell Shape, RhoA/ROCK, and Cytoskeletal Tension.
PubMed Article 
View Abstract

Yang-Kao Wang, Xiang Yu Daniel M. Cohen, Michele A. Wozniak, Michael T. Yang, Lin Gao, Jeroen Eyckmans, and Christopher S. Chen.

Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned substrates to progressively restrict cell spreading and flattening against ECM, we demonstrated that BMP-induced osteogenesis is progressively antagonized with decreased cell spreading. BMP triggered rapid and sustained RhoA/Rho-associated protein kinase (ROCK) activity and contractile tension only in spread cells, and this signaling was required for BMP-induced osteogenesis. Exploring the molecular basis for this effect, we found that restricting cell spreading, reducing ROCK signaling, or inhibiting cytoskeletal tension prevented BMP-induced SMA/mothers against decapentaplegic (SMAD)1 c-terminal phosphorylation, SMAD1 dimerization with SMAD4, and SMAD1 translocation into the nucleus. Together, these findings demonstrate the direct involvement of cell spreading and RhoA/ROCK-mediated cytoskeletal tension generation in BMP-induced signaling and early stages of in vitro osteogenesis, and highlight the essential interplay between biochemical and mechanical cues in stem cell differentiation.

Close

July 2014

A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling.
PubMed Article 
View Abstract

Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Puré E, Assoian RK.

Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.

Close

The regulation of gene expression during onset of differentiation by nuclear mechanical heterogeneity.
PubMed Article 
View Abstract

Talwar S, Jain N, Shivashankar GV.

Embryonic stem (ES) cells exhibit plasticity in nuclear organization as well as variability in gene expression. Although such physicochemical features are important in lineage commitment, mechanistic insights coupling nuclear plasticity and gene expression have not been elucidated. To probe this, we developed single cell micro-patterned assay to map nuclear deformation and its correlation with gene expression. We found an inherent heterogeneity in nuclear pliability of ES cells. Softer nuclei deformed to the underlying substrate geometry while the stiffer ones remained spherical. Stiffer nuclei were strongly correlated with decreased global histone (H3) acetylation and an increase in Lamin A/C expression. Interestingly, these cells also have higher nuclear accumulation of the transcription cofactor MRTF-A (myocardin-related transcription factor A) and an upregulation of its downstream target genes. Taken together, our results provide compelling evidence to show that the mechanical heterogeneity of stem cell nucleus can regulate transcriptional programs during onset of cellular differentiation.

Close

June 2014

Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation.
PubMed Article 
View Abstract

Richard MN, Deniset JF, Kneesh AL, Blackwood D, Pierce GN.

Although it is known that mechanical stretching of cells can induce significant increases in cell growth and shape, the intracellular signaling pathways that induce this response at the level of the cell nucleus is unknown. The transport of molecules from the cell cytoplasm to the nucleoplasm through the nuclear pore is a key pathway through which gene expression can be controlled in some conditions. It is presently unknown if mechanical stimuli can induce changes in nuclear pore expression and/or function. The purpose of the present investigation was to determine if mechanical stretching of a cell will alter nuclear protein import and the mechanisms that may be responsible. Vascular smooth muscle cells that were mechanically stretched exhibited an increase in proliferating cell nuclear antigen expression, cell number, and cell size within 24-48 h. Cells were microinjected with marker proteins for nuclear import. Nuclear protein import was significantly stimulated in stretched cells when compared with control. This was associated with an increase in the expression of nuclear pore proteins as detected by Western blots. Inhibition of the MAPK pathway blocked the stretch-induced stimulation of both cell proliferation and nuclear protein import. We conclude that nuclear protein import and nuclear pore density can adapt to mechanical stimuli during the process of cell growth through a MAPK-mediated mechanism.

Close

May 2014

Rigidity sensing and adaptation through regulation of integrin types.
PubMed Article 
View Abstract

Alberto Elosegui-Artola, Elsa Bazellières, Michael D. Allen, Ion Andreu, Roger Oria, Raimon Sunyer, Jennifer J. Gomm, John F. Marshall, J. Louise Jones, Xavier Trepat & Pere Roca-Cusachs.

Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either α5β1 integrins (constitutively expressed) or αvβ6 integrins (selectively expressed in cancer and development) adapts force generation, actin flow and integrin recruitment to rigidities associated with healthy or malignant tissue, respectively. In vitro experiments and theoretical modelling further demonstrate that this behaviour is explained by the different binding and unbinding rates of both integrin types to fibronectin. Moreover, rigidity sensing through differences in integrin bond dynamics applies both when integrins bind separately and when they compete for binding to fibronectin.

Close

Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.
PubMed Article 
View Abstract

Bouderlique T, Henault E, Lebouvier A, Frescaline G, Bierling P, Rouard H, Courty J, Albanese P, Chevallier N.

Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

Close

March 2014

Three-dimensional cell migration does not follow a random walk.
PubMed Article 
View Abstract

Pei-Hsun Wua, Anjil Giria, Sean X. Sunb, and Denis Wirtza.

Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D and 3D migration features a non-Gaussian, exponential mean cell velocity distribution, which we show is primarily a result of cell-to-cell variations. Unlike in the 2D case, 3D cell migration is anisotropic: velocity profiles display different speed and self-correlation processes in different directions, rendering the classical persistent random walk (PRW) model of cell migration inadequate. By incorporating cell heterogeneity and local anisotropy to the PRW model, we predict 3D cell motility over a wide range of matrix densities, which identifies density-independent emerging migratory properties. This analysis also reveals the unexpected robust relation between cell speed and persistence of migration over a wide range of matrix densities.

Close

Involvement of fibroblast growth factor 18 in dedifferentiation of cultured human chondrocytes.
PubMed Article 
View Abstract

Yamaoka H, Nishizawa S, Asawa Y, Fujihara Y, Ogasawara T, Yamaoka K, Nagata S, Takato T, Hoshi K.

OBJECTIVE:

Chondrocytes inevitably decrease production of cartilaginous matrices during long-term cultures with repeated passaging; this is termed dedifferentiation. To learn more concerning prevention of dedifferentiation, we have focused here on the fibroblast growth factor (FGF) family that influences chondrocyte proliferation or differentiation.

MATERIALS AND METHODS:

We have compared gene expression between differentiated cells in passage 3 (P3) and dedifferentiated ones in P8 of human cultured chondrocytes. We also performed ligand administration of the responsive factor or its gene silencing, using small interfering RNA (siRNA).

RESULTS:

FGFs 1, 5, 10, 13 and 18 were higher at P8 compared to P3, while FGFs 9 and 14 were lower. Especially, FGF18 showed a 10-fold increase by P8. Ligand administration of FGF18 in the P3 cells, or its gene silencing using siRNA in the P8 cells, revealed dose-dependent increase and decrease respectively in type II collagen/type I collagen ratio. Exogenous FGF18 also upregulated expression of transforming growth factor beta (TGF-beta), the anabolic factor of chondrocytes, in P3 chondrocytes, but P8 cells maintained a low level of TGF-beta expression, suggesting a decrease in responsiveness of TGF-beta to FGF18 stimulation in the dedifferentiated chondrocytes.

CONCLUSION:

FGF18 seems to play a role in maintenance of chondrocyte properties, although its expression was rather high in dedifferentiated chondrocytes. Upregulation of FGF18 in dedifferentiated chondrocytes implied that it may be a marker of dedifferentiation.

Close

February 2014

Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity
PubMed Article 
View Abstract

Jing Du, Xiaofei Chen, Xudong Liang, Guangyao Zhang, Jia Xu, Linrong He, Qingyuan Zhan, Xi-Qiao Feng, Shu Chien, and Chun Yanga.

The mechanism by which ECM elasticity induces lineage specification of stem cells has not been clearly understood. Integrins are well-documented mechanosensors that are positioned at the beginning of the sensing pathway. By using an antibody specifically recognizing the active conformation of β1 integrin, we observed that β1 integrin activation in bone marrow mesenchymal stem cells (BMMSCs) was induced by soft substrate to a significantly greater degree than by stiff substrate. In contrast, however, the level of cell surface integrin on soft substrate was significantly lower than that on stiff substrate. Soft substrate markedly enhanced the internalization of integrin, and this internalization was mediated mainly through caveolae/raft-dependent endocytosis. The inhibition of integrin internalization blocked the neural lineage specification of BMMSCs on soft substrate. Furthermore, soft substrate also repressed the bone morphogenetic protein (BMP)/Smad pathway at least partially through integrin-regulated BMP receptor endocytosis. A theoretical analysis based on atomic force microscopy (AFM) data indicated that integrin–ligand complexes are more easily ruptured on soft substrate; this outcome may contribute to the enhancement of integrin internalization on soft substrate. Taken together, our results suggest that ECM elasticity affects integrin activity and trafficking to modulate integrin BMP receptor internalization, thus contributing to stem cell lineage specification.

Close

Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage.
PubMed Article 
View Abstract

Joos H, Wildner A, Hogrefe C, Reichel H, Brenner RE.

INTRODUCTION:

The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints.

METHODS:

We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments.

RESULTS:

A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC.

CONCLUSION:

These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.

Close

January 2014

Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring.
PubMed Article 
View Abstract

Ciobanasu C, Faivre B, Le Clainche C.

The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin-vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin-talin-vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton.

Close

October 10, 2012

ECM stiffness primes the TGFB pathway to promote chondrocyte differentiation.
PubMed Article 
View Abstract

Allen JL, Cooke ME, Alliston T.

Cells encounter physical cues such as extracellular matrix (ECM) stiffness in a microenvironment replete with biochemical cues. However, the mechanisms by which cells integrate physical and biochemical cues to guide cellular decision making are not well defined. Here we investigate mechanisms by which chondrocytes generate an integrated response to ECM stiffness and transforming growth factor ß (TGFß), a potent agonist of chondrocyte differentiation. Primary murine chondrocytes and ATDC5 cells grown on 0.5-MPa substrates deposit more proteoglycan and express more Sox9, Col2a1, and aggrecan mRNA relative to cells exposed to substrates of any other stiffness. The chondroinductive effect of this discrete stiffness, which falls within the range reported for articular cartilage, requires the stiffness-sensitive induction of TGFß1. Smad3 phosphorylation, nuclear localization, and transcriptional activity are specifically increased in cells grown on 0.5-MPa substrates. ECM stiffness also primes cells for a synergistic response, such that the combination of ECM stiffness and exogenous TGFß induces chondrocyte gene expression more robustly than either cue alone through a p38 mitogen-activated protein kinase-dependent mechanism. In this way, the ECM stiffness primes the TGFß pathway to efficiently promote chondrocyte differentiation. This work reveals novel mechanisms by which cells integrate physical and biochemical cues to exert a coordinated response to their unique cellular microenvironment.

Close

September 26, 2012

Cell Mechanics, Structure, and Function Are Regulated by the Stiffness of the three-Dimensional Microenvironment.
PubMed Article 
View Abstract

Chen J, Irianto J, Inamdar S, Pravincumar P, Lee DA, Bader DL, Knight MM.

This study adopts a combined computational and experimental approach to determine the mechanical, structural, and metabolic properties of isolated chondrocytes cultured within three-dimensional hydrogels. A series of linear elastic and hyperelastic finite-element models demonstrated that chondrocytes cultured for 24 h in gels for which the relaxation modulus is less than 5 kPa exhibit a cellular Young's modulus of 5 kPa. This is notably greater than that reported for isolated chondrocytes in suspension. The increase in cell modulus occurs over a 24-h period and is associated with an increase in the organization of the cortical actin cytoskeleton, which is known to regulate cell mechanics. However, there was a reduction in chromatin condensation, suggesting that changes in the nucleus mechanics may not be involved. Comparison of cells in 1% and 3% agarose showed that cells in the stiffer gels rapidly develop a higher Young's modulus of ~20 kPa, sixfold greater than that observed in the softer gels. This was associated with higher levels of actin organization and chromatin condensation, but only after 24 h in culture. Further studies revealed that cells in stiffer gels synthesize less extracellular matrix over a 28-day culture period. Hence, this study demonstrates that the properties of the three-dimensional microenvironment regulate the mechanical, structural, and metabolic properties of living cells.

Close

Back to Top