Schipani Lab

HIF-1 and the reprogramming of metabolism in endochondral bone development

While studying the fetal growth plate, we became intrigued by its avascular nature, which led us to uncover the critical role of hypoxia-signaling pathways in skeletal development.

Oxygen, beyond being a vital metabolic substrate, also functions as a key regulatory signal. We were the first to propose that oxygen gradients are essential for tissue morphogenesis during skeletal development. Through our research, we discovered that the murine fetal growth plate exhibits a gradient of oxygenation, with a hypoxic core region. To further investigate, we developed the first conditional knockout model of hypoxia-inducible factor-1 alpha (HIF-1), providing definitive evidence that HIF-1 acts as a survival factor for hypoxic chondrocytes in the growth plate in vivo. The role of HIF-1 as a survival factor has since been confirmed in a variety of settings, including cancer models. We also established that HIF-1 is crucial for the timely differentiation of mesenchymal cells into chondrocytes and for joint development in vivo. Furthermore, we provided genetic evidence that vascular endothelial growth factor (VEGF)—a classical downstream target of HIF-1 and a known survival factor for chondrocytes—plays only a modest role in mediating HIF-1’s survival function in cartilage. Instead, we showed that HIF-1-dependent metabolic reprogramming is a critical downstream mechanism supporting chondrocyte survival and differentiation. Notably, we demonstrated that HIF-1 reduces mitochondrial respiration and oxygen consumption in growth plate chondrocytes, a key adaptation ensuring their survival and proper differentiation under hypoxic conditions.

Currently, we are investigating how the interplay between oxidative phosphorylation and HIF-1-mediated metabolic reprogramming governs skeletal development.

HIF1 activation safeguards cortical bone formation against impaired oxidative phosphorylation
View Publication 
View Abstract

Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting mitochondrial transcription factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing hypoxia-inducible factor 1a (HIF1) activity within periosteal cells substantially mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.

Close

Suppressing Mitochondrial Respiration Is Critical for Hypoxia Tolerance in the Fetal Growth Plate
View Publication 
View Abstract

Highlights

  • Mitochondrial respiration is dispensable for survival of fetal chondrocytes
  • Loss of Hif1a enhances mitochondrial respiration in fetal chondrocytes
  • Mitochondrial respiration augments intracellular hypoxia of fetal chondrocytes
  • Enhancing mitochondrial respiration is detrimental to survival of fetal chondrocytes

Close

VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival
View Publication 
View Abstract

Fetal growth plate cartilage is nonvascularized, and chondrocytes largely develop in hypoxic conditions. We previously found that mice lacking the hypoxia-inducible transcription factor HIF-1α in cartilage show massive death of centrally located, hypoxic chondrocytes. A similar phenotype was observed in mice with genetic ablation of either all or specifically the diffusible isoforms of vascular endothelial growth factor (VEGF), a prime angiogenic target of HIF-1α. Here, we assessed whether VEGF is a critical downstream component of the HIF-1α-dependent survival pathway in chondrocytes. We used a genetic approach to conditionally overexpress VEGF164 in chondrocytes lacking HIF-1α, evaluating potential rescuing effects. The effectiveness of the strategy was validated by showing that transgenic expression of VEGF164 in Col2-Cre;VEGF(f/f) mice stimulated angiogenesis in the perichondrium, fully corrected the excessive hypoxia of VEGF-deficient chondrocytes, and completely prevented chondrocyte death. Yet, similarly crossed double-mutant embryos lacking HIF-1α and overexpressing VEGF164 in the growth plate cartilage still displayed a central cell death phenotype, albeit slightly delayed and less severe compared with mice exclusively lacking HIF-1α. Transgenic VEGF164 induced massive angiogenesis in the perichondrium, yet this only partially relieved the aberrant hypoxia present in HIF-1α-deficient cartilage and thereby likely inflicted only a partial rescue effect. In fact, excessive hypoxia and failure to upregulate phosphoglycerate-kinase 1 (PGK1), a key enzyme of anaerobic glycolytic metabolism, were among the earliest manifestations of HIF-1α deficiency in cartilaginous bone templates, and reduced PGK1 expression was irrespective of transgenic VEGF164. These findings suggest that HIF-1α activates VEGF-independent cell-autonomous mechanisms to sustain oxygen levels in the challenged avascular cartilage by reducing oxygen consumption. Hence, regulation of the metabolic pathways by HIF-1α and VEGF-dependent regulation of angiogenesis coordinately act to maintain physiological cartilage oxygenation. We conclude that VEGF and HIF-1α are critical preservers of chondrocyte survival by ensuring an adequate balance between availability and handling of oxygen in developing growth cartilage.

Close

Hif-1α regulates differentiation of limb bud mesenchyme and joint development
View Publication 
View Abstract

Recent evidence suggests that low oxygen tension (hypoxia) may control fetal development and differentiation. A crucial mediator of the adaptive response of cells to hypoxia is the transcription factor Hif-1α. In this study, we provide evidence that mesenchymal condensations that give origin to endochondral bones are hypoxic during fetal development, and we demonstrate that Hif-1α is expressed and transcriptionally active in limb bud mesenchyme and in mesenchymal condensations. To investigate the role of Hif-1α in mesenchymal condensations and in early chondrogenesis, we conditionally inactivated Hif-1α in limb bud mesenchyme using a Prx1 promoter-driven Cre transgenic mouse. Conditional knockout of Hif-1α in limb bud mesenchyme does not impair mesenchyme condensation, but alters the formation of the cartilaginous primordia. Late hypertrophic differentiation is also affected as a result of the delay in early chondrogenesis. In addition, mutant mice show a striking impairment of joint development. Our study demonstrates a crucial, and previously unrecognized, role of Hif-1α in early chondrogenesis and joint formation.

Close

Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival
View Publication 
View Abstract

Breakdown or absence of vascular oxygen delivery is a hallmark of many common human diseases, including cancer, myocardial infarction, and stroke. The chief mediator of hypoxic response in mammalian tissues is the transcription factor hypoxia-inducible factor 1 (HIF-1), and its oxygen-sensitive component HIF-1α. A key question surrounding HIF-1α and the hypoxic response is the role of this transcription factor in cells removed from a functional vascular bed; in this regard there is evidence indicating that it can act as either a survival factor or induce growth arrest and apoptosis. To study more closely how HIF-1α functions in hypoxia in vivo, we used tissue-specific targeting to delete HIF-1α in an avascular tissue: the cartilaginous growth plate of developing bone. We show here the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery. As a result of this developmental hypoxia, cells that lack HIF-1α in the interior of the growth plate die. This is coupled to decreased expression of the CDK inhibitor p57, and increased levels of BrdU incorporation in HIF-1α null growth plates, indicating defects in HIF-1α-regulated growth arrest occurs in these animals. Furthermore, we find that VEGF expression in the growth plate is regulated through both HIF-1α-dependent and -independent mechanisms. In particular, we provide evidence that VEGFexpression is up-regulated in a HIF-1α-independent manner in chondrocytes surrounding areas of cell death, and this in turn induces ectopic angiogenesis. Altogether, our findings have important implications for the role of hypoxic response and HIF-1α in development, and in cell survival in tissues challenged by interruption of vascular flow; they also illustrate the complexities of HIF-1α response in vivo, and they provide new insights into mechanisms of growth plate development.

Close

Back to Top